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Introduction 
1. What is discrete mathematics?  
 

“Many problems of science deal with quantities so large that it is natural to assume 
that they are dense, continuously distributed, and that all real numbers can be used 
to measure them; centuries of development of “continuous mathematics” have given 
us extremely powerful tools for handling problems of this kind. Other problems are 
so small that we can deal with all the possible cases by hand. These are truly “finite” 
and defined problems. Some of the most important problems, however, fall in 
between: not big enough to assume density, continuity, etc., but not small enough to 
allow us to consider all cases. These intermediate problems are, for the most part, 
the problems with which discrete mathematics deals.” (Roberts, 2001: 3743). 
Discrete mathematics became one of the fastest growing fields of modern 
mathematics because many of the physical and biology sciences problems such as 
time, mass, velocity, involve very large quantities. However, many problems fall in 
the middle ground and for these the tools of DISCRETE MATHEMATICS are 
especially relevant (according to Roberts, 2001: 3743, referring to the work by the 
mathematician and philosopher, Kemeny)  With the help of powerful computers we 
are now able to replace computations done manually with computations done by 
computer. 
 

“Mathematics is about solving problems. Mathematics explains patterns. 
Mathematics is a set of statements deduced logically from axioms and definitions. 
Mathematics uses abstraction to model the real world.” (Ensley & Crawley, 2006) 

 
This module deals with the sub-field of the domain of discrete (not continuous) 
mathematics which is relevant to computing. In the module we shall be using tools 
such as 
 
• set theory,  
• relations and functions,  
• vector and matrix manipulations, 
• mathematical proofs, and 
• propositional logic. 
 
Rational-number concepts are among the most complex and important 
mathematical ideas children encounter during their secondary school years. We can 
consider the importance of this from a variety of perspectives, for example:  
 
(a)  From a practical perspective, our ability to deal effectively with rational number 

concepts vastly improves our understanding and our ability to handle 
situations and problems in the real world.  

(b)  From a psychological perspective, rational numbers provide a rich space within 
which we can develop and expand the mental structures necessary for our 
continued intellectual development.  

(c)  From a mathematical perspective, our understanding of rational numbers 
provides the foundation upon which our ability to do elementary algebraic 
operations can later be based. 
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Activity 1: Play     Pre-knowledge and indigenous knowledge 
Have some fun by playing any of the following games with a friend or family 
member while understanding that mathematics forms their basis: 
 
* Eeny-meeny-miney-moe 
 
* One potato, 2 potato, 3 potato, four, 5 potato, 6 potato, 7 potato, MORE (on “MORE” 
the person is OUT) 
 
* Draw an outline of an envelope (a square) with a cross over it without lifting your 
pen 
 
* Grid game / noughts and crosses (3 × 3 or 4 × 4 grids) 

 
What other games such as these did you play as a child? Describe them in a 
paragraph. This is great knowledge from your childhood and, if you wish, you can 
share it with others in the module’s online discussion forum. 
 

2. The purpose of the module 
 
On completing this module, you will be able to critically apply the fundamental 
knowledge and skills of discrete mathematics. The module forms part of the 
theoretical foundation of a Computer Science major. This background is relevant to 
computing fields such as relational databases, the development of provably correct 
programs, and the analysis of algorithms that will contribute to the development of 
computing in Southern Africa, Africa, or globally. The module will support further 
studies and applications in the computing discipline. 
 

3. Outcomes of the module 
 
• Specific outcome 1: Think in an abstract way to construct logical arguments, 

using a variety of mathematical tools.  
• Specific outcome 2: Construct proofs in a clear and concise way using 

mathematical reasoning techniques. 
• Specific outcome 3: Demonstrate knowledge and understanding of the 

definitions, laws and operations of set theory. 
• Specific outcome 4: Synthesise and critically analyse relations, functions and 

binary sets that are represented as sets containing ordered pairs. 
• Specific outcome 5: Perform operations on vectors and matrices. 

 

4. Syllabus 
 
The syllabus topics include: 
 
• Number sets 
• Set theory  
• Relations and functions  
• Binary operations 
• The fundamentals of logic  
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The following knowledge (declarative, causal, procedural, and contextual) is 
embedded in the module, and these “big ideas” will be assessed directly or indirectly 
through the assessment of the specific outcomes against the assessment criteria: 
 
• How are mathematical writing skills different from everyday English? 
• Which mathematical writing skills can be used as tools to solve logic problems? 
• How does (the underpinning skill of) abstract reasoning (abstract structures) 

support problem-solving skills? 
• How is the abstraction of facts and properties used to reason about events in the 

real world? 
• How does set theory underpin the solving of everyday problems? 
• How are operations on vectors and matrices applied in order to construct 

different ways of storing and listing numbered information in computing? 
• How are the properties of relations and functions used to reason about events in 

the real world? 
• In what way does academic rigour lead to disciplined and logical reasoning? 
• How do you think, explore, write, and discuss in order to make connections 

between different abstract and concrete mathematical concepts? 
• What mathematics underpins our play in puzzles, games of chance, chess, and 

card games? 
 

5. How to study this module 
 
Many textbooks or study guides provide us with detailed text that we have to read 
with comprehension and insight to make our own sense of the concepts and to 
practise the skills and internalise the values. Sometimes we may find science 
textbooks or study guides hard to read, until we start to apply the following three 
techniques, which often help at the start of a new study journey (you might find 
others elsewhere). 

 
Activity 2: Independent study 

(i) If at all possible, make your study space a separate space to support your 
independence. A crucial phase in the process of understanding and learning 
mathematics by problem solving is to articulate your ideas about 
mathematics, both orally (to hear yourself speak) and in writing. For better 
understanding it often helps to recite to yourself the materials that you read 
in your texts. 
 
Train your brain to think maths at a certain time and in a certain place. 
Eventually it will take you no longer than 10 minutes per day to get in a 
maths mood. Not only will you save the time and emotional energy you once 
needed to psych yourself up to do maths, it will also help you remember 
more of what you are studying. 
 
Use the “association learning concept”: Attempt, as closely as possible, to 
study the same subject at the same time in the same place every day. 
You will find that, after a very short while, when you get to that time and 
place, you will automatically be in the subject “groove”. 
 

(ii) Get help early if there is something in the study material that you do not 
understand. Lagging or losing time is similar to committing academic 
suicide. Maths requires a sequential learning process, so if you fall behind, it 
will be difficult to catch up. Each topic builds on the previous one. It would 
be like going to a Spanish class without learning the current set of 
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vocabulary words – the lecturer/tutor would be talking to you using the new 
vocabulary, but you would not understand what is being said. 
 

(iii) After studying, reinforce the pleasure of studying by doing something fun, 
such as watching television or going to a party. Experts have established that 
the positive reinforcement of behaviour (such as studying) will increase its 
frequency and duration. 

 
Different kinds of documents hold information in different places and in different 
ways; these documents have different depths and breadths of coverage. By 
understanding the layout of the material you are reading, you can extract useful 
information much more effectively. You should also use the most appropriate 
reading strategy for each different document.  
 
Where you only need the shallowest knowledge of the subject, you can scan 
material: read only the headings, introductions and summaries (like when you page 
through a magazine). If you need a moderate level of information on a subject, then 
you can skim the text: read the introductions and summaries in detail. You may also 
speed-read the contents, picking out and understanding key words and concepts, 
and paying attention to diagrams and graphs. Only when you need detailed 
knowledge of a subject is it worth studying the text. So, skim the material to get an 
overview of the subject and to get an understanding of its structure, so that you can 
fit the detail gained from a full, receptive reading of the material into that structure. 
We look at each of these reading methods in more detail in the activities that follow. 
 
The way one should read a maths textbook or study guide is different from the 
traditional way students are taught to read textbooks in high school or college. 
Often, students are taught to read quickly or skim the material and, if they do not 
understand a word, they are supposed to keep on reading. Instructors of other 
courses want students to continue to read, so that they can pick up the unknown 
words and their meanings from the context. NOTE: This reading technique may 
work with your other modules, but using it in your maths course will probably leave 
you totally confused. If you skip some of the major concepts or words printed in bold 
or italics, you will not understand the concepts and will not be able to do the 
activities. In a mathematical subject, it might take you half an hour to read and 
understand just one page. If you do not understand everything in a section, you 
should go back, so make a note in the margin. 
 
BEWARE: If you have a reading problem, it would be wise to spend time on a 
developmental reading course to increase your understanding of academic English 
(the language of this course) before taking any maths course, especially if you are 
studying in a language which is not your mother tongue, in which reading and 
writing are more difficult. This also applies if you are not used to studying, or if you 
have not established good study habits. 
 
Scan-Question-Read-Recall-Review (SQ3R) is a good study technique for getting a 
deep understanding of a text. To some extent, this technique could also be used for 
this particular module. 
 
• Scan the contents, introduction, chapter introductions and chapter summaries 

to pick up a shallow overview of the text. Form an opinion of whether it will be 
of any help. If it does not give you the information you want, discard it. 

• Question while you skim the page, and make a note of any questions on the 
subject that come to mind, or of anything that particularly interests you. Perhaps 
skim the document again to see if anything stands out. These questions can be 
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considered study goals – understanding the answers can help you to structure 
the information in your own mind. 

• (Study) Read the document while taking notes. Read through individual 
sections in detail, taking care to understand all the points that are relevant. In 
the case of some texts this reading may be very slow. This will particularly be 
the case if there is a lot of dense and complicated information. While you are 
reading, it can help to take notes in a mind map or concept map format. A 
concept map is a drawing that shows key ideas and relevant relationships (see 
activity 1 of each study unit). 

• Recall after you have read appropriate sections of the document. Run through it 
in your mind several times. Isolate the core facts or the essential processes 
behind the subject, and then see how other information fits around them. 

• Review the detail once you have run through the whole exercise above. This 
review can be done by rereading the document, by expanding your notes, or by 
discussing the material with your fellow students (peers) or with your tutor. A 
particularly effective method of reviewing information is to have to explain it to 
someone else in a group.  

(From the webpage, Mindtools, for more details 
http://www.mindtools.com/pages/article/newISS_02.htm). 
 

Activity 3: Scan-read       Study technique 
Quickly page through and SCAN the headings with the paragraphs of description 
below them (ignoring the Examples and Problems at first). This allows you to form 
a rough idea of the contents. 
 
READ the contents page, and then go back and forth. Ask QUESTIONS such as: 
• Which sections are important? 
• Which sections are relevant to the different assignments you are given in this 

module? 
 
While making this cursory survey, ask yourself: 
• What are the key terms or themes? Stop when you identify a key term, read 

carefully what is said about it, and mark it in the study guide so that you can find 
it easily later on. 

• What is “hidden” in the guide? There may be helpful index pages, or pages with 
summaries of formulas, special symbols and notations. In this guide, for 
example, there is a whole list of very important symbols that are key to your 
understanding. (What is interesting – and what makes it difficult – is that these 
symbols and notations often differ, depending on the conventions of the region 
in which they are used. We will alert you to such differences in the course of the 
study guide.) 

 
Scanning is a technique you often use when looking up a word in the telephone book 
or dictionary, or when looking for the answer to an assignment question, where you 
search for key words or ideas. In most cases, you know what you’re looking for, so 
you’re concentrating on finding a particular answer. Scanning involves moving your 
eyes quickly down the page, seeking specific words and phrases. Scanning is also 
used when you first find a resource, to determine whether it will answer your 
questions. Once you’ve scanned a document, you might go back and skim-read it. 
 
When scanning, look for the author’s use of organisers (such as numbers, letters, 
steps, or the words “first”, “second”, or "next"). Look for words that are bold-faced, 
in italics, or in a different font size, style, or colour.  
 

http://www.mindtools.com/pages/article/newISS_01.htm
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Research shows that people have more difficulty when reading off a computer 
screen than when reading off paper. Although they can read and comprehend at the 
same rate as when reading from paper, skimming on the computer is much slower 
than on paper. 
 

Activity 4: Skim-read      Study technique 
CIRCLE the new words that you do not understand (using a pencil) and quickly 
identify the main ideas of the text. When you read the newspaper, you’re probably 
not reading it word by word. Instead, you’re skimming the text. Skimming is done at 
a speed three to four times faster than normal reading. People often skim when they 
have lots of material to read in a limited amount of time.  
 
If you are reading large amounts of difficult mathematics or technical words, it may 
be useful to compile a GLOSSARY (a word list) during this skimming exercise. Keep 
this beside you as you read. It could also be useful to note down further explanations 
of the key concepts in your own words, and refer to them when necessary. (To help 
you, we have included the beginnings of a glossary as activity 2 in each study unit, to 
which you can add your own words.) 
 
BEWARE: Over-underlining is a common fault of students; only the key words in a 
paragraph should be underlined. It should be done in ink or with a felt-tip 
highlighter, and it should be done only after you have finished the first part of your 
reading.  
 
Research has shown that it is not how much time you study that is important; all 
that counts is how well you study during a given time. In fact, in at least one survey, 
students who studied more than 35 hours a week came out with poorer grades than 
those who studied less. Still, you will have to study at least 2 hours every day of the 
week to be successful in this module. Do not underestimate the volume of the 
module – it is a 120 study-hour module, and you will earn 12 credits when 
completing it. 
 
There are many strategies that can be used when skimming. Some people read the 
first and last paragraphs using headings and summaries when they proceed through 
a document. You might only read the title, subtitles, subheadings, and illustrations. 
As a start, consider reading the first sentence of each paragraph. This technique is 
useful when you’re seeking specific information, rather than reading for 
comprehension. Skimming works well to find specific information. It can also be 
used to get an overview of the information contained within graphs, tables, and 
charts. Take care not to skip these, but to find out what these graphics say and note 
down what you think they say. 
 
Skim the section or chapter with the aim of starting a mind map. Look for items and 
concepts while reading the information in the section or unit in a more evaluative 
way.  
 
Then, reflect on interrelationships between the identified concepts. The QUESTION 
now is: 
• What are the interrelationships? 
• What are the meaning and the purpose of these? 
 
Visualisation is important and you are certainly going to start writing down key 
concepts. When you are reading a document in detail, it often helps if you highlight 
and underline important points/concepts and annotate as you go along. This 
emphasises information, and helps you to review important points later. Doing this 
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also helps to keep your mind focused on the material and stops it from wandering. It 
is best to make notes as you go along. Creating concept maps or using the study 
system suggested here are effective ways of studying. 
 

Activity 5: Study-read      Study technique 
The next stage is to go back and start over, study-reading the paragraphs and 
making short notes (for example, on the DEFINITIONS, FORMULAS or the 
ACTIVITIES) in your mind map. 
 
Study-reading is done carefully, thoroughly and thoughtfully. The key terms and 
concepts you have pinpointed have to be linked up, and for this the mind map and 
summaries are important. Summaries and mind maps also fix the knowledge more 
firmly in your mind. Pause while reading, consolidate what you remember, and 
consider how new information fits in with what you already know. We want to 
broaden your perspective and outlook, help you to identify problems and help you 
to resolve them in a new way in the context of teaching and learning. 
 
Deeper reflection is where you expand the structure of the mind map, working 
towards a holistic picture. (Later, as you work through the prescribed activities of 
the section or chapter, keep returning to the mind map to fill in the detail.) Reflect 
on the value and meaning or categories, concepts, reasons, variables, formulas, and 
key terms. 
 
Concentrate on including text in bold and italic type, boxes, tables and illustrations, 
summaries, and introductions. The objectives (or a bold introduction to a chapter) 
are very important for this overview, so use it to ensure you have all the key items in 
your map. 
 
Read in such a manner that you will be able to make a summary of the contents of 
the chapter. Take care to look for the linking paragraphs that precede sub-sections, 
such as another definition that might extend the argument or indicate further 
exclusions or unique applications. The map will give you an overview of the story-
line which you are going to study in detail.  
 
Make up a colour and sign system for highlighting text and notes, such as 
 
• red for main ideas 
• blue for dates and numbers 
• yellow for supporting facts 
• circles, boxes, stars and checks in the margins to make reviewing easy 
 
Start your own glossary of the words and concepts you do not know, and use a 
scientific dictionary to find the meanings of the words in a scientific context. 
 
Watch for linking words such as “therefore” and “in essence”, which tell you what is 
being summarised.  
 
Always record examples (usually indicated by “for example”). In fact, in subjects 
such as maths, your notes should focus mainly on your lecturer/tutor’s examples. 
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Take your time now to make a mind map of the whole guide (just the outline). Look 
out for these main ideas: 
 
• Background:    Study units 1, 2 
• Set theory:   Study units 3, 4 
• Relations and functions:  Study units 5, 6, 7 
• Binary operations:  Study unit 8 
• Introduction to logic:  Study units 9, 10 
 
Now, consult your tutorial letter 101, and indicate on your mind map how the 
assignments will cover the sections above. 
 

Activity 6: Work through a computer-aided instruction tutorial         
You should receive a CD with an interactive computer-aided instruction (CAI) 
tutorial named “Relations”.  Information about this tutorial, including the navigation 
thereof, is provided in tutorial letter 101. This supplementary study aid covers the 
topics “sets” and “relations”. It deals with basic sets and the main properties of 
relations such as reflexivity, irreflexivity, symmetry, antisymmetry and transitivity. 
It also explores the properties of different types of relation. You can work 
interactively through theory, examples and exercises. These concepts are discussed 
in study units 3 to 6 of the study guide.  During the course of these study units we 
remind you to do specific parts of the tutorial by including the following picture in 

an activity:   
 

Activity 7: Recall examples and review activities 
The next stage is to go back and start over. Yes, read it again (because it is through 
repetition that you can get new insight), and then go to the EXAMPLES.  
 
Write out the example question in your notebook, and make sure that you 
understand the underlying concepts. Then write out your arguments, without 
looking at the solution. When you’re done, compare your solution to the model 
solution. At this point, take care to understand that messy is good and that the 
authors of the guide have taken out the messy thinking to give you neat solutions – 
which is not necessarily how mathematicians work. If you cannot follow some 
argument, make a note of what you think and what your question is, and go on. 
Sometimes insight comes later when you come back. 
 
Whenever you get to an activity, complete the activity in full, either in your notebook 
or on loose pages inserted and grouped together in the plastic folders of your file. 
Supplement this with your own notes. 
 
Doing activities can be frustrating, or rewarding. Many students jump right into the 
activities, become frustrated, and stop studying. These students usually go directly 
to the maths problems and start working on them, without any preparation. When 
they get stuck on a problem, they read the solution. Then, they either try to work the 
problem backward to understand the steps in the problem, or they just copy down 
the answer. Other students go to the solutions and simply copy the steps. After 
getting stuck several times, these students will inevitably quit doing the activities. 
Doing the activities becomes a frustrating experience, and they may even quit 
working on the module altogether. 
 
When doing activities, write down every step of the problem. Even if you can do the 
step in your head, write it down anyway. This will increase the amount of activity 



 Introduction        COS1501/1 

xiii 
 

time, but will be worthwhile. Doing every step is an easy way to memorise and 
understand the material. Another advantage is that when you rework the problems 
you did incorrectly, it is easy to review each step to find the mistake. In the long run, 
doing every step of the activity will save you time and frustration. 
 
Understand the reasons for each step of the problem and check your answers. Do 
not get into the bad habit of memorising how to do problems without knowing the 
reasons for each step. Many students are smart enough to memorise the procedures 
required to complete a set of problems. However, when similar problems are 
presented in an exam, the student cannot solve them. To avoid this dilemma, keep 
reminding yourself about the rules, laws, or properties used to solve any given 
problem. 
 
You should check the answers to your activities and to your assignments. Make a 
point of checking the answers to the self-assessment exercises in this study guide.  
 
• First, check your answer by estimating the correct answer. Example: If you are 

multiplying 2.234 by 5.102 the answer should by a little over 10. Remember to 
estimate that 2 times 5 is 10. 

• You can sometimes check your answers by substituting the answer back into the 
equation. The more you hone a skill, the faster you will become. This is very 
important, because increasing your reading and answer checking speed can help 
you to do quick checks to avoid careless errors in your assignments. 

 
If you do not understand how to solve a problem, then 
 
• review the material in this study guide that relates to the problem 
• review the notes in the study unit text that relate to the problem 
• review any similar problems, diagrams, examples or rules that explain the 

misunderstood material 
• refer to a maths textbook, solutions guide, math computer program or DVD, or 

the internet to obtain a better understanding of the material 
• call a friend 
• skip the problem and contact your tutor or lecturer for help 
 
Always finish your activity by successfully completing problems. Even if you get 
stuck, go back and successfully complete previous problems before quitting. You 
should end your activity assignment with feelings of success. 
 
After finishing your activity, recall or write down the most important concepts you 
have learned. Recalling this information makes it easier to master these new 
concepts. 
 
Once you know the correct reason for going from one step to another in solving a 
maths problem, you can answer any problem which requires a specific technique. 
Students who simply memorise how to solve problems instead of understanding the 
reasons for correctly working the steps will eventually fail their maths course. 
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In each study unit of this guide, there is a number of self-assessment exercises 
designed to 
 
• assess the progress you have made towards the chapter objectives – allowing 

you to determine your own level of competence and what you still have to do to 
reach the requisite standard 

• reinforce and expand the knowledge and insights you have derived from the 
chapter 

 
Note: The solutions to the self-assessment exercises in this study guide are 
provided in tutorial letter 102. Evaluate your own solutions against these solutions. 
 

Activity 8: Reflect with others 
Link up with a group of students (called a peer-group), or with your tutorial group, if 
possible. Discuss your misunderstandings and insights with the group.  
 
You can also participate in the discussion forum for this module on myUnisa. 
 
Replace your previous misunderstandings: write down your new insights. 
 

Activity 9: Celebrate your feelings of frustration, elation, inquiry 
Learning to do something new (including mathematics) often involves a lot of effort, 
discomfort, excitement, or frustration. What feelings do you currently have when 
you think of mathematics?  
 
These feelings cannot be avoided, so welcome them – they are symptoms of brain 
activity, which indicate that new connections between neurons are being made. 
After all, everything worthwhile takes effort. Studying mathematics is much like 
learning to play a new musical instrument or a sport: practice makes perfect. There 
is no royal road, just the hard road. 
 

“There is no royal road to geometry”, said Aristotle to his student, Alexander, 
when he had difficulty with mathematics.  

 
Do some maths activity every day. Work frequently and regularly. Make notes of 
your feelings as you go along. You can be successful! 
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Glossary of symbols 
 

You have to thoroughly understand and be able to recognise at first sight the 
following “mathematical vocabulary”. This takes time and focus. You can include 
the “vocabulary” in your mind maps and lists, with the equivalent term. 

 
  
- p, q, r, etc. are used for propositions that have truth values. 

- ¬ denotes “it is not the case that”. 

- ∧ denotes “and”. 

- ∨ denotes “or” meaning “either ..., or ..., or both”. 

- ∈ denotes “is a member of ...”. 

- ∀  denotes “for all”. 

- ∃  denotes “there exists (at least one)”. 

- → denotes “if ...  then ...”. 

- ↔ denotes “if and only if” (iff). 

- a mod b = r means that r is the remainder when a is divided by b. 

- Z is a funny Z that denotes the set of integers {...,−3, −2, −1, 0, 1, 2, 3, ...}. 

- Z+ which is the set of positive integers {1, 2, 3, 4, ...}. 

- Z≥ also denotes N, which is the set of non-negative integers (natural numbers) {0, 1, 2, 3, 4, ...}.  

- Q is a funny Q that denotes the set of all rational numbers, i.e. ratios of integers, defined by the 

set {a/b | a ∈ Z, b ∈ Z and b ≠ 0}. 

- Q+ denotes the set of positive rational numbers. 

- Q≥ denotes the set of non-negative rational numbers. 

- R is a funny R that denotes the set of all real numbers. 

- R+ denotes the set of positive real numbers. 

- R≥ denotes the set of non-negative real numbers. 

- |m| is the absolute value of m. 

- ⊆ denotes “is a subset of ...”. 

- ⊂ denotes “is a proper subset of ...”. 

- 0/ denotes “the empty set”. 

- ∩ denotes “intersection” (A ∩ B is a set that contains those elements common to both set A and 

to set B). 

- ∪ denotes “union” (A ∪ B is a set that contains those elements in set A or set B). 

- If A and B are sets, then A − B denotes the difference between A and B (the set that contains 

those elements in A that are not in B). 
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- If A is a set, A′ denotes the complement of A (the set that contains those elements of some 

universal set U that are not in A, i.e. U – A = A′). 

- If A and B are sets, A + B denotes the symmetric difference between A and B (the set that 

contains those elements in either A or B, but not in both). 

- If A is a set, |A| or n(A) denotes the number of elements in A. 

- (a, b) denotes the ordered pair with a as first and b as second co-ordinate. 

- If A and B are sets, A × B denotes the Cartesian product of A and B. 

- (x1, x2, ..., xn) denotes the ordered n-tuple with first co-ordinate x1, second co-ordinate x2, and so 

on. 

- Ƥ  is a funny P that denotes “the power set of ...”. 

- If R is a relation on some set A, then R is a relation from A to A. 

- If R is a relation, then R-1 denotes the inverse relation of R. 

- S ￮ R denotes the composition of relations S and R. (We may write S ￮ R or R; S. 

 R; S reminds us that, in a certain sense, R is followed by S.) 

- f: A → B should be read “f is a function from set A to set B”. 

- [x] denotes the equivalence class of x with regard to some previously specified equivalence 

relation. 

- If f: X × X → X, then f is called a binary operation on X. 

- *, , as well as the more familiar symbols  ⋅,  +, −, and  ×  are often used to denote binary 

operations. 

- n! denotes the product 1⋅2⋅3⋅...⋅n.  (n factorial). 
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Study unit 1  The development of number systems: 
Z+, Z≥ and Z 

 

Key questions for this study unit 

• What are the differences amongst the three number systems Z +, Z ≥ (also 
referred to as N) and Z ? 

• Why did the invention of zero advance our understanding and ability regarding 
number systems? 

• Why is a minus (− ) times a minus a plus (+)? − × − = + 
• Why is a plus times a minus a minus? + × − = − 
• What is the usefulness of properties such as commutativity? 
• What is meant by the concepts “multiplicative and additive identities”; 

“additive inverse”; “absolute value”; “prime number”; and 
“ n factorial (n!)”? 

1.1 Introduction to the study unit 
 
In this study unit we review very briefly what the different classifications of 
the types of number we use are, and how these numbers can be re-written by 
scientists to make difficult and advanced mathematics possible. We also 
discuss the characteristics of numbers, which tell us what make them useful. 
 
In this first study unit we are going to help you acquire three different 
skills/study habits which we think might help you in the future and might help 
you to master material in a shorter space of time. 
These skills are 
- getting an overview, 
- the deep remembering of terms (linking it to your home language), and 
- pronouncing these new terms correctly. 
 

Activity 1-1: Overview        Study skill 
Draw a mind map of the different sections/headings you will deal with in this 
study session. Read section 4 (Syllabus) and section 5 (How to study this 
module) of the introduction to this study guide again, then page through this 
study unit with the purpose of completing the map.  
 
Check your map against ours for concepts. It should include integers, positive 
integers and non-negative integers (natural numbers). It should also include 
the properties “commutativity”, “associativity”, “distributivity”, and so on, the 
concepts “absolute value”, “prime number” and “n factorial”, and the  
multiplication rules. 
 
Did you add colour to your map? Your map is your own drawing and should 
not look like those of other people; in fact, yours should be unique. Still, a 
mind map should contain key concepts that can be checked or correlated for 
correctness.  
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The concepts in the sections focus on the knowledge we expect you to have as 
underpinning (“building blocks”) for this module and further modules. 
Without a clear understanding of these concepts you will find it difficult to 
identify and correctly complete tasks. Please take some time to ensure that 
you understand these concepts. 
 
A mind map for the number systems Z, Z≥, and Z+ (or N): 

 

 
 
You can compare your mind map with the above map and then fill in possible 
missing concepts in your map if needed. After studying the next study unit you 
can also include the concepts “rational numbers” and “irrational numbers” 
with their properties in an extended mind map. 
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Activity 1-2: Concepts       Conceptual skill 
We will list concepts at the beginning of each study unit to introduce and 
summarise concepts or terms. You may use this space to test your own 
knowledge (write in pencil) and then correct your understanding afterwards 
(erase and write the correct description). Your understanding can be 
deepened by also jotting down the term as you know it in your home language. 
 

English term Description Term in your home language 
Positive integers   
Non-negative integers   
Integers   
Property: Commutativity    
Property: Associativity    
Property: Distributivity   
Multiplicative identity   
Additive identity   
Multiplication by zero   
Additive inverse   
Absolute value   
Prime number   
n factorial (n!)   
   
   
   
   
   

 
 

Activity 1-3: Pronunciation      Communication skill 
If you are uncertain about the pronunciation of some of the terms in the 
concept list, it will be a good idea to consult a science dictionary that will give 
you the pronunciation of scientific words. Investing in such a dictionary, or 
accessing one on the internet, will be very helpful if you are not sure about the 
pronunciation of a specific word. 
 

1.2 Positive integers:  Z+   
 
In this section we look at the number system Z+ by which we mean the set of 
all positive integers namely the numbers 1, 2, 3, … and so on. We can indicate a 
set by writing down curly brackets and then writing the members belonging to 
the set inside the brackets. The members (or elements) of a set are separated 
by commas. We can denote the set of positive integers as follows: 
Z+ = {1, 2, 3, …}. (In study unit 3 we will learn more about sets.) 
 
These are the numbers we would use to count sheep, for example. Historically, 
before discovering numbers such as zero and the negative integers, people 
worked with these numbers. A child, for example, learns to use these numbers 
before learning to use zero or fractions.  
 
You all know how to add together or multiply positive integers. In this section 
we look at a number of properties of the addition and multiplication of positive 
integers. The principles (“commutativity”, “associativity” and “distributivity”) 
will be familiar to you; we will only add some terminology that you will often 
encounter in your Computing modules. 
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1.2.1 Commutative property  
 
The following rules specify the commutative property of addition and 
multiplication for all positive integers within a mathematical context. 
 

Property: Commutativity 
For all positive integers m and n, addition and multiplication is commutative. 
This means that  
(a)  m + n = n + m  (i.e. addition is commutative) 
(b) (m)(n) = (n)(m) (i.e. multiplication is commutative) 
 
How do we know that addition and multiplication are commutative? Can I (as 
a student) trust and believe you (the lecturer)? 
 

I would reply “As your lecturer, I cannot at this stage prove my claim that addition and 
multiplication are commutative, because this is outside the scope of this fundamental 
module. The proof is usually discussed at Honours level in any good set theory course, so 
you have to trust me at this stage when I say that these properties hold. But my claim is 
reasonable, because we can substitute specific values for m and n, and through examples 
show that it is a truthful statement.” 

 
We illustrate commutativity of addition by looking at an example. 
 

Example  
Let’s take m = 3 and n = 6, for instance,  
 
then   m + n = 3 + 6 and  
  n + m = 6 + 3, 
i.e.  3 + 6 = 9 and 
also   6 + 3 = 9.  

So for m = 3 and n = 6 we get 3 + 6 = 6 + 3 = 9. 
 
Similarly, it is also true for multiplication: 
 
  (m)(n) = (3)(6) = 18, and 
  (n)(m) = (6)(3) = 18. 
 
So for m = 3 and n = 6 we get (3)(6) = (6)(3) = 18. 
 
You might also ask, “Why do you write the product of m times n as (m)(n)? 
Can’t we write m × n or mn or m⋅n?”  
 

We can write (m)(n) or mn or m⋅n. I would tend to avoid m× n, since the × symbol is 
sometimes mistaken for the letter x, and also because we later use × for a very specific 
sort of product, namely the Cartesian product of sets. 

 
Given that addition is commutative, it should not surprise us that 
multiplication is also commutative, because the multiplication of positive 
integers is simply repeated addition. That is, a product such as (6)(3) might be 
viewed as the sum 6 + 6 + 6. 
 
One can employ many examples to illustrate the commutativity property. 
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In stating the commutative properties, we used the letters “m” and “n”. These 
symbols are variables; they are not the names of specific things. The idea is 
that for every positive integer whose name is substituted by m and every 
positive integer whose name is substituted by n, we will get a true statement 
of the form 
 

m + n = n + m  (Let m = 113 and n = 25 then 113 + 25 = 25 + 113.)  
 

or of the form  
 
mn = nm  (In our example, (113)(25) = (25)(113).)  

 
The variables thus serve to include a great number of specific statements in 
one brief, packaged statement.  
 
Note that we wrote mn and not (m)(n) in the discussion. We do not need to 
use the brackets, because it is clear what mn means. However, the moment we 
substitute the variables with numbers such as 113 and 25, the brackets are 
essential. We cannot write 11325 when we actually mean (113)(25). 
 

When you come across a statement involving variables, it‘s a good idea to mentally 
substitute specific values for the variables, just to keep the feeling of being in control. 

 
1.2.2 Associative property  

 
The next property we consider is the associativity of the addition and 
multiplication of positive integers. 

 
Property: Associativity 

For all positive integers m, n and k, addition and multiplication are associative. 
This means that  
(a)  m+(n+k) = (m+n)+k  (i.e. addition is associative) 
(b)  (m)(nk) = (mn)(k)  (i.e. multiplication is associative) 
 
Bookkeepers often have to add up long lists of numbers. Some like to start at 
the top of the list and work downwards. Others like to start at the bottom of 
the list and work upwards. Do you know why they get the same answers?  
 

WORKED EXAMPLE 
Bookkeepers use the principles of the commutativity and associativity of 
addition. Let’s illustrate with an example of what they often need to do.  
Consider the list of numbers that have to be added: 7, 13, 5, 9. 
 
Working downwards we get: ((7 + 13) + 5) + 9, where the brackets show that 
we added 7 and 13 first, then added 5 to the result, and then 9 to that result: 
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Working upwards we would have: ((9 + 5) + 13) + 7, where the brackets show 
that we first added 9 and 5, then 13 to the result, and then 7 to that result: 
 

 
 
Now we look at the rules that we applied: 
 
((7 + 13) + 5) + 9  
= 9 + ((7 + 13) + 5)  by commutativity 
= 9 + (5 + (7 + 13))  by commutativity 
= 9 + (5 + (13 + 7) )  by commutativity  
= 9 + ((5 + 13) + 7)  by associativity 
= (9 + (5 + 13)) + 7 by associativity  
= ((9 + 5) + 13) + 7 by associativity 

 
1.2.3 Distributive property  

 
Another interesting property of the addition and multiplication of positive 
numbers is the property of distributivity. 
 

Property: Distributivity 
For all positive integers m, n and k, we say that multiplication is distributive 
over addition. This means that  
m(n + k) = mn + mk, and since multiplication is commutative, 
(n + k)m = m(n + k) 

= mn + mk by distributivity 
= nm + km by commutativity 

 
What makes the distributive property important? Let’s look at examples. 
 

Examples  
Let x be a variable representing some positive integer. 
 
In order to write  18x5 + 12x4 + 3x3 
as    3x3(6x2 + 4x + 1) 
we take out the common factor, namely 3x3. This means that we are relying on 
the distributive property.  Note that we have used distributivity over more 
than two terms. 
 
We can read the general definition of distributivity in a different way: 
“mn + mk is equal to m(n + k)”.  
 
Furthermore, if we read m(n + k) = mn + mk from left to right, it tells us how 
to multiply out expressions. 
 
Suppose we want to simplify (3x + 2)(x + 4). 
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One can read (3x + 2) as playing the role of m, x playing the role of n, and 4 
playing the role of k: 
 
 (3x + 2)(x + 4) 

= (3x + 2)x + (3x + 2)4 by distributivity 
= 3x2 + 2x + 12x + 8 by distributivity 
= 3x2 + 14x + 8  by distributivity  

 
Activity 1-4:  

Do you think that addition is distributive over multiplication, i.e. that  
m + (nk) = (m+n)(m+k)?  Substitute a few values for m, n and k to see whether 
you get the same answer for the left-hand side and the right-hand side of the 
equation. 
 

1.2.4 Multiplicative identity  
 
Does the number 1 play a special role in some operations on numbers? 
 

Property: Multiplicative identity 
There exists a positive integer, namely 1 (the multiplicative identity element), 
that has the property that for every positive integer m, m⋅1 = m. 
 
Of course, by commutativity we also have 1⋅m = m⋅1. Here, we call 1 the 
identity in respect of multiplication, because any number multiplied by 1 is 
identical to the given number. 
 
“Isn’t this a very useless property?” one might ask. “Everyone knows it, after 
all.” Well, this property is used very often as a trick to simplify some 
complicated expression or to get it into some required form.  
 
At this stage it is a bit difficult to give you convincing examples of this trick, 
since it requires further mathematical skills. For instance, in a calculus course, 
one uses this trick to show that the root of x, i.e. , is differentiable. But you 
cannot at this stage be expected to follow examples like that, so let’s make a 
deal. You keep your eyes open from now on for situations in which the trick is 
used. We’ll do the same and try to draw your attention to them. 
 

Different notation: It is important that you should be aware of the fact that you will find 
a variety of notations (or names) for the same concept (such as the positive integers) in 
the literature. We call the positive integers Z +, but some books call it P. So remember, 
whenever you pick up a mathematical textbook, you will have to make an effort to figure 
out exactly what notation it uses. 

1.3 Non-negative integers: Z≥  
 
With Z≥ (or N) we mean the set of all non-negative integers (natural numbers), 
namely the numbers 0, 1, 2, 3, 4, ... and so on. We can write Z≥ = {0, 1, 2, 3, …}. 
 
The only difference between Z≥ and Z+ is that Z≥ has as member the 
additional number zero. 
 



Study unit 1  The development of numbers systems: Z +, Z ≥ and Z    COS1501/1 

 8  
 

Note: In some books the letter N (the set of natural numbers) is reserved for 
the positive integers {1, 2, 3, …}. However, in this study guide we stick to the 
convention of using N for the set of natural numbers {0, 1, 2, 3, …}. 
 

Strange as it might seem, it took thousands of years before mankind conceived the idea of 
having a number such as zero. Of what use is it?  

 
Scenario 

Suppose we want to buy sheep, but farmer Mokoena has lost all his sheep in 
the drought. If we don’t know about zero, we could write:  
Farmer Mokoena has no sheep. 
 
If we have the number zero at our disposal, we could write: 
Farmer Mokoena has 0 sheep. 
 
It was not obvious that zero was necessary while people were mainly 
interested in counting the number of sheep. It is only when we want to rate 
things according to a scale that we begin to get the idea that there is a 
difference between “zero” and “nothing”. 
 

Example 
Suppose we think of the marks a lecturer awards for an exam. One particular 
student, let’s call him Mr Jones, decided to do no work at all. This might result 
in Mr Jones being awarded a mark of zero! But Mr Singh, who is not enrolled 
for the module, would get nothing. In other words, he will have no mark for 
the module at all, so we would just delete his name off our class list in reality. 
Mathematically these situations are not the same; 0 is not the same as 
“nothing”. 
 

The invention of zero by the Hindus in the seventh or eighth century AD in India made the 
first successful form of positional notation possible. This means that the position of a digit 
within a number is important. This concept is worth spending a little time on, since it 
may well be the most powerful justification for the extension of Z + to Z ≥.  So, let’s think 
about notation for numbers. Strictly speaking, in ordinary language one could get away 
with names for numbers: names such as “one thousand eight hundred and sixty”, 
“thirteen” and “seventy-two”. But this makes arithmetic difficult. If the ordinary man in 
the street is to learn to add and multiply easily, what we need are abbreviated names for 
numbers which, in some way or other, make arithmetic easy. 

 
Well, we could consider the simplest notation of all, consisting of vertical 
strokes, which works as follows: 
 
1   for the number one 
11   for two 
111   for three 
1111   for four 
11111  for five 
. 
. 
. 
11111111111111111111111 for twenty-three, and so on. 
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Those of you who are familiar with binary numbers will realise that these vertical strokes 
do not represent binary notation. 

  
Addition becomes very easy with this notation. To add three and four, for 
example, one just takes the bunch of strokes representing three, i.e. 111, and 
puts it with the bunch representing four, i.e. 1111, to get 1111111, which  then 
represents the sum of three and four. When it comes to bigger numbers 
though, it is not only tedious to write down all the strokes, but it is also very 
easy to make a mistake and put in one extra stroke, or one stroke too few. 
Also, there is no way to indicate zero in this system, except by the absence of a 
stroke. This tends to result in the idea that zero is nothing, and we have 
discussed the weakness of this idea in our example of Mr Jones and Mr Singh. 
 

The early civilizations of Sumer and Babylonia started to get a handle on the problem of 
representing large numbers by devising a positional system of notation in which the 
place (position) occupied by a symbol determined its value. Hence we talk about a place-
value system. 

 
Activity 1-5: Place value 

Determine how a place-value system works.  
 
First, you can choose any positive integer greater than 1. Call whichever 
number you choose the base of your system (or radix, meaning root).  
 

The Arabs chose ten, which we still use today. In contrast, some ancient tribes in South 
America chose four, while the Mayan tribe chose twenty, and the Babylonians sixty.  

 
Next you need symbols for the numbers smaller than your base.  Call these 
symbols digits. Now you can represent a number as a row of digits, in which 
the rightmost digit represents a number of units, the next digit to its left 
represents a number of groups which each has as many things in it as your 
base, and so on. The further to the left you go, the greater the value of the digit. 
We will get back to this a little later.  
 

Following the invention of zero by the Hindus and the Arabs, we ended up with several 
excellent systems of notation. Nowadays the man in the street uses the decimal system.  

 
Let’s see how it works in the familiar decimal system (of which the base is 10). 
 

Activity 1-6: Place values in the decimal system 
We have as digits the familiar symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. 
(a) How do we represent one hundred and thirteen in this number system?  
(b) How would you multiply (186)(10) in the decimal system? 
 
(a) This is easy for us, since we simply write 113. When we look at this 

closely, and say the number out loud, we see that the position of each 
digit within the number indicates the place value of each digit, so 113 
can be regarded as  
(1 times 102 = 100) plus (1 times 101) plus 3, or (1)(102) + (1)(101) + 3.  
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Now, if one doesn’t have the number zero represented by some digit, then the following 
problem arises. How does one indicate the difference between numbers such as 300, 30 
and 3? The symbol 0 pushes the digit 3 to the left in 30 and in 300 and so increases its 
value. Also how would you write the number “three hundred and five” in the decimal 
system? This can be written as (3)(102) + (0)(101) + 5. 

 
(b) The decimal system has made it simple to multiply a hundred and 

eighty-six by ten, i.e. (186)(10): you just put a zero to the right of 186, 
to get 1860. 

 
Addition and multiplication are not made more difficult by the inclusion of 0.  
 
These operations remain: 
• commutative and  
• associative;  
• the distributive property is retained, and  
• 1 is still the multiplicative identity.  

 
However, we gain two important new properties. 
 

1.3.1 The existence of an additive identity 
 
We call 0 the identity with respect to addition because, when adding zero, the 
number we start with is identical to the end result. 
 

Property: Additive identity 
There exists a non-negative integer, namely 0 (the additive identity element), 
that has the property that, for every non-negative integer m,   
m + 0 = m. 
 
Of course, by commutativity we also have 0 + m = m + 0 = m for any non-
negative integer m. 
 
For example, let m = 2, then 
 
 0 + 2 = 2 + 0 = 2. 
 
Sometimes this property is used when we want to solve equations.  We see 
how this is done in examples provided later in this study unit. 
 

1.3.2 Multiplication by zero 
 
Zero is a special number. Why do we say this? 
 

Definition: Multiplication by zero 
There is only one way to get a product equal to zero, and that is to have zero 
as one of the factors, i.e. 
(a) for every non-negative integer m, m⋅0 = 0, and  
(b)  if m and n are non-negative integers such that m⋅n = 0 then  
 either m = 0 or n = 0, or both. 
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We can use (b) above when we use factorisation to solve some quadratic 
equation such as x2 + 2x + 1 = 0.  An example illustrating how this definition is 
applied is provided later in this study unit. If you have trouble remembering 
how factorisation works, we have included a number of self-assessment 
exercises at the end of this study unit. Try to do the exercises by yourself then 
evaluate your answers by studying the solutions to the self-assessment 
exercises as provided in tutorial letter 102. 

1.4 Integers: Z 
In this section we look at the symbol, Z, that we use to represent the set of all 
integers in both directions (negative and non-negative), namely the numbers 
... , −3, −2, −1, 0, 1, 2, … . We can write Z = {... , −3, −2, −1, 0, 1, 2, …}. 
 
Just as it took a long time for zero to be invented, so the invention of the 
negative integers had to wait until it became a necessity within the society of 
the day.  
 

In bookkeeping, scribes found it easier to keep track of debits and credits if, instead of 
entering figures into two different columns, the debits were indicated by putting a little 
hyphen in front of the number representing the size of the debit. So, for instance, a debit 
of 113 Δ (where Δ represents some currency) could be written as −113. Apart from 
making things convenient for scribes, the invention of negative numbers was necessary to 
clear up some other mathematical difficulties. 

 
Consider the following silly argument, which can be modified to demonstrate 
that any two numbers are equal (which is nonsense, of course).  
 

Silly argument: Are any two numbers equal? 
The argument is based on the idea that if both sides of an equation represent 
the same number, then the square roots also represent the same number. 
 
Let x be 5 and y be 3. 
Then x + y = 2z. (where z is 4)  
 
Multiply each side by (x – y).             (We can do this because x – y ≠ 0.) 
This gives  (x − y)(x + y)  = (x − y)(2z) 
or               x2 − y2  = 2xz − 2yz.  
 
Add y2 + z2 - 2xz to each side, to get 
x2 − 2xz + z2  = y2 − 2yz + z2 
 
This means that each side is a perfect square. 
Thus,  (x − z)2  = (y − z)2 
 
Now, take the square root of each side 
x − z = y − z 
Add z to each side, then 

x  =  y        
i.e. 5  = 3   (Oops, this is interesting!) 
 

Activity 1-7: Fixing the silly argument with numbers 
Can you spot what is wrong with the argument used above? 
 
Well, remember that we call p a square root of q if p2 = q. 
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Let’s consider the number 4. 
 
We know that (−2)2 = (+2)2 = 4. 
This means that if p2 = 4 then p2 = (±2)2 
i.e. p = +2 or −2. 
 
The important thing to remember here is that usually when we talk about 
taking “the square root”, we take the positive root. The symbol  in fact 
means “the positive square root”. 
 
So from (x − z)2 = (y − z)2 we should get a positive object on each side. But 
recall from our “silly argument” that y was 3 and z was 4. Clearly y − z is not 
positive. 
 

This helps us to see the flaw in the argument given above: you have to realise that there 
are things such as negative numbers and that in our reasoning we have gone to a 
negative number when in fact the symbol  required a non-negative number. A modern 
mathematician will not have any trouble fixing the argument by using absolute values (a 
topic we will deal with soon). 

 
Many uses were found for the expanded system of integers. Just think again of 
rating things according to a scale. 
 
Some scales, such as marks for an exam, can conveniently contain a range 
from some minimum to some maximum. Other scales have, rather than a 
minimum or a maximum, some point in the middle which is of importance. 
Think for instance of temperature measured in centigrade, with a mid-point 
indicating the temperature at which water freezes. 
 
°C  . . . .−50 . . . . 0 . . . . 50 . . . . 100 
 
From such a point in the middle one can move in two directions, one of which 
could be called the positive direction and the other the negative direction.  
For example, a business might choose as mid-point its break-even point at 
which it has covered its expenses but not made any profit, and then choose 
increasing net profit as the positive direction and increasing net cost as the 
negative direction. 
 
Addition and multiplication were not made much more complicated by the 
inclusion of negative integers. Addition can be performed quite mechanically 
by drawing a number line on which the names of integers are written at some 
fixed unit of distance apart. A number line can be represented as follows: 
 
 
 
 
You might now want to know whether the concept of a number line has any 
use at all. Let’s use an example to illustrate that it is, in fact, a very useful 
concept. 

  

 -3     -2      -1      0       1      2       3      4
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Example: Addition 
Let zero be the starting point. To find the sum x + y, one moves x steps in the 
positive or negative direction (depending, of course, on whether x is positive 
or negative) and then, from where you stop, y steps in the appropriate 
direction (again depending on whether y is positive or negative). The place 
where you stop gives the sum x + y.  
 
We look at an example: 5 + (−2) 

 -3      -2    -1       0      1       2       3      4       5      6       7      8       9      10  
 
Clearly 5 + (−2) = (−2) + 5 = 3. 
In the case when two positive numbers are added (e.g. 3 + 4), the movement is 
only in a positive direction. 
 
Multiplication is a little more complicated. There are four different 
possibilities for a product (x)(y).  
 

Example: Multiplication 
Firstly, the simplest case is when both x and y are non-negative. Then, of 
course, we know that the product is non-negative, because both x and y are 
also members of Z≥. 
 
A second simple case is that of a product (x)(y) in which x is negative but y is 
not negative. Then 
xy =  x + x  + … + x   (y times), for example, 
 (−2)(3) = (−2) + (−2) + (−2) = −6, 
so we can find the product easily by using the principle of repeated addition. 
 
Thirdly, remember that a product (x)(y) can also be written as xy. Now 
suppose we need to find xy when y is negative but x is not. Can we say “xy = yx 
by commutativity, and so xy = y + y + ... + y (x times)”? 
 
No, we can’t. If we don’t yet know what xy is, then we can’t be sure that the 
multiplication of integers is commutative. 
 

One has to be careful not to use a more advanced fact to prove one of the simpler facts on 
which it rests; doing so would create a vicious circle. 

 
The fourth case is just as tricky. 
 
What happens when we have to find the product xy, when both x and y are 
negative? 
  
The usual way to calculate the product in tricky cases is given by the general 
rule: 
 
Fact 1:  If x is negative, then x = −a for some positive integer a. 
  Otherwise x = a. 
 
Fact 2:  If y is negative, then y = −b for some positive integer b. 
  Otherwise y = b. 
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Step 1:  Find ab. 
 
Step 2:  If one of x and y is negative, then xy = −(ab). 
  Otherwise,  xy = ab.  

 
Let’s consider the following rules: 

 
RULES:  

A plus times a minus is a minus, a minus times a plus is a minus, and  
a minus times a minus is a plus. 
 
How can we justify the rules? Let’s do it by looking at a concrete situation. 
 

Worked example 
Suppose you deposit money into, or withdraw money from your bank account 
every day. Let’s denote an increase of, say, R110 in your account by the 
positive integer 110, and a decrease of R110 by the negative integer −110. 
Let‘s indicate days in the future by a positive number, and days in the past by a 
negative number (e.g. three days from now is indicated by 3, while three days 
ago is indicated by −3). 
 
The following four cases all fit our general rule for multiplication: 
 
* If you increase the amount in your account by R5 every day for the next 3 
days, your balance should change by R15. Our mathematical representation 
gives (5)(3) = 15 using the rule that a plus times a plus is a plus. So our rule 
fits the situation. 
 
* If you increase the amount in your account daily by R5, then three days ago 
your balance would have been R15 less. Our mathematical representation 
gives 5(−3) = −15 using the rule that a plus times a minus is a minus. So our 
rule fits the situation. 
 
* If you withdraw R5 from your bank account daily, then within 3 days your 
balance will change by (−5)3 = −15, i.e. it will decrease by R15. So a minus 
times a plus is a minus. (We see that 5(−3) = (−5)3 = −15.) 
 
* If you withdraw R5 from your bank account daily, then three days ago your 
balance would have been different by (−5)(−3) = 15, i.e. it would have been 
R15 more than the present amount. So a minus times a minus is a plus. 
 

Activity 1.8: Addition and multiplication of integers 
Investigate whether the addition and multiplication properties hold for  
integers.  
 
Let’s summarise the properties of addition and multiplication of integers: 
 
• Both addition and multiplication are commutative and also associative.  
• Multiplication is distributive over addition.  
• There is an identity element with respect to multiplication, namely 1.  
• There is an identity element with respect to addition, namely 0.  
• A product is zero, if and only if, at least one of the factors is zero. 
 
There is one additional property which we consider in the next section. 



Study unit 1  The development of numbers systems: Z +, Z ≥ and Z    COS1501/1 

 15  
 

1.5 The additive inverse, absolute values and prime numbers 
 

Definition: Additive inverse 
For every integer x there exists an integer, i.e. an integer denoted by −x, such 
that  
x + (−x) = 0. 
 

Don’t fall into the trap of thinking that − x always denotes a negative number. See and 
read the hyphen (the minus sign) as an abbreviation for the phrase “− x is the additive 
inverse of ”. 

 
So if x = −2, for instance,  
then −x is the additive inverse of −2,  
i.e.    −x = −(−2) = 2.  
 
We can use the “additive identity element” and an “additive inverse” when we 
want to change an equation to get it into some standard form.  
 

Example: Additive inverse 
The idea of an additive inverse is simple. If you think of x as representing a 
certain number of steps in either the positive or the negative direction, then 
−x represents an equal number of steps in the opposite direction. 
 
For instance, given that x + 3 = 0, we can add −3 to both sides to get 
 x + 3 + (−3)  = 0 + (−3) 
i.e. x + 0           = −3 (0 is the additive identity element) 
i.e. x               = −3 
 

There is no need to speak of “subtraction”. It is just convenient for us to write, for 
example, 4 + (−1) as 4 − 1. 

 
An additive inverse can play a role in the solving of equations of the form 
p2 = q. Let’s look at the following example, and also remember that we call p a 
square root of q if p2 = q. 
 

Example 
Consider the technique for solving quadratic equations known as “completing 
the square”. It is based on the fact that an equation, such as x2 = 9 can easily be 
solved by taking the square root on each side. 
 
We know that (−3)2 = (3)2 = 9, so we use this to solve x2 = 9: 
 
If  x2 = 9, then 
 x = 3 or x = −3.  
So 3 and −3 are square roots of 9. 
 
Given a more complicated equation, we can follow the same reasoning as in 
the previous example. 
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Example 
Let’s consider x2 − 2x = 15. 
 
We can try to get the left-hand side into the form (something)2. To do this, we 
use the fact that adding 0 (the additive identity element) to one side doesn’t 
change a thing, and we write 0 as  
12 − 12 = 1 − 1. 
 
So we get 
x2 − 2x + (1 − 1) = 15  (adding 0 to the left-hand side) 
i. e.  x2 − 2x + 1 = 16  (adding 1 to both sides) 
i. e.   (x − 1)2  = 16  (completing the square) 
   = (±4)2    
 
Therefore x − 1 = 4    or x − 1 = −4  
i. e.   x = 5   or        x = −3 

 
In addition to involving the “additive identity element” and an “additive 
inverse” when solving quadratic equations, we can also apply the 
“multiplication by zero” definition (as defined earlier in this study unit). 
 

For instance 
Suppose we want to solve x2 − 2x − 3 = 0. 
 
We can factorise the left-hand side 
to get  (x − 3) (x + 1) = 0.  
 
Now, we know that whenever a product of an equation is equal to zero (as in 
the equation above), at least one of the factors must be zero, so we know that  

x − 3 = 0   or x + 1= 0 
i.e. x − 3 + 3 = 0 + 3 or x + 1 + (−1) = 0 + (−1) 
 
So x + 0 = 0 + 3  or  x + 0 = 0 − 1 
i.e. x = 3    or x = −1. 
 
From these examples we see that zero is a very special and unique integer, and 
an additive inverse also comes in handy sometimes. 
 
There is another interesting thing about Z when we consider the concept of 
size. When we discussed the addition of integers, we formed a mental picture 
of Z as a number line, with the members of Z+ extending towards the right 
and their additive inverses extending towards the left. This mental picture 
suggests a way to order the integers.  
 

 -3     -2      -1      0       1      2       3      4  
 
We say that x is less than y (abbreviated by x < y) if x lies to the left of y on the 
number line. This amounts to saying that x < y if y + (−x) is positive.  
 

Activity 1-9: Number line 
Draw a number line (as given above) to show your understanding of the 
concept −5 < 2. 
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Is the number 2 to the right of the zero on your line? Is the negative number to 
the left of the zero?  
 
There is another way in which we use the concept of size. In ordinary life we 
speak not only of big credits but also of big debits, of big profits and of big 
losses, and so on.  So, an “absolute value” is useful for large numbers. 
 

Activity 1-10: Communicating big negative numbers 
How can you communicate the idea that a negative number  
(such as  −113 000) is very big? 
 
We can do this by defining the absolute value of a number. This tells us how far 
from zero the number sits on the number line, without taking into account the 
direction. Let’s look at the definition. 
 

Definition: Absolute value 
For any integer x, the absolute value of x (denoted by |x|) is defined to be 
either:  
  x  if x is non-negative, or  
−x  if x is negative. 
 
This sounds more complicated than it really is.  We can look at some examples. 
 

Examples 
|2| makes sense since 2 lies two steps to the right of 0, and  
|−2| also makes sense since the absolute value does not care in which 
direction one has to step. 
 
In terms of <, we saw that 2 was greater than −5. In terms of the absolute 
values, the situation is reversed, since −5 is more steps away from 0 than 2 is, 
so  

|2| < |−5|.  
 
We can apply the concept of absolute value to fix the invalid argument 
involving square roots which we used earlier to show that 5 = 3. The crucial 
step there was taking the square root on each side of  
 

(x − z)2 = (y − z)2 to get 
(x − z)   = (y − z) 

 
In order to fix the argument, one can choose the positive or the negative root 
on each side by the following reasoning: 
 
Since = |w| we can go from 

(x − z)2  = (y − z)2 
to   |x − z|   = |y − z|. 
Now since x = 5, y = 3 and z = 4, we know that x − z is positive,  
so that  |x − z| = x − z,  
whereas  y − z is negative.  
 
So, to get rid of the absolute value signs we must go to its additive inverse, i.e. 
|y − z| = − (y − z). 
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This gives −(y − z) 
  = −y −(−z) 
  = −y + z 
  = z − y 
  = 4 − 3 
  = 1 
   
Also:  x − z 
  = 5 − 4 
  = 1 
 
Now (x − z)2  = |x − z| = x − z = 1, and 

(y − z)2 = |y − z| = − (y − z) = 1. 
 
This time we get a valid answer! 
 
Now we can move on to another concept. Remember the concept of prime 
numbers from high school maths? Refer to the following definition, in case you 
have forgotten. 
 

Definition: Prime number 
A positive integer p greater than 1 is defined to be a prime number if its only 
factors are 1 and p.  
 
The list of prime numbers thus includes the numbers 2, 3, 5, 7, 11, 13, 17, 19, 
and so on. We see that the number 7 is prime because its only factors are 1 
and 7.  On the other hand, a number such as 4 is not prime since it can be 
factored as 4 = 2⋅2 where 2 is greater than 1. 
 
Before we conclude this study unit, we would like to introduce you to the 
concept of a factorial, if you are not already familiar with it. This is a concept 
you will often encounter in your further studies. 
 

Definition: n factorial (n!) 
If n is any positive number, then n factorial, denoted by n!, is calculated as 
follows: 
n! = n(n–1)(n–2)…(4)(3)(2)(1) 
 
To find the value of 6!, for example, we need to do the following calculation: 
6! = 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 720. 
 

Activity 1-11: Self-assessment exercises     Application skills 
1. Factorise the following expressions (as revision of your school maths): 
 
(a) x2 + 6x + 9 
(b) x2 – x – 2 
(c) x2 – 5x + 6 
(d) x2 + 4x – 12 
 
2. Solve x2 − 4x + 4 = 0 by factorising. 

 
3. Complete the square to solve x2 – 4x = 12. 
  
4. Is 21 a prime number? 
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5. What is the value of 5! (5 factorial)? 
 
Note: The solutions to the self-assessment exercises are provided in tutorial 
letter 102. 
 

1.6 The nine laws for Z≥ 
  
To conclude, we give the nine laws for Z≥:  
 
 Law 1 (commutativity): 

For all non-negative integers m and n, 
      m + n = n + m  and  mn = nm. 
 

  Law 2 (associativity): 
For all non-negative integers m, n and k, 
m + (n + k) = (m + n) + k  and  m(nk) = (mn)k. 
 

  Law 3 (distributivity): 
For all non-negative integers m, n and k, 

   m(n+k) = (mn) + (mk). 
 

  Law 4 (existence of a multiplicative identity element): 
For all non-negative integers m, 
m⋅1 = m. 
 

  Law 5 (linearity): 
For all non-negative integers m and n, exactly one of the following   
statements are true: 
m < n,  m = n,  m > n. 
 

  Law 6 (monotonicity of + and × respectively): 
For all non-negative integers m, n and k, 

   if m = n, then m + k = n + k and mk = nk; 
   if m < n,  then m + k < n + k; and 
   if k > 0,  mk < nk. 

       
   Law 7 (transitivity of = and < respectively): 

For all non-negative integers m, n and k, 
if m = n  and  n = k, then  m = k,  and 
if m < n  and  n < k,  then  m < k. 
 

  Law 8 (existence of an additive identity element): 
For all non-negative integers m, 

   m + 0 = m. 
 

  Law 9 (absence of zero-divisors): 
For all non-negative integers m and n, 
mn = 0  if and only if  m = 0  or  n = 0.  
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 What about Z?  
 
All the laws listed above hold for Z, except for the monotonicity law, which looks 
slightly different for Z: 
 

  Law 6 (monotonicity): 
For all integers m, n and k, 
    if m = n,  then  m + k = n + k  and  mk = nk; 

          if m < n,  then  m + k < n + k; 
          if k > 0,  then mk < nk;  and 
          if k < 0,  then mk > nk (negative numbers must also be taken into account). 
  
Z has one law that Z≥ does not have: 

 
 Law 10 (existence of additive inverses): 

For every integer m there exists an integer n such that  
m + n = 0. 

1.7 In summary of the study unit 
 
In this study unit you ensured that you can answer the following basic 
questions: 
 
• What are the differences amongst the three number systems: Z+, Z≥ (also 

referred to as N) and Z? 
• Why does zero play an important role in some number systems? 
• Why is a minus (−) times a minus equal to a plus, i.e. (−)(−) = +? 
• Why is a minus (−) times a plus equal to a minus, i.e. (−)(+) = −? 
• What is the usefulness of properties such as commutativity? 
 
It is important to understand the properties of the different number systems 
very well. We understand that you might not have had this knowledge as 
background, so hopefully you have corrected some misunderstandings you 
might have had. If so, this is good and you know that you can go on to the next 
section. 
 
In the next study session we will concentrate on the rational numbers and the 
real numbers. 

 
NOTES 
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Study unit 2  Rational and real numbers: Q and R 
 

Key questions for this study unit 

• What is meant by the concepts “rational number”; “irrational number”; “reductio 
ad absurdum”; “repeating decimal”; “quadratic formula”; and “the Theorem of 
Pythagoras”? 

• Why can we not divide by zero? 
• Where do the real numbers fit in? 
• What is the meaning of the concept “proof by contradiction”? 

2.1 Introduction to this study unit 
 
This study unit follows on study unit 1. In study unit 1 we discussed positive 
integers, non-negative integers and the integer number system. Here we shall 
look at the rational numbers, describe what an irrational number is, and finally 
consider real numbers. These number systems do not form the complete set of all 
numbers. We are, for example, not considering complex numbers. 
 
 

Activity 2-1: Overview        Study skill 
Draw a mind map of the different sections/headings you will deal with in this 
study session. Then page through the study unit with the purpose of completing 
the map.  
 
Your mind map should include the concepts of rational numbers, irrational 
numbers, repeating decimals, a quadratic formula and the Theorem of 
Pythagoras. The concepts in study units 1 and 2 focus on the knowledge we 
expect you to have as underpinning (“building blocks”) for this module and 
further modules.  
 
 

Activity 2-2: Concepts           Conceptual skill 
Use this space to test your own knowledge (write in pencil) and then correct your 
understanding afterwards (erase and write the correct description). Your 
understanding can be deepened by also jotting down the term as you know it in 
your home language.  
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English term Description Term in your home language 
Rational number    

Irrational number    
Real numbers    
Multiplicative 
inverse 

  

Theorem of 
Pythagoras  

  

General form of odd 
and even integers  

  

Expressing 0 as a 
ratio 

  

   
   
   
   
   
   

 

2.2 The rational numbers: Q 
 
So far the numbers at our disposal do not allow us to solve simple equations such 
as 2x = 1. Let’s see how such an equation could arise in practice.  
 

Example 
A cook uses 1 bag of flour to bake 2 loaves of bread. How much flour does she 
need to bake a single loaf? 
 
Well, if x represents the amount of flour needed for one loaf, then what do we 
know about x? Certainly, we know that two times x is one whole bag of flour, 
because we get 2 loaves of bread from 1 bag of flour. We see that x is the number 
by which 2 must be multiplied to give 1, and so we can write this as 2x = 1. 
 
Furthermore we know that x is not an integer. To see this, we note firstly that 
there are no integers between 0 and 1. Then we see that x must be greater than 0. 
Why? Because (2)(0) = 0. This is less than the required result, so zero is too small.  
 
Next we see that x must be less than 1, since (2)(1) = 2, which is bigger than the 
required result, so one is too big. 
 
So, for example, the x above could be written as 1/2. Now it is clear that we have 
to multiply 2 by ½ to get 1. 
 
We therefore have to expand Z by including new numbers. We want all numbers 
of the form p/q, where you should regard the notation p/q as an abbreviation for 
the number by which q must be multiplied to give p.  
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But there is a very important exception: We do not want q to be zero, i.e. we do 
not want to allow division by zero. Why not? There are two possible reasons. 
 
• Suppose p ≠ 0 and q = 0. Then p/q would mean the number by which q must 

be multiplied to give p. But no such number exists, since q is zero, and zero 
multiplied by anything must give zero, whereas p is not zero. 

• Suppose p = q = 0. Then p/q = 0/0 would mean the number by which q must 
be multiplied in order to give p. Now the problem is that any number will 
do, since 0 multiplied by any number is zero. And this is no good, for we 
would never know what number is being talked about when someone 
refers to 0/0. 

A famous mathematician called De Morgan, who lived nearly two centuries ago, showed 
some of the disastrous things that would happen if we tried to make it possible to divide by 
zero. 
 
One would be able to prove that any number is equal to zero (which, of course, is nonsense). 
The nonsense proof works as follows: 
 
Suppose                           x = a.                               
It is possible to show that x = 0? 
Multiply by x:                x2 = ax 
Subtract a2:           x2 – a2 = ax – a2 
i.e.               (x + a)(x – a) = a(x – a) 
Divide by x – a (using the statement above x = a, so x – a = 0):         x + a = a    
Subtract a:       x = 0  QED 
 
Note: We indicate the end of a proof by QED, which is an acronym of the Latin phrase “quod 
erat demonstrandum”, which means “that which was to be demonstrated”. 

 
It is wiser to accept that division by zero can never be allowed! 
 

Definition: Rational numbers 
We expand Z to a new number system Q which is the set of all numbers of the 
form p/q where p and q are integers and q is not zero. We call such numbers 
rational numbers. 
 
Of course, every integer can be written in the form p/q just by giving it a 
denominator equal to 1, i.e. by making q one (1).  
 
How does one add and multiply rational numbers? To multiply is very easy. For 
instance  
 

   =    =  . 
 
We simply multiply the tops (called numerators) with each other and multiply the 
bottoms (called denominators) with each other.  
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So, the general rule is: 
 
(a/b)(c/d) = ac/bd 

 
Addition is not so simple. In order to add, say, 1/2 and 3/5 we have to find a 
common denominator, which in this case is 10.  
 
Then 

 +   =   =    . 
 
A hidden part of this reasoning involves the idea of equivalent fractions. You 
know that 

 
1/2 = 5/10 = 10/20 = 30/60, etc. 
 

This is because 1 remains the multiplicative identity for Q, and 1 can be written 
as any fraction in which the numerator and denominator are the same, for 
instance as 5/5 (the number by which the 5 at the bottom must be multiplied to 
give the 5 at the top). So 5/10 and 10/20 and 30/60 are all equal to 1/2, since 
they are all obtained from 1/2 by multiplying by 1, with 1 written in an 
appropriate form. 
 
To express 1/2 as an equivalent fraction with a denominator of 10, multiply by 
5/5. Similarly, to express 3/5 as an equivalent fraction with 10 as denominator, 
multiply by 2/2. 
 

How does one find common denominators?  There are two methods: 
 
The quick method just multiplies the denominators of the given fractions. For example, in the 
case of 1/2 + 3/5 this method gives 10 as the common denominator. The drawback of this 
method is that it does not always give the least common denominator, although for the 
purposes of this module, it’s not a problem.  
 
The more elegant method involves using things called prime factors to build the least 
common denominator. We don’t require you to use this method, so we will ignore it for this 
module. 

 
Let’s summarise the properties of addition and multiplication in Q. As you 
probably expect,  
 
• we have commutativity and associativity for both addition and 

multiplication,  
• the distributive property holds,  
• 0 and 1 are identities for addition and multiplication respectively,  
• products are zero if and only if at least one of the factors is equal to zero, 

and 
• additive inverses exist for all rational numbers.  
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There is one further property. 
 

Definition: Multiplicative inverses 
For every non-zero rational number x there exists a rational number called the 
multiplicative inverse, denoted by 1/x which is such that (x)(1/x) = 1. 
 
The idea of a multiplicative inverse is simple. If you think about the notation 1/x 
for a moment, you will recall that it means the number by which x must be 
multiplied to give 1. 
 
Given x, the number 1/x is called the reciprocal of x (in older books). This fits the 
following idea: Think of every rational number as having a numerator and a 
denominator. Now the multiplicative inverse of any number can be found by 
simply turning it upside down, i.e. writing the numerator as the denominator and 
the denominator as the numerator. 
 
We use this property whenever we want to solve linear equations of the form  
ax = b. Multiplying both sides by 1/a gives the solution x = b/a. Remember that 
this cannot be done if a = 0. 
 

There is no need to speak of division. To say that one is dividing x by y is the same as to say 
that one is multiplying x by 1/y. 

 

2.3 The 11th law of Q 
 
Similar laws hold for Q as for Z, but set Q has one law that the set Z does not 
have: 
 
Law 11 (the existence of multiplicative inverses): 
       For every non-zero rational number x there exists a rational number y 
            such that xy = 1 

 

2.4 The real numbers: R 
 
Suppose a ladder leaning against a wall reaches 1 meter high when its foot is 1 
meter away from the wall. How long is the ladder? 
 
The Theorem of Pythagoras can help us solve the problem, because the situation 
can be represented by a right-angled triangle in which the length of the ladder is 
given by the unknown x. 
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In general, given a right-angled triangle with sides of lengths x, y and z as shown 
below, Pythagoras’ theorem tells us that  
 

x2 = y2 + z2  
 

i.e. the square on the hypotenuse is the sum of the squares on the other two sides.  
 

x z

y  
 
So if x, which indicates the hypotenuse, represents the length of the ladder, and y 
and z are both equal to 1,   
we have  x2 = 12 + 12 
i.e.   x =  
 

x 1

1  
 
This does not tell us very much yet.  
How big is ? What number is it? 
Well, it turns out that  is not any of the numbers we’ve met so far, i.e.  is not 
a rational number. This is not quite as easy to show as it was to show that 1/2 is 
not an integer. But it is worth looking at the proof. 
 

Theorem  
There is no rational number whose square equals 2. 
 

Proof  
We will use a technique known as reductio ad absurdum, also called proof by 
contradiction (to be discussed in greater detail in subsequent study units). 
 
Suppose there is some rational number x whose square equals 2, i.e.  
x2 = 2 for some x = p/q, with p, q ∈ Z and q ≠ 0. (We may write x in the form p/q 
because x is a rational number.) 
 
Any fraction can be expressed in lowest terms by cancelling any common factors 
shared by the numerator and denominator. So we may assume that p/q is a 
fraction in lowest terms. 
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By the next argument we show that both p and q are even, i.e. both p and q are 
multiples of 2 and hence have a common factor, namely 2, which is a direct 
contradiction of what we have just noted. 
 
If  (p/q)2 = 2  
then        p2  = 2q2 . 
 
This means p2 is an even integer (since it is a multiple of 2). 
 
Note: Even integers can be written in the form 2k for some integer k. 
 
We will now show that q2 is also an even integer. 
 
Firstly, we claim that the square of an odd integer is odd. 
 
Note: Odd integers can be written in the form 2k + 1 for some integer k. 
 
Squaring 2k + 1  
gives       (2k + 1)2  = 4k2 + 4k + 1 

= 2(2k2 + 2k) + 1  
= 2m + 1 

 
where m is the integer 2k2 + 2k. Hence (2k + 1)2 is odd. 
 
This means that p by itself cannot be odd (remember that we showed that p2 is an 
even integer), and p must therefore be even.  
  
Returning to the proof of the theorem discussed above, we have now shown that  
p = 2k for some k because it is even, so that 
 
p2 = 4k2 = 2q2 
i.e.   q2 = 2k2 
and thus q2 is even, and ultimately q is also even.  
Hence both p and q are even. 
 
Remember that we assumed p and q to have no common terms, hence we derived 
a contradiction. Something is wrong somewhere. Every step in our argument can 
be justified, except the assumption that x2 = 2 for some x = p/q, and therefore we 
conclude that the initial assumption is false. That is, no rational number x, written 
in the form p/q, can be found such that x2 = 2.    
        QED 
 

Activity 2-3: The general form of an even or odd integer 
Take note of the general form of an even or odd integer provided in the previous 
proof. What is the general form of an integer that is a multiple of 3?   
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Now we have some idea of what is not. It is not any of the rational numbers. In order to 
solve simple equations such as x2 = 2, we need to expand Q by including what we call 
irrational numbers, such as   

 
Activity 2-4: Addition and multiplication involving irrational numbers 

Suppose a ≠ 0 is rational and b is irrational. How could one demonstrate that a + 
b and ab are both irrational? 
 
We can get a clearer picture of what irrationals are like, if we use decimal 
notation. Just as a non-negative integer such as thirty could be written as 
 

30 signifying (3 ⋅ 10) + (0 ⋅ 1), 
 
any other number can be expressed in decimal notation, for instance −3/8 could 
be written as 
 

− 0.375 signifying 
  

− [(0 ⋅ 1) + (3 ⋅ 1/10) + (7 ⋅ 1/100) + (5 ⋅ 1/1000)]  
 

i.e.     − [  +   +  ]. 
 
Some decimals cannot be expressed in such a simple form, because the fractional 
part goes on forever, for example  
 

1/3 = 0.3333 … 
 

and 5/7 = 0.7142857142857 … 
and = 1.4142 ... 

Of course you know how to express 1/3 and 5/7 as decimals: just divide the bottom into the 
top. But you may be wondering how we got the decimal expansion of  

 
We know that 1 < < 2, i.e. that lies between 1 and 2. How do we know 
this? Well, 12 = 1 is too small, and 22 = 4 is too big, because 
(  )2 = 2. 
 
Now then, let’s take as our first approximation of  the number 1.5. Since  
(1.5)2 = 2.25, we see that 1.5 is too big, i.e.  < 1.5. What about 1.4 as an 
approximation? But (1.4)2 = 1.96 so 1.4 is too small, i.e. 1.4 <  Matters have 
improved. Earlier we knew only that 1 <  < 2. Now we know that 1.4 <  < 1.5. 
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So let’s look at the approximation 1.45 for  But (1.45)2 = 2.1025 which is too 
big. So we look at 1.44, and so forth. Eventually we will get to the point where we 
can show that   
 

1.4142 <  < 1.4143. 
 
Clearly we can go on to calculate to an arbitrary number of positions after the 
comma. 
 
Let’s return to the point we made earlier, namely that some decimal expansions 
never terminate. There is a subtle difference between the decimal expansions of 
the rationals 1/3 and 5/7, on the one hand, and those of the irrationals, such as 

 on the other. In the case of the rationals, the expansions repeat a digit (3 in  
0.333 ...) or a group of digits (714285 in 0.7142857142857 ...), and so we call 
these expansions repeating decimals.  
 
In the case of , it can be proved that the decimal expansion never even begins 
to repeat. 
 

Definition: Real numbers 
The expanded number system that consists of the combination of the rational 
plus the irrational numbers is called R, i.e. the set of the real numbers. 

In general, irrational numbers correspond to non-repeating decimals, while rationals 
correspond to repeating decimals (often the digit that repeats is 0, in which case we may 
speak of a terminating decimal). This makes it easy for us to construct new irrationals. Just 
form a non-repeating decimal, e.g. 0.10110111011110 ... 
 
What about arithmetic in R? Well, addition and multiplication have exactly the same useful 
properties as addition and multiplication in Q, but it is much harder to describe exactly 
what is going on. You see, to handle infinite decimals, one really needs the concept of a limit, 
which you will encounter only if you take a Calculus module. Not having the concept at our 
disposal, we will not investigate the arithmetic of real numbers any further. 

 
There are also, of course, the complex number system, but a discussion of this 
topic is beyond the scope of this module. 
 

Activity 2-5: Expressing zero as a ratio 
Express 0 as a ratio. Why does the rule of the multiplicative inverse exclude 0? 
 
There are many ways to express 0 as a ratio, for instance 0/1 (since 0/1 
represents the number by which 1 must be multiplied to give 0 and we know that 
number is 0), or 0/2 (since 0/2 represents the number by which 2 must be 
multiplied to give 0, and we know that multiplying 2 by 0 will do the trick), and 
so on.  
 
In general, 0 may be written in the form 0/b, where b is any non-zero integer. 
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The reason the multiplicative inverse is defined for non-zero rationals only, is 
that a multiplicative inverse for 0 would have to be a number that, when 
multiplied by 0, gives 1. But no such number exists; in the previous study unit we 
have already learned that any number multiplied by 0 will be 0. 
 

Activity 2-6: n/n is equal to 1 
Why is a ratio of the form n/n equal to 1? 
 
Simple. The ratio n/n represents the number by which the denominator n must 
be multiplied to give the numerator n. By which number should n be multiplied 
to give n back again? The multiplicative identity, 1, of course. 

 
Activity 2-7: Integers as fractions 

Does it make sense to call 113 a fraction? 
 
People use the word “fraction” ambiguously, that is, we cannot be sure what they 
mean. Often they have in mind “a part of the whole”, in other words a number 
between 0 and 1. Certainly 113 is not a fraction in this sense, but in the context of 
the present section, any number that can be written as a ratio may be called a 
fraction, and since 113 may be written as 113/1, we are allowed to refer to 113 
as a fraction. 
 
To avoid confusion between the two uses of the word “fraction”, we call a number 
between 0 and 1 a proper fraction and a number such as 113/1 an improper 
fraction. 
 

Activity 2-8: Self-assessment exercises      Application skills 
1. Define the words “even” and “odd” for positive integers. 
 
For the following questions, substantiate your answers with proofs or 
counterexamples. 
 
2. Is it the case that m+ (n⋅k) = (m + n) (m + k) for all positive integers  
 m, n, and k? 
3. Are there any even prime numbers besides 2? 
4. If m and n are even, is m + n even? 
5. If m and n are odd, is m⋅n odd? 

  



Study unit 2  Rational and real numbers           COS1501/1 

 
 31  

 

2.5 In summary of the study unit 
 
In this study unit you ensured that you can answer the following questions: 
 

• How do we express the concept of a rational number? 
• What is the major difference between a rational and an irrational number? 
• How is a real number defined? 
• Why can’t we divide by zero? 
• Which property holds for set Q but not for set Z? 

  
The next study unit is an introduction to set theory. 

 
 
 

NOTES 
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NOTES 
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Study unit 3     Sets 
 

Key questions for this study unit 

• What is meant by the following concepts: “set”, “list notation”, “set-
builder notation”, “element”, “subset”, “proper subset”, “set equality”, 
“union”, “intersection”, “difference”, “symmetric difference”, 
“complement”, “set equality”? 

• How would you describe sets correctly using list notation and set-
builder notation? 

• How would you construct new sets from old ones by forming subsets, 
unions, intersections, complements, differences and symmetric 
differences?  

• What does it mean if we say that two sets are disjoint?  
• How is the cardinality of a set defined? 

 

3.1 Introduction to this study unit  
 
The previous study unit covered study material that is very important 
to understand so that the remaining units in this study guide make 
sense. In this study unit, we start with the serious stuff and introduce 
you to set theory. Set theory is just an important-sounding word that 
refers to discussions on topics that have to do with sets. It is essential 
for your computing studies that you understand the concepts we cover 
in this study unit. 
 
 

Activity 3-1: Overview       Study skill 
Draw a mind map of the different sections/headings you will deal with 
in this study session. Then page through the study unit with the 
purpose of completing the map.  
 
Your map should include the concepts “set”, “elements”, “set 
membership”, “universal set”, “empty set”, “subset”, “set union”, “set 
intersection”, “set complement”, “set difference”, “symmetric 
difference” and “power set”. 
 
 

Activity 3-2: Concepts      Conceptual skill 
Test your own knowledge (write in pencil) and then correct your 
understanding afterwards (erase and write the correct description). 
Often a young language may not have all the terms in a discipline; can 
you think of some examples? 
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English term Description Term in your home language 
Set   
List notation   
Set-builder 
notation 

  

Element/member   
Set equality   
Universal set   
Empty set   
Subset/proper 
subset 

  

Set union   
Set intersection   
Set difference / 
relative 
complement 

  

Set complement   
Disjoint sets   
Symmetric 
difference 

  

Set cardinality   
Power set   
   

 
 

3.2 Why do set theory? 
 
Firstly, we need to explain what a set is. As a simple example, think of a 
set as a bag. Not a real bag made of plastic or paper, but an imaginary 
one. Inside the bag you will find distinct objects of the set. These objects 
can also be called members or elements of the set. 
 
We do set theory for a variety of reasons.  
 
• We eventually want to arrive at the concepts “relation” and 

“function”; and 
• we want to learn how to prove theorems, and set theory is a 

convenient source of reasonably simple proofs on which to 
practise. 

 

3.3 How do we talk about sets? 
 
Suppose we want to tell you something interesting about the set of all 
positive integers less than 5. Then, of course, we can refer to it as “the 
set of all positive integers less than 5”. But this appears rather clumsy. 
 
Another possibility is to use list notation. This involves writing down 
curly brackets (to represent the set or bag) and then writing the names 
of all the members of the set inside the curly brackets, separated by 
commas. This gives, in the case of our example, {1, 2, 3, 4}. This is a 
pretty neat and clear description of the set of all positive integers less 
than 5, not so? (List notation is often referred to as the roster method.) 
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A third possibility is to give the set a name and subsequently, in the 
discussion, to use the name. For instance, we might begin a discussion 
by saying “Let A be the set of all positive integers less than 5”. For the 
rest of our discussion you will know that whenever we talk of the set A, 
then we mean the set of all positive integers less than 5. We use this 
trick often, particularly in referring to the sets Z+, Z≥, Z, Q and R. 
 
The fourth and last possibility is to use set-builder notation. At first 
sight it is more complicated than, say, list notation. But it compensates 
for that by being more useful. You see, list notation is severely limited; 
we cannot write down all the elements of a set when the set we want to 
describe has lots of elements. 
 

Example  
Suppose we want to talk about some positive integers using list 
notation. We can’t possibly write down the names of all the elements.  
 
All we can do is to list the names of the first few and then put down 
what is called an ellipsis, i.e. three little dots that stand for “and so on”: 
 

{3, 5, 7, ...} 
 
But notice how the dots introduce an element of vagueness. After all, if 
we look at the set {3, 5, 7, ...}, we are unsure whether we’re talking 
about the set of odd integers greater than 1 or about the set of prime 
numbers greater than 2. The latter set differs from the former, as we 
can see by listing a few more elements: 
 

{3, 5, 7, 9, 11, 13, 15, 17, 19, 21, ...} 
 
is not the same as 
 

{3, 5, 7, 11, 13, 17, 19, 23, ...}. 
 

We’ll be discussing the concept “is the same” presently. 

 
Set-builder notation avoids having to use dots, by using a variable 
instead. We use set-builder notation to write Z+ as 
 

{ x | x is a positive integer}. 
 
Read this in the following manner: 
 
   {      x  |       x is a positive integer} 

                           ↑ ↑  ↑          ↑ 
        The set ... of all x’s …  such that ... x is a positive integer. 
 

The letter x is called a variable, because it is not the name of a specific number. In 
mathematics the word “variable” means “place-holder”, because one gets a 
specific statement if one replaces the variable with the name of something.  
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Examples 
From “x > 3” we get the specific statement  “5 > 3”  if we push the name 
5 into the space kept open by the variable x.  
 
Another example: Suppose we want to talk about the set of all positive 
integers less than 5. Using set-builder notation, we can write 
 

{x | x is a positive integer less than 5}. 
 

Abbreviations: Set membership 
Suppose we want to say “3 is a member of Z”. Then it will be convenient 
if we can abbreviate the phrase “is a member of”. The symbol we 
usually use for this abbreviation is “∈”. So, “3 is a member of Z” can be 
written as “3 ∈ Z”. We can also say “3 is an element of Z”. 
 
It could be that some element, say −2, is not a member of the set Z+, 
then we say “−2 is not a member of Z+”, and we may write “−2 ∉ Z+”.  
 
Similarly, in order to say “2 is a member of {0, 1, 2}”, we may write  
“2 ∈ {0, 1, 2}”, and to say “3 is not a member of {0, 1, 2}”, we may write  
“3 ∉ {0, 1, 2}”. 
 

The symbol “∈” is a streamlined version of the letter epsilon (ε) which is the 
Greek version of the English letter e, and e is the first letter of the word “element”. 

 
Sets should be well-defined. In general, a set can be described in 
different ways, and we illustrate this by the following examples: 
 

Examples 
The set of even non-negative integers less than 10 can be described in 
(at least) three ways:  
 {0, 2, 4, 6, 8},  
 {x | x is an even non-negative integer less than 10}, and 
 {x | x ∈ Z≥, x is an even integer less than or equal to 8}. 
 
These three descriptions might look different, but clearly they refer to 
the same collection of things. We indicate this by writing  
 
{0, 2, 4, 6, 8} = {x | x is an even non-negative integer less than 10} 
  = {x | x ∈ Z≥, x is an even integer less than or equal to 8}.  
 
Another example: Suppose we want to talk about the set of all negative 
integers greater than −5. We can describe this set by using  
list notation: {−4, −3, −2, −1}, or  
set-builder notation: {x | x is a negative integer greater than −5}. 
 
We may write 

{−4, −3, −2, −1} = {x | x is a negative integer greater than −5} 
  = {y | y ∈ Z, −4 ≤ y < 0}. 
 

There are also other alternatives that can describe this set. 
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Here the “=” stands for “is the same set as” or, if you prefer, “is equal to”. 
Note that “x is an even non-negative integer less than 10”, and “x is a negative 
integer greater than −5” are referred to as property descriptions. 
 
Note: Different variables can be used when defining a set, 
e.g. {y | y ∈ Z, −4 ≤ y < 0} = {z | z ∈ Z, −4 ≤ z < 0}, and other alternatives can also 
define this set. 

 
But how do we check whether or not two sets are equal? We can’t 
always expect it to be obvious.  
 

Example 
Consider, on the one hand 
{x | x is a real number and 1 < x < 2}, and on the other hand 
{x | x is a real number and x2 − 3x + 2 < 0}. 
It is certainly not obvious whether or not these descriptions refer to 
the same set. 
 
The test for equality can be done using the following principle: The 
important thing about a set is the elements which are inside the set, 
just as the important thing about a shopping bag is the groceries inside. 
So it makes sense to regard two sets as equal if they have precisely the 
same elements. So, for example {3, 4} = {4, 3}.  
 
Although the order in which the elements are listed differs, exactly the 
same numbers are in {3, 4} as are in {4, 3}, so these sets are equal. 
 
It is important to note from this example that the order in which the 
elements are listed is not significant.  
 

You might wonder whether there are some instances in which the order is 
important, but we will discuss this in the next study unit. 

 
Another example: {5, 7} = {5, 5, 7}.  
 
Although the number 5 is listed twice in the right-hand set, it does not 
tell us anything we don’t already know. The numbers which are in 
{5, 7} are 5 and 7, and these are exactly the numbers that are in 
{5, 5, 7}. So these sets are equal. 
 

This brings up another important point: Elements may live in more than one set. 
A repetition does not change the elements of a set. 

 
Since repeatedly listing the name of an element is just a waste of 
energy, we will not write descriptions such as {2, 3, 2} or {1, 2, 3, 3, 3}.  
We often have to test whether or not two sets are equal, and it is 
usually not enough to convince ourselves that they are equal – we also 
have to convince everyone else, and so we have to write out a proof. 
This is discussed further in the next study unit. 
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Note: Sets do not need to have only numbers as elements. We may actually throw 
different objects of our choice into a “bag”. Let’s look at a few examples: 

 
We can compile sets such as {a, b, c} (a set with some letters as 
elements), {1, 2, a, b} (a set with different kinds of element), or {Thabo, 
Amy, Hanifa} (a set with names of people as elements).  
 
Another example: “boxA” can be considered to be a set with elements 
“black pen”, “red pen”, “pencil”, “rubber1” and “rubber2”. More elements 
can be included in this set – can you think of more items to put in 
“boxA”? A set should always be well-defined, thus all the distinct 
elements in “boxA” should be listed: 
 
boxA = {black pen, red pen, pencil, rubber1, rubber2} 
 

We looked at sets that have some elements, but do all sets have elements?  

 
We call a set with no elements an empty set, denoted by 0/. Using list 
notation to indicate the empty set: { }. (Our imaginary bag has no 
elements.) 
 
If we want to use set-builder notation to describe this set we can 
consider some set that does not have any elements. We know, for 
example, that there does not exist an integer that is, at the same time, 
positive and less than 1. If we use set builder notation, one possibility is 
{x < 1 | x ∈ Z+}. 
 
There are numerous acceptable alternatives: 
the set of all rational numbers greater than 2 and less that −2, 
the set of all odd integers divisible by 2 without a remainder, 
the set of all negative integers greater than 0, and so on. 
These descriptions have one thing in common: they all give an entrance 
requirement that is impossible to fulfil, thereby ensuring that the set 
has no members. 
 

You might ask: Is it possible for 0/ to be an element of some set? (We can put 0/ 
into our imaginary bag:  {0/}.) 

 
Examples 

Consider the set {1}. This set only has one element namely 1. 
 
The set {0/, 1, {1} } has three elements namely 0/, 1 and {1}. 
 
As we have previously seen, we can include any element of our choice 
in some set. All the elements are separated by commas. 
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Does it bother you that 0/ and {1} could be elements of a set? Later in this study 
unit we will see that a special kind of set namely a “powerset” can be formed with 
0/ and some other sets as members. 

 
Activity 3-3: Self-assessment exercises    Application skills 

1.  Ambiguous (or indistinct/unclear) descriptions of sets are given 
below. In each case, describe the set more concisely, firstly using 
list notation and then using set-builder notation. 

 (a) The set of all even non-negative integers less than 10. 
(b)  The set of all odd negative integers greater than −13. 
(c)  The set of all positive integers less than 1. 
(d)  The set of all real numbers greater than 2. 

 
2. The following are descriptions of sets, given in list or in set-

builder notation.  In each case give an unambiguous description 
in English. 
(a) {−1, 0, 1} 
(b)  {x ∈ R | 0 < x < 1} 
(c) {0} 
(d) {Z} 

 

In Activity 6 of the introductory unit of this study guide and in tutorial letter 101 
we discuss the interactive computer-aided instruction (CAI) tutorial that is 
available on a CD which you should have received. This tutorial will help you to 
understand the concept “sets”. 

 

Activity 3-4: CAI tutorial               
You can now do the “sets” part of the CAI tutorial. 

3.4 How to build new sets from old ones 
 

Note: In the next study unit we introduce Venn diagrams illustrating 
definitions in this study unit. 

 
When we want to talk about some subset, we need to place this subset 
in the context of some universal set. A universal set is simply the 
collection of all things of the kind we want to talk about. If not 
otherwise specified, we usually name a universal set “U”. 
 
Now let’s talk about subsets.  Suppose we take the set of integers Z to 
be our universal set, then we can form some set {1, 2} from Z. What did 
we do to form {1, 2}? Well, by singling out the elements 1 and 2, we 
have in a certain sense thrown away all the other members of Z.  
 
The simplest way to build a new set is to throw away some of the 
elements of an old set. It’s rather like having a bag of sweets, pulling 
one out, and eating it. Something has changed; the bag of sweets is not 
the same as it was. 
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Definition: Subset  
If A and B are sets from a universal set U, we say that A is a subset of B 
if and only if every element of A is also an element of B. 
We may abbreviate “A is a subset of B” by writing “A ⊆ B”. 
 

We can abbreviate “if and only if” by writing “iff”, so we can write “A is a subset of 
B iff every element of A is also an element of B”. Only in the next study unit will we 
see what is exactly meant by “iff”.  

 
Note: One can throw away none, one, or more elements from some set 
B, then the resulting set, let’s call it A, is a subset of B, i.e. A ⊆ B. 
 

Just as we write “x ≤ y” to say that x is less than or equal to y (or x is not greater 
than y), so “A ⊆  B” means that A has no elements which do not also belong to B, 
i.e. every element of A is also an element of B. 

 
Examples 

Suppose that B = {1, 2, 3}. Throwing away the element 2 gives the 
subset A = {1, 3}. So A is a subset of B, i.e. A ⊆ B. 
(Each element of A is an element of B.) 
 
When we throw away no element of B, then B ⊆ B, or it could happen 
that we throw away all the elements of B, then { } ⊆ B. 
 
Another example: Let C = { 0/, {0/} } with 0/ and {0/} being the elements of 
C. (The element {0/} is highlighted so that one can remember that this is 
one element of C.) 
 
We can form subsets of C by throwing away some elements from C: 
 
Throwing away both elements of C gives the subset { }; 
throwing away the element 0/ gives the subset { {0/} };  
throwing away the element {0/} gives the subset {0/}; and finally 
of course, C ⊆ C.  
 
We have formed all the subsets of C namely { }, {0/}, { {0/} } and C. 
 
It is interesting to note that  
{ } ⊆ { };   { } ⊆ {0/};   { } ⊆ { {0/} };   { } ⊆ C; and 
{0/} ⊆ C;   { {0/} } ⊆ C; but 
{0/} is not a subset of { {0/} } since 
the only element of {0/} is 0/ and the only element of { {0/} } is {0/},  
so the element of {0/} is not an element of { {0/} }.  
 
Note: We can consider any set and throw away all its elements, then we 
are left with the subset { }. This means that { } is a subset of any set.  
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Definition: Proper subset  
If C and D are sets from a universal set U, and if every element of C is an 
element of D, but D has some element(s) that is/are not in C, (i.e. C has 
less elements than D), we call C a proper subset of D.  
We may abbreviate “C is a proper subset of D” by writing C ⊂ D. 
 

In order to form a proper subset A of B, we have to throw away at least one 
element from B to form A. This means that if A is a proper subset of B, then B has 
one or more elements that is/are in B but that is/are not in A. 
 
When we write “A ⊆ B” we mean that A is a proper subset of B, or A is equal to B, 
so even if A is a proper subset of B we may write “A ⊆ B”. We usually just talk 
about “subsets” unless we specifically want to mention a “proper subset”. 

 
Another way to build new sets is to form the union of two sets. This is 
rather like going to school on Monday with your History and English 
books in your bag, on Tuesday with your English and Maths books, and 
on Wednesday with your History books, your English books and your 
Maths books as well. If you think of your bag on Monday as set A, your 
bag on Tuesday as set B, and your bag on Wednesday as set C, then set 
C is the union of sets A and B. 
 

Definition: Set union 
The union of sets A and B is denoted by A ∪ B, and is the set of all those 
elements which belong to A or to B (or to both). More briefly, 
A ∪ B = {x | x ∈ A or x ∈ B}. 
 
This definition allows us to say 
“if x ∈ A ∪ B, then x ∈ A or x ∈ B”, and 
“if x ∈ A or x ∈ B, then x ∈ A ∪ B”. 
 
In the next study unit we will see that these two statements can be 
combined: 
“x ∈ A ∪ B iff x ∈ A or x ∈ B”. 
 
When we say “x is an element of A or B”, we mean “either x is an 
element of A, or x is an element of B, or x is an element of both A and B”, 
i.e we mean that x is an element of A or B in an inclusive sense.   
 

Example 
Let A = {1, 2} and B = {0, 1}, 
then A ∪ B = {0, 1, 2}, 
i.e. the set of those elements that belong to A or to B. 

 
A third way to construct sets is to form the intersection of given sets. 
This is somewhat like going to school on Monday and Tuesday with the 
same books as before, and on Wednesday taking along only your 
English books. Set C now consists of precisely the books common to set 
A and set B. 
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Definition: Set intersection 
The intersection of sets A and B is denoted by A ∩ B, and is the set of all 
those elements which belong to both A and B at the same time. More 
briefly, A ∩ B = {x | x ∈ A and x ∈ B}. 
 
Now we can write 
“if x ∈ A ∩ B, then x ∈ A and x ∈ B”, and 
“if x ∈ A and x ∈ B, then x ∈ A ∩ B”.  
 
We can combine these two statements:  
“x ∈ A ∩ B iff x ∈ A and x ∈ B”. 

 
Example  

Let A = {1, 2} and B = {0, 1},  
then A ∩ B = {1}, 
i.e. the set of those elements that belong to both A and B. 
 
A fourth way to construct a set is to form the complement of one set 
relative to another. This is a bit like taking the same books to school on 
Monday and on Tuesday as previously, and then on Wednesday taking 
only your History books. Set C now only has as elements those books in 
set A that did not also appear in set B, so in a way it’s as if you 
subtracted set B from set A. 
 

Definition: Set difference 
The complement of B relative to A is denoted by A − B, and is the set of 
all those elements of A which do not belong to B. More briefly, 
A − B = {x | x ∈ A and x ∉ B}. 
This is also referred to as the difference between sets A and B.  
 
We can write 
“if x ∈ A − B, then x ∈ A and x ∉ B”, and 
“if x ∈ A and x ∉ B, then x ∈ A − B”. 
 
These two statements can be combined: 
“x ∈ A − B iff x ∈ A and x ∉ B”. 
 

Example  
Let A = {1, 2} and B = {0, 1},  
then A − B = {2}, 
i.e. the set of those elements that belong to A but not to B. 
 
There is a special case of the relative complement construction that 
will be of importance to us. But first, some background material. 
 
It often happens that all the sets involved in a particular discussion are 
subsets of a single larger set. For instance, if a problem involves the 
sets H = {Java, C++, C#}, I = {Haskell, Prolog}, and J = {COBOL, Visual 
Basic}, then these are all subsets of U = {x | x is a programming 
language}. This means that {Java, C++, C#, Haskell, Prolog, COBOL, 
Visual Basic} ⊆ U. 
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Since all the elements of sets H, I and J are also elements of U, U can be 
called a universal set for this particular problem. 
Now, if U is a universal set and B is a subset of U, then U − B is called the 
complement of B for short (i.e. we may omit the phrase “relative to U”) 
and is denoted more briefly by B′. So B′ = {x | x ∉ B}. 

 
Definition: Set complement 

Let A be a subset of a universal set U. Then the complement of A is 
defined as the set of all elements that belong to U but do not belong to 
A, i.e. A′ = {x | x ∈ U and x ∉ A} (or A′ = {x | x ∉ A}). 
 

Example  
Let U = {0, 1, 2, 3} and A = {0, 1}, then A′ = U − A = {2, 3}, 
i.e. the set of all those elements that belong to U but not to A. 
 

Notation: You will find that different books refer to the complement of B in 
different ways, for example by writing BC or ~B. So always make sure what 
notation a particular author is using. 

 
Definition: Symmetric set difference 

The symmetric difference between two sets A and B, written as A + B, is 
defined as the set of all elements that belong to A or to B but not to 
both: 
A + B = { x | x ∈ A or x ∈ B, but not both.} 
 
Now we can write 
“if x ∈ A + B, then x ∈ A or x ∈ B, but not both”, and 
“if x ∈ A or x ∈ B, but not both, then x ∈ A + B”. 
 
We combine these two statements: 
“x ∈ A + B iff x ∈ A or x ∈ B, but not both”. 
 

Example  
Let A = {0, 1, 2, 3} and B = {0, 1, 3, 4}, then A + B = {2, 4}, 
i.e. the set of those elements that belong to A or to B, but not to both. 
 

Isn’t A + B exactly the same as A ∪ B? Let us investigate by looking at an example. 

 
Activity 3-5: Symmetric difference between sets   

Use an example to investigate whether or not A + B and A ∪ B have the 
same result. 
 
Let A = {3, 4} and B = {4, 5, 6} with U = {1, 2, 3, 4, 5, 6, 7, 8}, then 
 
A ∪ B = {3, 4} ∪ {4, 5, 6} = {3, 4, 5, 6} and 
A + B = {3, 4} + {4, 5, 6} = {3, 5, 6}. 
 
In this example we see that A ∪ B ≠ A + B. 
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It is clear that the results from these two operations are not the same. 
This is due to the fact that, as we have mentioned before, in the English 
language, there are two different ways in which one can interpret the 
word “or”.   
 
The definition of A ∪ B uses the inclusive meaning of “or”, that is,   
 {x ∈ U | x ∈ A  or  x ∈ B, or both}.  
 
The definition of A + B on the other hand, uses the exclusive meaning of 
“or” to be {x ∈ U | either x ∈ A or x ∈ B, but not both}. The members 
common to both A and B are not included in A + B.  This means that  
A + B = (A ∪ B) – (A ∩ B).  
 
Our example also shows that 
(A ∪ B) – (A ∩ B) = {3, 4, 5, 6} – {4} = {3, 5, 6} = A + B. 
 

Is it possible that C ∪ D = C + D for some sets C and D? Yes, whenever C ∩ D = 0/, 
then C ∪ D = C + D. It is also true that whenever C ∪ D = C + D, then C ∩ D = 0/.   
 
An example can illustrate this: Suppose A = {2, 4} and B = {5, 6}, then we have 
 A ∪ B = A + B = {2, 4, 5, 6}. (Note that A and B have no common elements.) 

 
Definition: Set disjointness 

Two sets A and B are called disjoint if they have no elements in 
common, i.e. there is not a single element that live in both A and B, 
i.e. A ∩ B = 0/. 
 

Example 
Let A = {1, 2, 3, 4} and B = {5, 6} with U = {1, 2, 3, 4, 5, 6}. 
 
Then we can say that A and B are disjoint. There are no elements that 
belong to both A and B, i.e. A ∩ B = 0/. 
 
Sometimes, it could be important for us to know how many elements 
some set has.  
 

Definition: Set cardinality 
Let A be a set with k distinct elements that can be counted. The number 
of elements in A is called the cardinality of the set. The cardinality of A 
is denoted by n(A), and n(A) = k. We can use the notation n(A) or |A|.  
 
Note: In this study guide we normally use the notation |A|. 
 

Example 
Let A = {1, 2, 3, 4} and B = {5, 6} be subsets of U = {1, 2, 3, 4, 5, 6}, 
then |A| = 4, |B| = 2 and |U| = 6, 
i.e. A has four, B has two, and U has six elements. 
 
Note that the cardinality of  0/ is 0 since the set 0/ = { } has no elements.   
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Before we conclude this study unit, we introduce the very important 
concept of a power set. 
 

Definition: Power set 
Given a set A with n distinct elements, the power set of A, denoted by 
Ƥ (A), is the set that has as its members all the subsets of A. 

The cardinality of Ƥ (A) is 2n, i.e. |Ƥ (A)| = 2n. 
 
When we determine the power set of some set B (i.e. Ƥ (B)), we first 
have to determine all the subsets of B. All these subsets of B are the 
elements of Ƥ (B). We illustrate this with an example: 
 

Example  
Let B = {1, 2, 3}. Which sets are all subsets of B? 
 
Let us list them: 0/, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}. These 
are all the members of Ƥ (B).   
The power set of B, i.e. Ƥ (B) is therefore 
Ƥ (B) = { 0/, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }. 
 
One can throw away all the elements of any set, then the subset { } = 0/ 
is formed. This means that 0/ is a subset of any set. When a power set is 
formed, 0/ will always be included as a member of the power set. 
 
We now want to look at some subsets of Ƥ (B). Note that every member 
of a subset of Ƥ (B) is also a member of Ƥ (B). 
 
Some subsets of Ƥ (B): 
 
{0/} ⊆ Ƥ (B), since {0/} has only one member namely 0/, and 0/ is also a 

member of Ƥ (B). 

{ 0/, {1}, {2} } ⊆ Ƥ (B), since every member of { 0/, {1}, {2} } (i.e. 0/, {1} 

and {2}) are also members of Ƥ (B). 

{ {1}, {1, 2, 3} } ⊆ Ƥ (B), since very member of { {1}, {1, 2, 3} } (i.e. {1} 

and {1, 2, 3}) are also members of Ƥ (B). 

{  } ⊆ Ƥ (B). The subset { } is formed by throwing away all the members 

of Ƥ (B). 

We also have that Ƥ (B) ⊆ Ƥ (B). 

Can you determine the other subsets of Ƥ (B)? 
 

Activity 3-6: Self-assessment exercises    Application skills 
1. Let a universal set be U = {1, 2, 3, 4, 5} and let A = {1, 2, 3} and  
          B = {3, 4, 5}.  Determine the required sets. 

(a) A ∪ B and B ∪ A 
(b) A ∩ B and B ∩ A 
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(c) A − B and B − A 
(d) A + B and B + A 
 

2. Let a universal set be U = {a, e, i, o, u} and let A = {i, o, u} and 
B  = {a, e, o, u}. Determine the following sets: 
(a) A′ and (A′)′ 
(b) B′ and (B′)′ 
(c) A ∪ B and (A ∪ B)′ 
(d) A′ ∩ B′ 
(e) A ∩ B and (A ∩ B)′ 
(f) A′ ∪ B′ 
(g) A − B and B − A 
(h) A ∩ B′ and B ∩ A′ 
(i) A + B and B + A 

 
3. Let a universal set be U = {1, 2, 3, 4, 5}, and let  

A = {3} and B = {{3}, 4, 5}. Determine Ƥ (A) and Ƥ (B). 
 
4. Let a universal set be U = {a, e, i, o, u} and let A = {i, o, u} and 
 B  = {a, e, o, u}. Determine the following sets: 

(a) Ƥ (A) and Ƥ (B). 
(b) Ƥ (A ∩ B) and Ƥ (A) ∩ Ƥ (B). 
(c) Ƥ (A′) and (Ƥ (A))′  (The complement of Ƥ (A) is taken 
 relative to Ƥ (U).) 
(d) Ƥ (A) ∪ Ƥ (B) and Ƥ (A ∪ B). 

 

3.5 In summary of the study unit 
 
In this study unit you ensured that you can answer the following 
questions on set theory: 
 

• What does it mean if set A is a subset of set B? 
• Why do we need a universal set? 
• What does the empty set represent? 
• Which elements does the union of two sets have? 
• Which elements does the intersection of two sets have? 
• What does the cardinality of a set mean? 
• What does a ∈ A represent? 
• What does it mean if two sets are disjoint? 
• What is the complement of a set with respect to the universal set? 
• What is the difference between two sets? 
• Which elements do the symmetric difference between two sets have? 
• What is the power set of a given set? 

 
In the following study unit we will learn more about Venn diagrams that can be used to give a 
graphical representation of a set or of operations involving sets. We also look at proofs where 
sets are involved.  
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Study unit 4   Proofs involving sets 
 

Key questions for this study unit 

• How can we represent sets using Venn diagrams? 
• How can we use Venn diagrams to investigate whether or not the theoretic 

identities of sets hold? 
• How do we prove the theoretic identities of sets using the phrase “if and only 

if”? 
• How do we handle the proof of a set identity involving specific sets? 
• How do we establish the falsity of a universal assertion by providing a 

counterexample? 
• What is useful about the Inclusion-exclusion principle? 

 
 

Activity 4-1: Overview        Study skill 
Draw a mind map of the different sections/headings that you will deal with in 
this study session. Then page through the study unit with the purpose of 
completing the map.  
 
Your map should include the concepts of a Venn diagram, different kinds of 
proof involving sets, a counterexample in the context of sets and the inclusion-
exclusion principle. 
 

Activity 4-2: Concepts               Conceptual skill 
Test your own knowledge (write in pencil) and then correct your 
understanding afterwards (erase and write the correct description). Often a 
young language may not have all the terms in a discipline; can you think of 
some examples? 

 
English term Description Term in your home language 
Venn diagram   
iff   
Set equality   
Set identity   
Counterexample   
Inclusion-exclusion 
principle 
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4.1 Venn diagrams 
 
One can draw pictures of sets. If the drawing is done as described below, we 
call the picture a Venn diagram. 
 
Let's begin with the simplest case: a single set A, which is a subset of a 
universal set U (for example, A might be Z+ and U might be R). 
 
Draw a rectangle to represent the “bag” U, called the universal set, and draw a 
circle inside the rectangle to represent A. The diagram shows that all the 
elements of A are also elements of U, but there might be elements of U that fall 
outside the boundaries of the set A:  

A

U

 
Venn diagrams start to get interesting when we perform constructions 
involving two or three subsets of U. 
 
Suppose we are given two sets A and B and a universal set U. As before, we 
represent each of the sets by means of a circle inside the rectangle, as shown 
in the following figure:  

A B

U

 
We could also have a Venn diagram with three sets A, B and C, as shown in the 
following figure: 

A B

C

 U  

 
 
Let us recap on the definition for “subset”: For all sets A and B, A is a subset of 
B, i.e. A ⊆ B, iff every element of A is also an element of B. 
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In the following Venn diagram we see that every element of A is also an 
element of B, and every element of A or B is also an element of U: 

A

B

U

 
Note: B could have some elements that are not in A, and U could have some 
elements that are not in A or B. 
 

Example 
Let A = {♣, [♣]} and B = {♣, [♣], ♠}.  Every element in A, namely ♣ and [♣], is 
also an element of B. This means that A ⊆ B. 
 

As we have seen in the previous study unit, it is possible that two sets can be regarded as 
being equal if they have the same distinct elements. We provide a formal definition: 

 
Definition: Set equality 

For any sets A and B, if A ⊆ B and B ⊆ A, then every element of A is also an 
element of B, and every element of B is also an element of A, i.e. A = B. 
 
In terms of Venn diagrams we can look at it in this way: 

A (or B)

U

 
 

Note: In all the Venn diagrams that follow, the shaded area represents the result of the 
particular set operation and the whole rectangle represents the set “U”. 
 
We provide the specific definition of each set operation as it was provided in the previous 
study unit. Relate the shaded area in each Venn diagram to the relevant definition. 
 
For example: If x is an element of A ∩ B, then x is an element of both A and B. In a Venn 
diagram representing A ∩ B, the shaded area shows the area where the elements live 
that belong to both A and B. 
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Set complement: 
Set A′ = {x | x ∉ A}, which is the complement of set A, is represented as follows 
in a Venn diagram:  

A B

A'

 

As can be seen from the Venn diagram for A′ , no element x lives inside A (i.e. x∉ A). 
 
We can now illustrate a number of operations on sets by shading the appropriate areas 
in Venn diagrams. 

 
Union: 
The union of any sets A and B, i.e. A ∪ B = {x | x ∈ A or x ∈ B}, is depicted by 
the shaded area: 

A B

A U B

 
Intersection: 
The intersection of any sets A and B, i.e. A ∩ B = {x | x ∈ A and x ∈ B}, is 
depicted by the shaded area: 

A B

A n B
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Set difference: 
The complement of set B relative to set A, i.e. A – B = {x | x ∈ A and x ∉ B}, is 
depicted by the shaded area: 

A B

A - B

 
Symmetric difference: 
For sets A and B, the symmetric difference,  
i.e. A + B = {x | x ∈ A or x ∈ B, but not both}, is depicted by the shaded area: 

A B

A + B

 
Let’s draw a Venn diagram for a more complex expression before the  
self-assessment exercises can be attempted. 
 

Activity 4-3: Venn diagrams 
Let A, B, C ⊆ U. Draw the Venn diagram for [(A ∪ B) − (A ∩ B)] ∪ C. 
 
How do we go about doing this? By drawing the Venn diagram for 
[(A ∪ B) − (A ∩ B)] ∪ C in stages, one considerably reduces one’s chances of 
making unnecessary mistakes.  
 
First draw the Venn diagram for (A ∪ B) − (A ∩ B) in stages: 
Draw the diagrams for (A ∪ B) and (A ∩ B) separately, and then draw the 
diagram for (A ∪ B) − (A ∩ B). 
 
(Compare the Venn diagram of (A ∪ B) − (A ∩ B) with that of A + B which we 
saw previously in this study unit. Clearly, these two operations give the same 
result!) 
 
Finally the Venn diagram for [(A ∪ B) − (A ∩ B)] ∪ C can be drawn. 
 
Note: Include the universal set U and all three sets A, B and C in each diagram. 
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Step 1: A ∪ B is depicted by the shaded area:  Step 2: A ∩ B is depicted by the shaded area:

A B

C

A U B 

 
Consider the shaded areas in the above diagrams. The shaded area for (A ∪ B) − (A ∩ B) can be 
derived from the following: the shaded area A ∩ B should be removed from the shaded area A ∪ B as 
we see in step 3. (The elements of (A ∪ B) − (A ∩ B) live in (A ∪ B) but not in (A ∩ B).) 
 
Step 3: (A ∪ B) − (A ∩ B) is depicted by the shaded area: Step 4: C is depicted by the shaded area:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the shaded areas in the above diagrams. The shaded area for [(A ∪ B) − (A ∩ B)] ∪ C can be 
derived from the following: add the shaded area of C to that of [(A ∪ B) − (A ∩ B)] as we see in step 5. 
(The elements of [(A ∪ B) − (A ∩ B)] ∪ C live in (A ∪ B) − (A ∩ B) or in C, or in both.) 
 
Finally, step 5: [(A ∪ B) − (A ∩ B)] ∪ C is depicted by the shaded area: 
 
 
 
 
 
 
 
 
 
 
 
 

A B

C

A n B 

A B

C

C

A B

C

[(A U B) – (A n B)] U C

A B

C

(A U B) – (A n B) 
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Activity 4-4: Self-assessment exercises     Application skills 
1. Using a Venn diagram for two subsets, X and Y of U, show, by shading the 

appropriate region, what each of the following sets looks like: 
 
(a) (X ∪ Y)′ 
(b) X′ ∩ Y′ 
(c) (X ∩ Y)′ 
(d) X′ ∪ Y′ 
 
2. Using a Venn diagram for three subsets X, Y and Z of U, show, by 

shading the appropriate region, what each of the following sets looks 
like (do these step by step): 

 
(a) X − (Y ∪ Z) 
(b) (X − Y) ∪ (X − Z) 
(c) X ∩ (Y − Z) 
(d) (X ∩ Y) − (X ∩ Z) 
(e) X ∩ (Y + Z) 
(f) (X ∩ Y) + (X ∩ Z) 
 
Note : The solutions to the self-assessment exercises are provided in tutorial 
letter 102. 

4.2 Proofs  
 
We first look at an example. Let A = {1, 2} and B = {2, 4} with U = {1, 2, 4}. Then 
A ∪ B = {1, 2, 4}. Similarly B ∪ A = {1, 2, 4}. In other words, A ∪ B = B ∪ A for 
the given sets. 
 
If we think a little bit about unions, we realise that the order of A and B does 
not play a role in the definition of union. And so it ought to be true for all 
possible choices of sets A and B that A ∪ B = B ∪ A. 
 
Now if only we could prove that for all sets A and B, A ∪ B = B ∪ A, then it 
would not be necessary to test whether {2, 7} ∪ {5, 9} is the same set as 
{5, 9} ∪ {2, 7}, and whether {3, 4, 5} ∪ {1} is equal to {1} ∪ {3, 4, 5}, and so 
forth. 
 
If we could prove that A ∪ B = B ∪ A for all subsets A and B of a universal set 
U, then we could say that  
A ∪ B = B ∪ A is an identity. But how can we establish the identity  
A ∪ B = B ∪ A by a strong and convincing argument? 
 
Well, one can investigate whether or not A ∪ B = B ∪ A is an identity by first 
drawing a Venn diagram shaded to represent A ∪ B. Then draw a Venn 
diagram shaded to represent B ∪ A. If the shaded portions are the same, it 
shows that A ∪ B = B ∪ A for any sets A and B.  
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Let’s consider A ∪ B = B ∪ A again: 
 
Left-hand side: Draw the Venn diagram of A ∪ B by first shading A and then B.  

A B

A U B

 
Right-hand side: Draw the Venn diagram of B ∪ A by first shading B and  
then A.  

A B

B U A

 
By using Venn diagrams, we have shown that A ∪ B = B ∪ A for any sets A and 
B. Perhaps our “proof ” is not very convincing, because it relies on our 
willingness to accept that Venn diagrams give an accurate picture of sets. The 
study of more rigorous proofs is called logic and we will give you just a taste of 
logic later in this module. 
 

There are some limitations to the use of Venn diagrams in proofs. One has already been 
mentioned, namely that some people might claim that the proofs are not rigorous 
enough, because there are assumptions built into the technique that are not obvious –   
such as the assumption that Venn diagrams give a good picture of sets. This objection is 
not our main problem, since we do not, on this level need to be very formal and rigorous. 
 
However, Venn diagrams become difficult to draw when there are more than three 
subsets involved, but we will not investigate these further.  

 
Activity 4-5: Self-assessment exercises     Application skills 

Use Venn diagrams to determine, for all subsets X, Y and W of a universal set 
U, whether or not the following equations hold: 
 
(a) X – (Y ∩ W) = (X – Y) ∪ (X – W) 
(b) X  ∩ (Y ∩ W) = (X ∩ Y) ∩ W 
(c) X  ∩ (Y ∪ W) = (X ∩ Y) ∪ (X ∩  W) 
(d)  (Xʹ )ʹ = X 
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When looking at a Venn diagram, one is inclined to forget that some (or all) of 
the sets represented in the picture may be empty. We will therefore also 
practise writing out proofs in words. We begin by practising on simple 
examples for which we have already drawn Venn diagrams. 

 
Example 

Let us prove that, for all subsets A and B of U, A ∪ B = B ∪ A. 
 
In our proof we have to show that the set A ∪ B has exactly the same elements 
as the set B ∪ A. 
 

There is a standard technique for doing proofs of this kind. First we show that every 
element of the left-hand side set is also an element of the right-hand side set (i.e. we show 
that LHSset ⊆ RHSset). Then we go in reverse and show that every element of the right-
hand side set is also an element of the left-hand side set (i.e. RHSset ⊆ LHSset). 
If LHSset ⊆ RHS set and RHSset ⊆ LHSset, then we may conclude that LHSset = RHSset. 

 
Let’s begin by choosing any element x of A ∪ B. Now x ∈ A ∪ B, and this 
means, by the definition of  “∪”, that x ∈ A or x ∈ B. But the statement “x ∈ A 
or x ∈ B” means the same as the statement “x ∈ B or x ∈ A”. Therefore we 
know that x ∈ B or x ∈ A. By the definition of “∪”, this means that x ∈ (B ∪ A). 
 
So we have shown that no matter which element x of A ∪ B we choose,  
if x ∈ (A ∪ B) then x ∈ B ∪ A, 
so A ∪ B ⊆ B ∪ A.  
 
(This ends the first half of the proof.) 
 
For the converse part of the proof, begin by choosing any element x of B ∪ A. 
 
If  x ∈ B ∪ A 
then x ∈ B or x ∈ A 
i.e. x ∈ A or x ∈ B 
i.e. x ∈ (A ∪ B). 
 
Now we have shown that 
if x ∈ B ∪ A then x ∈ A ∪ B, 
so B ∪ A ⊆ A ∪ B.  
 
(This ends the second half of the proof.)  
 
We conclude (from both halves of the proof) that A ∪ B = B ∪ A.    
         QED 

 

Note that we have not tried to be particularly brief in the proof. Conciseness comes with 
practice. It is more important that the reader should be happy with each line of the proof 
before going on to the next line. 
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Let’s look at a second example.  
 

Example 
Prove that A ∪ (B ∪ C) = (A ∪ B) ∪ C for all sets A, B, C ⊆ U. 
 
We first prove that   A ∪ (B ∪ C) ⊆ (A ∪ B) ∪ C and then that 
(A ∪ B) ∪ C ⊆ A ∪ (B ∪ C): 
 
Let x ∈ A ∪ (B ∪ C). 
Then x ∈ A or x ∈ (B ∪ C) 
i.e.  x ∈ A or (x ∈ B or x ∈ C)  
i.e.  (x ∈ A or x ∈ B) or x ∈ C (since surely the statements 
       “x ∈ A or (x ∈ B or x ∈ C)” and 
       “(x ∈ A or x ∈ B) or x ∈ C” mean the same) 
i.e.  x ∈ A ∪ B or x ∈ C 
i.e.  x ∈ (A ∪ B) ∪ C. 
(This ends the first half of the proof.) 
 
Conversely, let x ∈ (A ∪ B) ∪ C. 
 
Then    x ∈ (A ∪ B) or x ∈ C 
i.e.  (x ∈ A or x ∈ B) or x ∈ C 
i.e.  x ∈ A or (x ∈ B or x ∈ C) 
i.e.  x ∈ A or x ∈ (B ∪ C) 
i.e.   x ∈ A ∪ (B ∪ C).   
(This ends the second half of the proof.)  
 
We conclude (from both halves of the proof) that A ∪ (B ∪ C) = (A ∪ B) ∪ C. 
 
At this stage you might want to know whether we can somehow shorten this 
type of proof. The arguments used in the examples above fall into two halves. 
The first half begins with the assumption “Let x belong to the left-hand set” 
and reasons are given step by step up to the conclusion “then x belongs to the 
right-hand set”. The second half begins with the assumption “Let x belong to 
the right-hand set” and reasons are logically given up to the conclusion “then x 
also belongs to the left-hand set”. 
 
The second half is just a mirror image of the first. 
 

In such cases, we use the phrase “if and only if”, which we abbreviate as “iff”. The “if” part 
represents the backward reasoning of the second half, while the “only if” part represents 
the forward reasoning of the first half. We will discuss this further in a subsequent study 
unit. 
 
If we look back at our subset definition in the previous study unit, we can now see that “A 
is a subset of B “iff” every element of A is also an element of B” means that “A is a subset of 
B if every element of A is also an element of B” and “if A is a subset of B then every 
element of A is also an element of B”. 
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4.3 Working with (X ∩ Y)ʹand (X ∪ Y)ʹ 
 
If we turn to the Venn diagram of “complement” in a previous section of this 
study unit, we see that A′ is the set U − A, i.e. the set of all elements that belong 
to U but not to A. 
 
In set-builder notation: A′ = {x ∈ U | x ∉ A}.  We may also write this set as  
{x | x ∉ A} if everyone knows what our universal set is.  Remember that the 
reader must always be kept informed about our choice of universal set. 
  
When working with the complement, the symbol “∉” can be used as follows: 
x ∈ Y′ iff x ∉ Y. 
 
However, when we use the notation “∉” combined with “∪” or “∩”, we get a 
few surprises! 
 
Look at the following example: 
 
x ∈ (X ∪ Y)′ 
iff x ∉( X ∪ Y) 
iff x ∉ X and x ∉ Y 
iff x ∈ X′ and x ∈ Y′ 
iff x ∈ X′ ∩ Y′ 
 
This shows that (X ∪ Y)′ = X′ ∩ Y′. 
 
If we look at the definition of “union” in a previous section of this study unit, 
we associate “union”, i.e. “∪”, with the word “or”.  For example, if x resides in 
A ∪ B (i.e. x ∈ (A ∪ B)), then x belongs to A or to B or to both of them. 

 
The statement “x ∉ X ∪ Y” tells us that x resides outside X ∪ Y, and under this 
condition, x can belong to neither X nor Y, i.e. x cannot reside in either of the 
two sets.  This means that x resides outside X and x resides outside Y, 
i.e. x ∉ X and x ∉ Y.   

 
It helps to draw Venn diagrams for A ∪ B and (A ∪ B)′ – then we can see it 
clearly. 

 
Next consider the definition of “intersection”, i.e. “∩”, as portrayed in a 
previous section of this study unit.  For example, if x resides in A ∩ B 
(i.e. x ∈ A ∩ B), then x belongs to A and to B.  We associate “intersection” with 
the word “and”.  For the symbol “∉”, it is rather different.   
 
Over to you – try to continue the following expansion … 
 
 x ∈ (X ∩ Y)′ 
 iff x ∉ X ∩ Y 
. 
. 
. 
Can you prove that (X ∩ Y)′ = X′ ∪ Y′? If you are not sure about the proof, draw 
the Venn diagrams and look at the definitions of “union”, “intersection” and 
“complement” again. 
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Activity 4-6: Self-assessment exercises     Application skills 
Using if and only if statements, write out a proof for each of the following 
identities, where X, Y and W are arbitrary subsets of a universal set U: 
 
(a)  (X′)′ = X  
(b) X – (Y ∩ W) = (X – Y) ∪ (X – W) 
(c)  X  ∩ (Y ∩ W) = (X ∩ Y) ∩ W 
(d)  X  ∩ (Y ∪ W) = (X ∩ Y) ∪ (X ∩ W) 
 
We can combine proof methods when investigating whether or not some 
given statement is always true. First we draw Venn diagrams for the sets in a 
given statement. If the statement appears to hold, i.e. the final Venn diagrams 
are equivalent, we give a formal proof. If not, we give a counterexample. 
 

 Example 
Use Venn diagrams to investigate whether or not, for all subsets X, Y, and W of 
U, X − (Y ∪ W)  =  (X − Y)  ∩  (X − W). 
  
If it appears to be true, provide a proof; if not, provide a counterexample. 
 
Solution: 
 
We draw the Venn diagrams step by step as follows: 
 

        Left-hand side: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  The shaded area represents the set of elements that live in X but not in Y ∪ W. 

X Y

W

X

X Y

W

Y U W

X Y

W

X – (Y U W)
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Right-hand side: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
The shaded area represents the set of elements that live in X − Y and in X − W. 
 
Since the two resulting Venn diagrams are identical, it appears that the 
statement holds, so we provide a proof. (In this proof we apply the definitions 
of the set operations provided in the previous study unit.)  
 
x ∈ X − (Y ∪ W) 
iff  x ∈ X  and  x ∉ (Y ∪ W) 
iff  x ∈ X  and  x ∈ (Y ∪ W)′ 
iff  x ∈ X  and  (x ∈ Y′ and x ∈ W′) 
iff  x ∈ X  and  (x ∉ Y and x ∉ W) 
iff  (x ∈ X  and  x ∉ Y)  and  (x ∈ X and x ∉ W) 
iff  x ∈ (X − Y)  and  x ∈ (X − W)  
iff  x ∈ (X − Y) ∩ (X − W)  
 
Thus  X − (Y ∪ W)  =  (X − Y) ∩ (X − W)  for all subsets X, Y and W of U. 

 
So far we have only dealt with proofs of equality, and these involve proofs 
which go in two directions and which can be shortened using iff. 
 
There are other kinds of proof that are important too. For instance, we might 
want to show that two sets are not necessarily equal.  

  

X Y

W

X – W 

X Y

W

(X – Y) n  (X – W) 

X Y

W

X – Y 
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Activity 4-7: Set equality / inequality 
Use Venn diagrams to investigate whether or not, for all A, B, C ⊆ U, 
(A + B) ∪ C = (A ∪ C) + (B ∪ C). 
 
We first draw the Venn diagrams for (A + B) ∪ C and for (A ∪ C) + (B ∪ C).  

      
     Left-hand side: 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

      Right-hand side: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B

C

C

A B

C
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(A + B) U C
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A + B

A B

C

B U C
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(A + B) ∪ C is the set with elements that live in (A + B) or C, and 
(A ∪ C) + (B ∪ C) is the set with elements that live in 
either (A ∪ C) or (B ∪ C), but not both. 
In this case, it is clear that we have been trying to prove something that is not 
true, i.e. (A + B) ∪ C is not equal to (A ∪ C) + (B ∪ C) for any sets A, B and C. 
 
In order to prove that (A + B) ∪ C is not necessarily equal to (A ∪ C) + (B ∪ C), 
we need to find a counterexample, that is, a choice of sets A, B and C such that 
(A + B) ∪ C ≠ (A ∪ C) + (B ∪ C). 
 
So what we want is a concrete example of sets which shows that the left-hand 
side is different from the right-hand side. 
 
The sets we choose for the counterexample must be chosen in such a way that 
some element is present in a part of the respective diagrams where they differ. 
In the example we used above, the two final diagrams differ in respect of C, so 
we choose some element that appears in C only. (We choose 4 ∈ C but 4 ∉ A 
and 4 ∉ B. We choose any other elements from U to live in sets A, B and C.) 
 
Counterexample: 
 
Let   A = {1, 2},  B = {2, 3}, and  C  = {1, 4}, with  
  U = {1, 2, 3, 4}.  
  

   Left-hand side: 
          (A + B) ∪ C = {1, 3} ∪ {1, 4}   =  {1, 3, 4}  i.e. those elements that reside in  
          {1, 3} or {1, 4} or both. 

 
   Right-hand side: 

(A ∪ C) + (B ∪ C) = {1, 2, 4} + {1, 2, 3, 4} = {3}, i.e. an element that resides in 
either {1, 2, 4} or {1, 2, 3, 4} but not both. 
 
This counterexample shows that the statement (A + B) ∪ C = (A ∪ C) + (B ∪ C) 
does not hold for all subsets A, B and C of U. 
 

Perhaps this is a good moment to say more about the term “identity”, which we referred 
to earlier in this study unit. You know that an equation such as ax = b has either no real 
solution (e.g. when a = 0 and b = 2), or a real solution (e.g. when a = 3 and b = 0), or else 
allows every real number to be a solution (e.g. when a = 0 and b = 0).  

 
Definition: An identity 

An equation which is satisfied by every possible value of the unknown(s) is 
called an identity. 
 
On the previous pages we have been showing that certain equations such as 
   
A ∪ B = B ∪ A  
 
are identities, i.e. are satisfied by any subsets A and B of any universal set.  
 
We have also shown that the equation (A + B) ∪ C = (A ∪ C) + (B ∪ C) 
is not an identity by finding values for the unknowns A, B, and C which do not 
satisfy the equation. 



 Study unit 4  Proofs involving sets                   COS1501/1 

 62  
 

Another type of proof involves showing, not that one set is equal to another, 
but that one set is a subset of another set. This is easy, since it involves just the 
first half of an equality proof. 
 
We give an example of such a proof. The example involves the very important 
concept of power sets which was defined in the previous study unit. 
 

Example 
Ƥ (A) ∪ Ƥ (B) ⊆ Ƥ (A ∪ B), i.e. the union of power sets is a subset of the power 
set of the union. 
 
(Refer to the definitions of “subset”, “union” and “power set” in the previous 
study unit.) 
 
It is important to note that, in the proof that follows, because X is an element 
of a power set, it represents a set.  
 
Let X ∈ Ƥ (A) ∪ Ƥ (B) 

Then X ∈ Ƥ (A) or X ∈ Ƥ (B)   
i.e.  X ⊆ A or X ⊆ B 
i.e.  the members of X all live in A or all live in B, i.e. the members of X all 

live in  A ∪ B 
i.e.  X  ⊆  A ∪ B (remember that X is a set) 
i.e.  X  ∈ Ƥ (A ∪ B).   

  
Sometimes we might also want to show that one set is not necessarily a subset 
of another. As you may have suspected, we do this by finding a 
counterexample. 

 
Activity 4-8: Self-assessment exercises     Application skills 

1. Is it the case that for all X, Y, Z ⊆ U, X + (Y ∩ Z) = (X + Y) ∩ (X + Z)? 
 

2. Find examples of sets A and B such that Ƥ (A ∪ B) is not a subset of  

Ƥ (A) ∪ Ƥ (B). 

3. Is it the case that, for all X, Y ⊆ U, Ƥ (X) ∩ Ƥ (Y) = Ƥ (X ∩ Y)? Justify your 
answer. 

 
4. Use Venn diagrams to investigate whether or not, for all sets X, Y, Z ⊆ U, 

X − (Y − Z) = (X − Y) − Z. If the statement appears to hold, give a proof; if 
not, give a counterexample.  

 
5. Use Venn diagrams to investigate whether or not, for all subsets A, B 

and C of U, (A ∩ B) + (C ∩ A) = (A ∩ B') ∪ (B − C). If the statement 
appears to hold, give a proof; if not, give a counterexample. 

 

Activity 4-9: CAI tutorial                 
Take note of the counterexamples provided in the tutorial. 
 
A more detailed discussion of different types of proof is to be found in the 
study unit on logic.  
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4.4 The Inclusion-exclusion principle 
 
As we saw in the previous study unit, it could sometimes be important for us 
to know how many elements some set has. We call the number of elements in 
a set the cardinality of the set. We indicate the cardinality of some set C by |C| 
or by n(C). 
 

Examples 
We determine the cardinality of some sets: 
(a) 0/       The empty set has no elements. 
        The cardinality of set 0/:  |0/| = 0. 
 
(b) {1, 2, 3}      1, 2, and 3 are the elements of {1, 2, 3}.  
        The cardinality of set {1, 2, 3}:  |{1, 2, 3}| = 3. 
 
(c) {0/, {1, 2}}   0/ and {1, 2} are the elements of {0/, {1, 2}}. 
                                  The cardinality of set {0/, {1, 2}}:  |{0/, {1, 2}}| = 2. 
 

Sometimes we want to determine how many elements live in some sets. The intersection 
of sets can be empty or some sets might have common members. The Inclusion-exclusion 
principle can be applied to determine the number of elements that live in some sets. 

 
Theorem4.1: Inclusion-exclusion principle 

For all finite sets X and Y, |X ∪ Y| = |X| + |Y|  − |X ∩ Y|. 
 

Proof  
To calculate |X| + |Y|, count the elements of X and of Y and add the two 
numbers. The elements that belong to both X and Y will have been counted 
twice, so subtract |X ∩ Y|. 
 
We look at an example to illustrate this principle: 
 

Example 
Let X = {a, b, c, 1} and Y = {1, 2, 3}. It is clear that X ∩ Y = {1} thus |X ∩ Y| = 1. 
We see that 
 
|X| = 4 and |Y| = 3, thus |X ∪ Y| = |X| + |Y|  − |X ∩ Y| = 4 + 3 − 1 = 6. 
 
Check the answer: X ∪ Y = {a, b, c, 1, 2, 3}. How many elements live in this set? 
 
The theorem can be applied when X and Y have no common members. This 
leads to the sum rule: 

 
Definition: Sum rule 

If X and Y are disjoint sets (i.e. X ∩ Y = 0/), and |X| = m and |Y| = n, then 
|X ∪ Y| = m + n. 
 
An example illustrates this rule: 
 

Example 
Let X = {a, b} and Y = {1, 2, 3}. It is clear that X ∩ Y = { }. We see that  
|X| = 2 and |Y| = 3, thus |X ∪ Y| = 2 + 3 = 5. 
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Returning to Venn diagrams for a moment, we illustrate the usefulness of 
these diagrams for extracting information regarding the size (or cardinality) 
of certain subsets, using the information we are given about a number of sets.  
 
When dealing with the Inclusion-exclusion principle, we encounter two 
different types of question.  In the first kind, we are told explicitly how many 
participants (or objects) is part of specific sets, and how many live in certain 
intersections of sets.  We are then required to determine how many are part of 
a certain set or subset, to the exclusion of others.   
 
In the second type of question the unknown, which we must determine, is the 
number of persons (or objects) that live in an intersection of sets, frequently 
the central intersection of three sets.  So we call the unknown x, and carry on 
from there, taking special care to do the algebra accurately! 
 
The Inclusion-exclusion principle is best illustrated by examples: 
 

Example 
In a group of 50 learners, 25 play Mastermind, 30 play basketball, and  
10 play both. 
(a)    How many students play Mastermind or basketball (or both)? 
(b)    How many students do not play either Mastermind or basketball? 

 
Let U be the set of all the students in the group, M the set of those playing 
Mastermind, and B the set of those playing basketball.  Then 
|U| = 50, |M| = 25, |B| = 30, and |M ∩ B| = 10. 
 
Let’s determine the number of students who play Mastermind or basketball by 
using Venn diagrams. 
 
We use the above information to fill in the number of elements that live in 
each region, starting with the region in the middle. We know |M ∩ B| = 10: 

 
 
 
 
 
 
 
 
 
 

 
How many elements reside in M but not in M ∩ B? Since |M| = 25 and 
|M ∩ B| = 10, there are 25−10 = 15 elements in this region. 
 
 
 
 
 
 
 

 
 
 

|U|=50

M

10

B

|U|=50

M

10

B

25 – 10 = 
15
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Take the region on the right-hand side.  How many elements live in B but not 
in M ∩ B? Since |B| = 30 and |M ∩ B| = 10, there are 30−10 = 20 elements in 
this region. 

 
 
 
 
 
 
 
 
 
 

 
 
Now all the regions have been filled in and we can answer the question:  
 
(a) |M ∪ B| = 15 + 10 + 20 = 45, i.e. 45 students play Mastermind or 

basketball.  
 
Alternatively, by the Inclusion-exclusion principle, we get the same result: 
|M ∪ B| = |M| + |B| − |M ∩ B|= 25 + 30 – 10 = 45. 

 
(b) We determine the number of students who do not play either Mastermind 
or basketball: 
  
There are 50 students in total and 45 play Mastermind or basketball, so 
|(M ∪ B)′| = 50 − 45 = 5, i.e. 5 do not play Mastermind or basketball. 
 

Example 
A questionnaire filled in by the 100 subscribers to Blue Scalpel Medical 
Insurance who submitted no claims during 2009 reveals that 45 jog regularly, 
30 do aerobics regularly, 20 cycle regularly, 6 jog and do aerobics, 1 jogs and 
cycles, 5 do aerobics and cycle, and 1 jogs, cycles and does aerobics. 
 
(a) How many of these healthy people do not participate regularly in any of 

the three activities mentioned?  
(b) How many only jog? 

 
We use the same Venn diagram to answer both questions.  Let us firstly display 
the available information neatly.  Let U be the set of subscribers who filled in 
the questionnaire, J the set of those that jog, A the set of those that do aerobics 
and C the set of those that cycle.  Then 
 
|U| = 100, 
|J| = 45, 
|A| = 30, 
|C| = 20, 
|J ∩ A| = 6, 
|J ∩ C| = 1, 
|A ∩ C| = 5, and 
|J ∩ A ∩ C| = 1. 
 

|U|=50

M

10

B

25 – 10 = 
15

30 – 10 = 
20
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Start by filling in 1 in the central intersection region (1 person participates in all 
three) then determine the other values by successive subtractions. 
This gives the following diagram: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
(a) How many of these healthy people do not participate regularly in any of 

the three activities mentioned? 
 

 The set J ∪ A ∪ C turns out to have as members  
|J ∪ A ∪ C| = 39 + 5 + 20 + 4 + 15 + 1 = 84 subscribers, therefore   
|(J ∪ A ∪ C)′| = |U| − |J ∪ A ∪ C| = 100 − 84 = 16 do not participate 
regularly in any of the three activities mentioned. 

 
(b)  How many only jog? 
   From the diagram it is clear that 39 jog as their only exercise. 
 

Activity 4-10: Self-assessment exercises (Inclusion-exclusion principle)  
1. Suppose that of 1000 first-year students, 700 take Mathematics, 400 

take Computer Science, and 800 take Mathematics or Computer Science. 
 

(a) How many take Mathematics and Computer Science? 
(b) How many students take Maths, but not Computer Science? 
(c) How many students do not take any of the two subjects? 

 
2.   A builder has a team of 64 construction workers.  Of these, 45 are 

trained in the use of heavy machinery, i.e. cranes, bulldozers and 
backhoes.  A total of 22 can operate cranes, 26 can operate backhoes, 4 
can operate cranes and bulldozers, 6 can operate backhoes and 
bulldozers, 8 can operate cranes and backhoes, and 1 can operate all 
three kinds of machine.  How many can operate bulldozers? 

 
2. A large software company employs 22 software engineers for the 

design of systems.  Of these engineers, 17 are well versed in the secrets 
of a formal method (FM), 9 can use the Unified Modelling Language 
(UML), and 9 are familiar with the use of entity-relationship (ER) 
diagrams. If 5 engineers can use both an FM and UML, 4 both an FM and 
ER diagrams, and 7 both UML and ER diagrams, answer the following 
questions: 
(a) How many engineers can use all 3 techniques, namely an FM, 

UML and ER diagrams? 
(b) How many engineers can use UML only? 

J A

C

|U| = 100

45 –  5 – 1 – 0 = 
39

30 – 5 – 1 – 4 =
20

20 – 4 – 0 –1 = 15

1–1 = 0 5–1 = 4

6–1= 
5

1

16
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4.5 Proofs on specific sets 
 
We can prove that two specific sets are equal. Let’s look at an example: 
 

Example  
Prove that  
{w ∈ R | w2 − 3w + 2 < 0}  =  {z ∈ R | 1 < z < 2}. 
 
We should prove that each member of the left-hand side set belongs to the 
right-hand side set and conversely. 
 

Proof  
 
x ∈ {w ∈ R | w2 − 3w + 2 < 0} 
iff x ∈ R and x2 − 3x + 2 < 0 
iff x ∈ R and (x − 2)(x − 1) < 0 
iff x ∈ R and either (x − 2 < 0 and x − 1 > 0) or (x − 2 > 0 and x − 1 < 0) 

    (since a minus times a plus gives a minus, or 
      a plus times a minus gives a minus ) 

iff x ∈ R and either (x < 2 and x > 1) or (x > 2 and x < 1)  
                  (there are no real numbers that are 
                   simultaneously greater than 2 and less than 1) 

iff x ∈ R and 1 < x < 2             
iff x ∈ {x ∈ R | 1 < x < 2} iff x ∈ {z ∈ R | 1 < z < 2} 
 
Note: Any variable can be used for a set description - it does not change the 
members in the set. 
 

 To go from the step x ∈ R and ((x < 2 and x > 1) or (x > 2 and x <1)) to the step x ∈ R 
and (1 < x < 2), we gave as justification that (x > 2 and x < 1) is false.  But we must not 
forget that we are making use of “iff” and therefore we must also know why it is correct 
to go in the opposite direction.  Given a true statement such as “The earth is round”, we 
can add any other statement to it using “or”, whether the added statement is true or not, 
and the resulting statement will still be true.  For example, the statement “The earth is 
round or elephants are green” is true even though “elephants are green” is not true. 
 
So we may go from x ∈ R and (1 < x < 2) 
to the statement x ∈ R and ((x < 2 and x > 1) or (x > 2 and x < 1)) 
even though “(x > 2 and x < 1)” is false. 

 

Activity 4.11 Self-assessment exercises     Application skills 
Use the technique illustrated in the previous example to prove the following: 
 
1. {y ∈ Z+ | y is an even prime number} = {u ∈ Z+| u2 = 4} 
 
2. Ƥ ({0, 1})  =  {0/}  ∪  {{0}}  ∪  {{1}}  ∪  {{0,1}} 
 
3. {x ∈ R | x2 + 6x + 5 < 0} = {x ∈ R | −5 < x < −1} 
 
4. {x ∈ Z | x2 − 5x + 4 < 0}  =  {x ∈ Z+| x is a prime factor of 6} 
 
5. {x ∈ R | x2 + x – 2 > 0} = {x ∈ R | x < −2 or x > 1} 
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We conclude this study unit by completing a few additional activities designed 
around the topics covered here. 

 
Activity 4-12: Self-assessment exercises     Application skills 

1.      Determine whether or not for V, W, Z ⊆ U, if V ⊆ W, then V ∪ Z ⊆ W ∪ Z 
and V ∩ Z ⊆ W ∩ Z. Provide either a proof or a counterexample, 
whichever is appropriate. 

 
2.     Is it the case that, for all subsets X, Y, W ⊆ U, if X = Y and Y = W, then X = 

W, and if X ⊂ Y and Y ⊂ W, then X ⊂  W? Justify your answer.   
 
3.      Is it the case that, for all subsets X of U, X ∪ 0/ = X?  Justify your answer. 
 
4.     Is it true that, for all subsets V and W of U, V ∩ W = 0/ iff V = 0/ or W = 0/? 

Justify your answer. This claim has two parts: 
(i) if V ∩ W = 0/ then V = 0/ or W = 0/, and (ii) if  V = 0/ or W = 0/ then 
V ∩ W = 0/.  
Both these parts must hold for the claim to be true. 

 
5.      Is it the case that for every subset X of U there exists a subset Y of U 

such that X ∪ Y = 0/?  Justify your answer. 
 
6.     Is it the case that for every subset X of U there is some subset Y such 

that X ∩ Y = U?  Justify your answer. 
  
7.      Using “if and only if ”statements, prove the following: 
 

(a) X + Y = Y + X for all X, Y ⊆ U. 
(b)   X ∩ (Y + Z) = (X ∩ Y) + (X ∩ Z) for all X, Y, Z ⊆ U. 

 

4.6 In summary of the study unit 
 
In this study unit you ensured that you can answer the following basic 
questions: 
 

• How do you prove the theoretic identities of sets using Venn diagrams? 
• How do you prove the theoretic identities of sets using the phrase “if and 

only if”? 
• How do you establish the falsity of universal assertions by providing a 

counterexample? 
• How do you handle proofs involving specific sets? 
• What is the usefulness of the Inclusion-exclusion principle? 

 
In the next study unit we will discuss the concept of a relation. 
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Study unit 5    Relations 
 

Key questions for this study unit 

• What is meant by the term “ordered pair”? 
• Do you understand the concepts of “a Cartesian product”, “a relation”, “a 

composition relation”, and “an inverse relation”? 
• Are you able to test whether a relation is: reflexive? irreflexive? symmetric? 

antisymmetric? transitive? 

 
 

Activity 5-1:          Study skill 
Draw a mind map of the different sections/headings you will deal with in this 
 study session. Draw the map as you did the others, paging through the study 
 unit with the purpose of completing the map.  
 
Your map should include the concepts of an ordered pair, a Cartesian product, 
a relation, domain, codomain, range, reflexivity, irreflexive, symmetry, 
antisymmetry, transitivity, the composition of relations, inverse relations. 
 
 

Activity 5-2: Concepts        Conceptual skill 
Test your own knowledge (write in pencil) and then correct your  
understanding afterwards (erase and write the correct description). Often a  
young language may not have all the terms in a discipline; can you think of  
some examples? 
 

English term Description Term in your home language 
Ordered pair    
Cartesian product   
Relation   
Codomain    
Domain   
Range   
Binary relation   
Reflexive relation   
Irreflexive relation   
Symmetric relation   
Antisymmetric 
relation 

  

Transitive relation   
Trichotomy   
Inverse relation    
Composition of 
relations 
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5.1 Ordered pairs 
 
As we saw earlier, {1, 2} = {2, 1}, so the order in which the elements of a set 
are listed does not matter. We now introduce a way to “encode” a new 
concept. This is done by using round brackets (parentheses) instead of curly 
brackets {braces} to get something that looks like this: (3, 0). The parentheses 
tells us that we are not talking about a set, but that we are dealing with an 
ordered pair, in which 3 is the first co-ordinate and 0 the second co-ordinate. 
Since the order is important, it follows that (3, 0) ≠ (0, 3). 
 
The original use for this notation was to plot points on a graph in a plane. A 
Cartesian co-ordinate system in a plane consists of two perpendicular lines, 
one horizontal and one vertical, with a unit of measurement marked on each 
line. The horizontal line is usually called the x-axis and the vertical line the y-
axis. The point where they meet is called the origin. The origin can be 
represented by the ordered pair (0, 0). Figure 5-1 illustrates this idea:  

 
Figure 5-1 

 
Now, each point in the plane occurs at an address provided by an ordered pair. 
Let’s look at (4, −2) as an example. The first co-ordinate tells us to move, from 
our starting point at the origin, 4 steps in the positive direction along the x-
axis. The second co-ordinate tells us that we should then move 2 steps in the 
negative direction along the y-axis. 

  

positive  y-axis 

negative  x-axis positive  x-axis 

negative y-axis 

(0, 0) 
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Figure 5-2 shows us where (4, −2) is located in the plane: 
 

 
 
Figure 5-2 

 
Apart from being able to represent points in a plane, ordered pairs have many 
other uses. All the uses are based on the fact that we can use the fixed order of 
the co-ordinates to provide information about some relationship. The 
resulting set of ordered pairs is then conveniently called a relation.  
 

5.2 Relations 
 
Let’s look at an example. Consider the set {2, 3, 5}. We know that 2 < 3, 2 < 5 
and 3 < 5. We can call this specific relationship “is less than” and we can 
represent it graphically by drawing arrows from 2 to 3, 2 to 5, and 3 to 5. This 
relationship is illustrated in Figure 5-3: 
 

5

3

2
 

 
     Figure 5-3 

 
Applying what we have just learned about ordered pairs, we can use ordered 
pairs to represent the elements of this example of an order relation.  In the 
place of the arrows, we can consider the ordered pairs (2, 3), (2, 5) and (3, 5). 
The set of these pairs, R = { (2, 3), (2, 5), (3, 5) }, completely captures the 
information in our picture. R is an order relation (which we could also call "<") 
on the set {2, 3, 5}.  
 
Note: There are many other examples of order relations other than the “<” 
order relation. 
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As we will see in this study unit, if R is a relation on {2, 3, 5}, it means that R is a relation 
from {2, 3, 5} to {2, 3, 5}, i.e. the first and second co-ordinates come from the set {2, 3, 5}. 

 
 Instead of writing (2, 3) ∈ R we could also use what is called infix notation, 
and write 2 R 3. Usually this specific relation is given the name < rather than R, 
so we write 2 < 3 (using infix notation) rather than (2, 3) ∈ <. 
 
Now it is important to note that any set of ordered pairs may be called a 
relation. It also often happens that a relation represents a relationship 
between one sort of thing and another. We can then say that all the first co-
ordinates in the ordered pairs are of the same sort, whereas the second co-
ordinates are all of a sort which may be different from the sort of the first co-
ordinates. 
 
Let’s look at an example.  
 

Example 
In the relation 
R = {(xi , yi) | xi is the husband of yi, i = 1, 2, …, n}, 
the first co-ordinates are all men and the second co-ordinates are all women. 
We describe the relation as the relation R from M to W, where 
M = {x1, x2, x3,… xn} is a set of men and W = {y1, y2, y3,… yn} is a set of women. 
Ordered pairs live in R, i.e. (x1, y1) ∈ R (x1 is the husband of y1), 
(x2, y2) ∈ R (x2 is the husband of y2), and so on. 
 
Note: We can write (xi , yi) ∈ R or we could use infix notation to write xi R yi. 
 

Another example 
When a C++ compiler translates a source program into the machine language 
of the object program, it constructs a symbol table which contains the 
following sets: 
 
S: the set of symbolic names such as variables, constants and types 
A: the set of possible attributes for elements of S, such as integer, real number, 
Boolean, character, etc. 
L: the set of locations (or addresses) in memory where the elements of S are 
stored. 
 
The information in this table can be encoded into two relations: 
- relation R1 with first co-ordinates from S and second co-ordinates from A, 

and 
- relation R2 with first co-ordinates from S and second co-ordinates from L. 
 

If you have not been exposed to programming, you need not be concerned if you do not 
understand the concept of a symbol table. Just imagine it as a table with three columns: 
column 1 contains a set of names, column 2 a set of attributes (or properties) of the 
names in column 1, and column 3 a set of locations where the names can be found. 

 
Let’s investigate more carefully this idea of having a relation from one set to 
another. 
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Definition: Cartesian product  
For any sets A and B, the Cartesian product of A and B is denoted by A × B and 
is equal to the set {(x, y) | x ∈ A and y ∈ B}. 
 
The Cartesian product A × B denotes a set of ordered pairs such that all the 
first co-ordinates are members of A and all the second co-ordinates are 
members of B. Each member of A is combined with each member of B in the 
set of ordered pairs A × B consists of. 
 
A few examples should make this concept clear. 
 

Examples 
Suppose A = {2, 3, 4} and B = {5, 6}. Then   
 
(a)  A × B = { (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6) } 
(b)  B × A = { (5, 2), (5, 3), (5, 4), (6, 2), (6, 3), (6, 4) } 
(c)  B2  = B × B = { (5, 5), (5, 6), (6, 5), (6, 6) }.  
(d) A2  = A × A = { (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)}. 
 

Note that in example (c) we can also write B × B as B 2.  
 
Although the two sets A and B might contain different types of things, they often contain 
exactly the same type of thing. In the example above, both A and B contain some natural 
numbers. 

 
Definition: Relation 

A subset of a Cartesian product C × D is called a relation from C to D. 
 

Examples  
With A = {2, 3, 4} and B = {6, 7}, the following are some relations from A to B: 
 
(a) 0/ 
(b) { (3, 7) } 
(c) { (2, 6), (2, 7) } 
(d) { (2, 6), (3, 6), (4, 6) } 
(e)  A × B. 
 
Note: 0/ is a subset of A × B, so even though it has no ordered pairs as elements,  
it can also be called a relation from A to B. The relations in examples (a) to (e) 
are all subsets of  A × B. 
 

Activity 5-3: Examples of relations 
If A = {0, 1, 2} and B = {1, 3, 5}, give two examples of relations from A to B. 
 
A relation R from A to B means that R consists of a set of ordered pairs where 
the first co-ordinate is an element of A and the second co-ordinate is an 
element of B.  
 
Therefore R1 = {(0, 5)} is a relation from A to B, and 
R2 = {(0, 1), (1, 3), (2, 5)} is also a relation from A to B. 
 
Note: The Cartesian product A × B can also be called a relation from A to B.  
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Activity 5-4: Self-assessment exercises                                                          Application skills 
Let A = {1, 2, 3, 4}, B = {2, 5}, and C = {3, 4, 7}.  
Write the following Cartesian products in list notation: 
(a)  A × B  
(b)  B × A  
(c) (A ∪ B) × C 
(d) (A + B) × B  
 

Activity 5-5: CAI tutorial                   
All the concepts in this study unit are covered in the CAI tutorial. Working 
through the relevant theory, examples and exercises will help you to 
understand these concepts. 
 

If R is some relation from A to B, all the members of A and B do not necessarily appear as 
first and second co-ordinates respectively in the relation. This leads us to the following 
definitions: 

 
Definitions: Domain, range and codomain of a relation 

Suppose T is a relation from X to Y, then Y is called the codomain of T. 
 
We define the domain of T (dom(T)) and the range of T (ran(T)) as the 
following subsets of X and Y respectively: 
 
dom(T) = {x | for some y ∈ Y, (x, y) ∈ T}, i.e. the set of all elements that actually 
appear as first co-ordinates in the ordered pairs of T. 
 
ran(T) = {y | for some x ∈ X, (x, y) ∈ T}, i.e. the set of all elements that actually 
appear as second co-ordinates in the ordered pairs of T. 
 
Note:  dom(T)  ⊆  X. The domain of relation T, i.e. dom(T), is a subset of X, but it 
is not necessarily equal to X. 
 
Furthermore, ran(T)  ⊆  Y. The range of relation T, i.e. ran(T), is a subset of the 
codomain Y, but it is not necessarily equal to Y. 
 

Note: One has to be a little careful when reading textbooks, because some authors use the 
word range to describe what we have called the codomain. But rest assured, we are 
following the most common practice. 

 
Example   

Let S = { (a, 1) }, { (b, 1), (a, 2) } be a relation from {a, b, c} to {1, 2, 3}. 
 
Then dom(S) = {a, b} ⊆ {a, b, c} and ran(S) = {1, 2} ⊆ {1, 2, 3}.  The codomain is 
the set {1, 2, 3}. 

 
Definition: Binary relation 

If R is any subset of a Cartesian product X × Y, then R is called a binary relation 
from X to Y (or “between X and Y”).  A subset R of X × Y is called the rule for 
the relation.   
If R ⊆  X × X, we say that R is a binary relation on X. 



Study unit 5  Relations                   COS1501/1 

 75  

The members of a relation R ⊆  X × X are ordered pairs, so it is called a binary relation. 
We discuss n-ary relations in the next study unit. 

 
Examples 

Let A = {2, 3, 4} and B = {a, b}. 
 
Some examples of relations from A to B:  0/,  { (2, a) }, { (2, a), (4, b) }  and  
A × B = { (2, a), (2, b), (3, a), (3, b), (4, a), (4, b) }. 
 
The codomain of all these relations is {a, b} = B; the domain and range of 0/ is 
the set 0/; the domain of { (2, a), (4, b) } is {2, 4} and its range is {a, b}; the 
domain of A × B is A and its range is B. 

5.3 Properties of relations 
 
We now look specifically at some relations R that are subsets of A × A for some 
set A. Such relations may, of course, be called relations from A to A, but it is 
more usual to refer to them as relations on A.  
 
In this section we define some properties of relations.  
 

Definition: Reflexive 
A relation R on A (also written as R ⊆ A × A) is called reflexive on A iff for every  
x ∈ A, we have (x, x) ∈ R. 
 
The idea is that R ⊆ A2 is reflexive on A if every element of A is related (in the 
context of R) to itself.  

 
Examples 

Let A = {2, 3, 5}. In order for some relation S to be reflexive on A, we should 
have { (2, 2), (3, 3), (5, 5) } ⊆ S, which means that, among the elements of S, 
there should at least be the ordered pairs (2, 2), (3, 3) and (5, 5). Note that 
each element of A should be related to itself. 
 
Now S = { (2, 2), (3, 3), (5, 5), (2, 3) } is an example of a reflexive relation on A. 
 
Another example: Let R be the relation on Z defined by  
(x, y) ∈ R iff x − y = 7k for some integer k. 
(If x − y = 7k, it means that x − y is a multiple of 7.) 
 
Is R reflexive? I.e. is it true that (x, x) ∈ R for all x ∈ Z? 
Yes, for all x ∈ Z we have x − x = 0 = (7)(0) with k = 0 
i.e. (x, x) ∈ R and therefore R is reflexive on Z. 

 
Definition: Irreflexive 

A relation R ⊆ A × A is called irreflexive iff there is no x ∈ A such that  
(x, x) ∈ R. In other words, for any x ∈ A, (x, x) ∉ R. 
 
The idea is that R ⊆ A2 is irreflexive iff there is no element of A related (in the 
context of R) to itself. 
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Examples 
Let A = {2, 3, 5}. We look at properties of some relations on A: 
 
R = {(3, 2), (2, 5), (3, 5)} is irreflexive since no member of A is related to itself, 
i.e. not one of the pairs (2, 2), (3, 3) and (5, 5) belong to R.  
 
S = {(2, 2), (2, 5), (3, 5)} is neither reflexive nor irreflexive. Why do we say 
this? S is not reflexive since not all elements of A are related to itself, i.e. not all 
the pairs (2, 2), (3, 3) and (5, 5) belong to S. S is not irreflexive either since 
(2, 2) is an element of S. For irreflexivity not one of the ordered pairs 
(2, 2), (3, 3) and (5, 5) should belong to S. 
 
Another example: Let R be the relation Z defined by (x, y) ∈ R iff x < y. 
 
Is R irreflexive? I.e. is it true that (x, x) ∉ R for all x ∈ Z?  
 
Yes, it can never be the case that x < x, therefore (x, x) ∉ R for all x ∈ Z. 
 

Definition: Symmetric 
A relation R ⊆ A × A is symmetric iff R has the property that, for all x, y ∈ A,  
if (x, y) ∈ R, then (y, x) ∈ R.  
 
The idea is that whenever an ordered pair (x, y) lives in R, then a pair with the 
order of the elements reversed (i.e. the mirror image pair) must also live in R. 
 

Examples  
Let B = {1, 2, 3}. We look at properties of some relations on B: 
 
(a) R1 = { (1, 2), (2, 1), (1, 3), (3, 1) } is symmetric and irreflexive. 
(b) R2 = { (1, 1), (2, 2), (3, 3), (2, 3) } is reflexive on B but not symmetric. 
(c) R3 = { (1, 1), (2, 2), (3, 3), (2, 3), (3, 2) } is reflexive on B and symmetric. 
(d)  R4 = { (1, 1), (2, 3), (3, 3) } is neither reflexive on B, nor irreflexive, nor 

symmetric. 
 
Another example: Let R be the relation on Z defined by 
(x, y) ∈ R iff  x − y  = 7k for some integer k.  
 
Is R symmetric? I.e. is it true that for all x, y ∈ Z, if (x, y) ∈ R then (y, x) ∈ R? 
 
Yes. Assume (x, y) ∈ R then x − y = 7k 
i.e. y − x = 7(−k) for some −k ∈ Z,  thus (y, x) ∈ R. 
 

Definition: Antisymmetric 
A relation R ⊆ A × A is antisymmetric iff R has the property that, for all x, y ∈ A, 
if x ≠ y and (x, y) ∈ R then (y, x) ∉ R. 
 
We also look at an alternative definition: 
A relation R ⊆ A × A is antisymmetric iff R has the property that, for all x, y ∈ A,  
if (x, y) ∈ R and (y, x) ∈ R, then x = y. 
 
The idea is that whenever x ≠ y and (x, y) lives in R, then a pair with the order 
of the elements reversed (i.e. the mirror image pair) may not live in R. 
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Examples  
Let A = {a, b, c}.  
 
Consider the relation P = {(a, b), (b, b), (b, c)} on A: 
a ≠ b and (a, b) ∈ P, and also b ≠ c and (b, c) ∈ P, but  the mirror image pairs  
namely (b, a) and (c, b) do not live in P. It follows that P is antisymmetric. 
 
Consider another relation: Let R ⊆ Z × Z be defined by (x, y) ∈ R iff x ≤ y. 
Is R antisymmetric? 
I.e. is it true that for all x, y ∈ Z, if x ≠ y and (x, y) ∈ R, then (y, x) ∉ R? 
 
Yes. Assume x ≠ y and (x, y) ∈ R, then x ≤ y  
i.e. it is not the case that y ≤ x, thus (y, x) ∉ R. 
 
(Alternatively, assume (x, y) ∈ R and (y, x) ∈ R, then x ≤ y and y ≤ x i.e. x = y.) 

 
Activity 5-6: Symmetry, antisymmetry 

One might easily come to the conclusion that not symmetric means the same as  
antisymmetric. Is this conclusion true? Use the relation R on  
A = {1, 2, 3} where R = {(1, 2), (2, 1), (2, 3)} to test whether not symmetric  
means the same as antisymmetric. 
 
R is not symmetric, since (2, 3) ∈ R but (3, 2) ∉ R. But R is not antisymmetric 
either, since (1, 2) and (2, 1) are both inside R, but 1 ≠ 2. 
 

Definition: Transitive 
A relation R ⊆  A × A is transitive iff R has the property that for all x, y, z ∈ A, 
whenever (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R. 
 
Transitivity means that if x "is related to" y and y "is related to" z, then x "is 
related to" z with y acting as a sort of intermediary. One could say that, if the 
relation is transitive, and one can get from x to z in two steps, then one can 
also get from x to z in one step. 
 

Examples 
Let R = {(1, 1), (2, 2), (1, 2), (2, 1) } be a relation on A = {1, 2, 3}. 
 
This relation is transitive: Consider the ordered pairs (1, 2) and (2, 1): 
if 2 acts as the “intermediary” then (1, 1) ∈ R. 
If 1 acts as the “intermediary” for (2, 1) and (1, 2) then (2, 2) ∈ R. 
One should also consider pairs such as (1, 1) and (1, 1): 1 acts as the 
“intermediary” so (1, 1) ∈ R. In this case the pair (1, 1) plays a triple role. 
All the different possibilities should be investigated systematically. 
 
Another example: Let R be the relation on Z defined by 
(x, y) ∈ R  iff  x − y  = 7k for some integer k.  
Is R transitive? I.e. is it true for all x, y, z ∈ Z that if (x, y) ∈ R and (y, z) ∈ R, 
then (x, z) ∈ R? 
 
Yes. Assume (x, y) ∈ R and (y, z) ∈ R,  
then  x − y = 7k ➀ and y − z = 7m ➁ for some k, m ∈ Z.   

Add ➀ and ➁, then (x − y) + (y − z) = 7k + 7m  
i.e. x − z  = 7(k + m), which is a multiple of 7, therefore (x, z) ∈ R. 
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Many relationships in real life are transitive, for example "is heavier than". Others might 
give one the impression that they should be transitive, but are in fact not. In soccer, for 
instance, we might have "Liverpool beats Real Madrid", and "Real Madrid beats Arsenal", 
but this does not necessarily mean that "Liverpool beats Arsenal". 

 
Definition: Trichotomy 

A relation R on A satisfies the requirement for trichotomy iff, for every x and y 
chosen from A such that x ≠ y, we have that x and y are comparable, 
i.e. for all x, y ∈ A such that x ≠ y,  x R y or y R x (i.e. (x, y) ∈ R or (y, x) ∈ R). 
 
This means that we should be able to compare any two distinct elements x and 
y belonging to A in terms of the relation. So, if we pick any distinct elements x 
and y from A, then either x is the first co-ordinate and y the second co-
ordinate in an ordered pair, i.e. x R y, or x is the second and y the first co-
ordinate in an ordered pair, i.e. y R x (it is possible that both x R y and y R x 
since “or” is used in the inclusive sense in this definition). 
All distinct elements x and y that belong to A should be considered when 
investigating whether x R y or y R x. (It is possible that pairs of the form (x, x) 
could belong to some relation that satisfies trichotomy.) 
 

Examples  
Suppose S = { (1, 1), (3, 2), (2, 1), (3, 1), (3, 1) } is a relation on A = {1, 2, 3}, 
then S satisfies the requirement for trichotomy since any element of A is 
related to each other element of A that is different from itself. This means that 
all the distinct elements belonging to A are comparable: 
(3, 2), (2, 1), (3, 1) ∈ S. 
 
Another example: Suppose T = { (3, 2), (2, 1), (2, 3) } is a relation on 
A = {1, 2, 3}, then T does not satisfy trichotomy since not all distinct elements 
of A are comparable. We have 1, 3 ∈ A and 1 ≠ 3 but neither (1, 3) nor (3, 1) 
are elements of T. 
 
Yet another example: Let R ⊆ Z × Z be defined by (x, y) ∈ R iff x ≤ y.  
 
(A pair (x, y) belongs to R iff x is less than or equal to y. Instead of “R” we could 
just as well have named the relation “≤”. For example, 1 ≤ 2, i.e. (1, 2) ∈ R but 
6 ≰ 2 thus (6, 2) ∉ R.) 
 
If  x, y ∈ Z and x ≠ y then either x lies to the left of y, or y lies to the left of x on 
the number line (mentioned in study unit 1), so either (x, y) ∈ ≤ or (y, x) ∈ ≤.  
 
Thus ≤ satisfies trichotomy. 
 

Activity 5-7: The properties of relations 
Let A = {1, 2, 3}. Give an example of a relation on A that is reflexive on A and 
 symmetric and transitive. 
 
Let R be a relation on A. For R to be reflexive, all the elements of A need to be 
paired with themselves, i.e. (1, 1), (2, 2) and (3, 3) must live in R. 
 
For R to be symmetric means that if (x, y) ∈ R, then (y, x) ∈ R.  
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Now suppose (1, 2) ∈ R and (2, 3) ∈ R, then we need to add (2, 1) and (3, 2) to 
ensure that R is symmetric. 
At this stage { (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (2, 1), (3, 2) } ⊆ R.  
 
Finally, we need to build in transitivity.  We have (1, 2) and (2, 3) in R, which 
means that (1, 3) needs to be added to R. We also have (1, 2) and (2, 1), so  
(1, 1) needs to be in R, which is already the case. We have (3, 2) and (2, 3), so 
(3, 3) must be included. Then we have (2, 1) and (1, 3) (remember we added  
(1, 3)) so (2, 3) needs to be in R, which is true. Finally, we have (2, 3) and  
(3, 2), so (2, 2) needs to in R, which is true.  
 
We have added (1, 3), so we need to add (3, 1) to maintain symmetry. 
 
Thus R = { (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (2, 1),  (3, 2),  (1, 3), (3, 1) }. 
 

It is also possible to build new relations from old ones. There are various ways of doing 
this, two of which we will consider next. Firstly, we will look at the inverse of a relation, 
and secondly we will investigate how the composition of two relations is formed. 

 
Definition: Inverse relation 

Given a relation R with domain A and range B, the relation R-1 (read “R 
inverse”) with domain B and range A is called the inverse of R  and is defined 
such that  
 (x, y) ∈ R if and only if (y, x) ∈ R-1. 
 
Note that this definition also tells us that the inverse of R-1 is R, so we could 
simply say that these two relations are inverses of each other. 
(Adapted from Ensley & Crawley, 2006.) 
 
The best way to understand this definition is to look at an example. 
 

Example 
Let X = {a, b, c} and R = { (a, b), (b, c), (a, c) }. 
 
We get the inverse of a relation by switching the co-ordinates of the ordered 
pairs, so R-1 = { (b, a), (c, b), (c, a) }. 

 
Definition: Relation composition 

Given relations R from A to B and S from B to C, the composition of R followed 

by S (S ￮ R or R; S) is the relation from A to C defined by  

S ￮ R = R; S = {(a, c) | there is some b ∈ B such that (a, b) ∈ R and (b, c) ∈ S}. 

 

Using the notation R; S rather than S ￮ R helps us to remember that R is followed by S. 

 
It is worth spending some time thinking about this definition.  If x is a first co-
ordinate in some pair of R; S, can you see that x must be a member of A?  This 
is the case because if x appears as a first co-ordinate in R; S, then there has to 
be some b ∈ B such that (x, b) ∈ R.  Similarly, if y appears as a second co-
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ordinate in S ￮ R, then there has to be some b ∈ B such that (b, y) ∈ S, so y 

must be a member of C.  Therefore the definition ensures that S ￮ R ⊆ A × C. 
 

The following diagram illustrates how S ￮ R links element a of set A to element 

c of set C by using element b of set B as an intermediate point. 

A B C

R

b

S ￮ R or R; S

S

a c

 
Examples  

Let R = { (1, a), (2, b) } be a relation from {1, 2} to {a, b} and let  
S = { (a, s), (b, s), (b, t) } be a relation from {a, b} to {s, t}. 
 
Determine the relations S ￮ R (i.e. R; S) and R ￮ S (i.e. S; R). The relation S ￮ R 
(or R; S) is the composition of R followed by S. 
 
The first co-ordinates of S ￮ R come from {1, 2} (dom(R)) and the second co-
ordinates come from {s, t} (ran(S)). 
 
If we want to determine S ￮ R, i.e. R;S, then we first write down a pair of R, let’s 
take (1, a), then we look for a pair in S that has as first co-ordinate an a.  If we 
link (1, a) of R with (a, s) of S (a is the linking co-ordinate), then by the 
“relation composition” definition, (1, s) ∈ S ￮ R.   
 
No other member of S has “a” as first co-ordinate, so (1, a) in R cannot link 
with any other member in S. 
 
Let’s consider the other member of R, namely (2, b), and inspect S to see 
whether or not (2, b) can link with some members in S.  We see that (2, b) can 
link with (b, s) and also with (b, t).  By definition (2, s) and (2, t) are members 
of S ￮ R. 
 
We have looked at all possible pairs that can link, so 
S ￮ R = { (1, s), (2, s), (2, t) }. 

 
Determine R ￮ S:  The relation R ￮ S (or S; R) is the composition of S followed 
by R.  We start with S, but there are no members in S that can link with 
members in R, so R ￮ S = 0/. 
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More examples  
In the following examples, we consider relations defined on X = {a, b, c}. 
 
We can form the compositions R; R (i.e. R ￮ R), R; R-1 (i.e. R-1 ￮ R), 

R-1; R (i.e. R ￮ R-1) and R-1; R-1 (i.e. R-1 ￮ R-1): 
 
(a) Let R = { (a, a), (b, c), (c, b) }, then R-1 = { (a, a), (c, b), (b, c) }. 
 
To determine R; R, we start with the pair (a, a) of R, and then we look for a 
pair in R that has as first co-ordinate an a, and then see where it takes us. 
 
Link (a, a) of R with (a, a) of R, then (a, a) ∈ R; R.  Continuing in this vein gives 
R ￮ R = { (a, a), (b, b), (c, c) }. 
 
Since R-1 = R, we have R-1 ￮ R = { (a, a), (b, b), (c, c) }. 
 
Similarly R ￮ R-1 = { (a, a), (b, b), (c, c) }. 
 
And of course R-1 ￮ R-1 = {(a, a), (b, b), (c, c)}. 
 
(b) Let R = { (a, b), (b, c), (a, c) } then R-1  = { (b, a), (c, b), (c, a) }. 
 
Only the pair (a, b) of R can link with a pair in R, namely (b, c) of R, thus  
 
R; R = {(a, c)}.  
 
R; R-1  =   { (a, a), (b, a), (b, b), (a, b) }. We obtain the four ordered pairs in R; R-1 

as follows: 
 
(a, a): link (a, b) of R with (b, a) of R-1, or link (a, c) of R with (c, a) of R-1;   
 
(b, a): link (b, c) of R with (c, a) of R-1; 
 
(b, b): link (b, c) of R with (c, b) of R-1; and finally 
 
(a, b): link (a, c) of R with (c, b) of R-1. 
 
Similarly, R ￮ R-1= { (b, b), (b, c), (c, c), (c, b) }  and R-1 ￮ R-1 =  { (c, a) }. 
 

Activity 5-8: Self-assessment exercises     Application skills 
1. Let P and R be relations on A = { 1, 2, 3, {1}, {2} }: 
 P = { (1,{1}), (1, 2) }  and R = { (1, {1}), (1, 3), (2, {1}), (2, {2}), ({1}, 3), 

({2}, {1}) }. 
 
 Justify your answers to the following questions. 
 (a) Is R irreflexive? 
 (b) Is R reflexive? 
 (c) Is R symmetric? 
 (d) Is R antisymmetric? 
 (e) Is R transitive? 
 (f) Does R satisfy the requirement for trichotomy? 
 (g) Determine the relation R ￮ R. 
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 (h) Determine the relation R ￮ P. 
 (i) Give the subset T of R where (a, B) ∈ T iff a ∈ B. 
 
2. Let A = {a, b}.  For each of the specifications given below, find suitable 

examples of relations on Ƥ (A). 

 First of all let us write down Ƥ (A): Ƥ (A) = {0/, {a}, {b}, {a,b}}, 

 and Ƥ (A)×Ƥ (A) = { (0/, 0/), (0/, {a}), (0/, {b}), (0/, {a,b}), ({a}, 0/), ({a}, {a}),  
 ({a}, {b}), ({a}, {a, b}), ({b}, 0/), ({b}, {a}), ({b}, {b}), ({b}, {a, b}), 
 ({a, b}, 0/), ({a, b}, {a}), ({a, b}, {b}), ({a, b},{a,b}) }. 
  
 (a) R is reflexive on Ƥ (A), symmetric, and transitive. 

 (b) R is reflexive on Ƥ (A) and symmetric, but not transitive. 

 (c) R is reflexive on Ƥ (A) and transitive, but is not symmetric and 
  not antisymmetric. 
 (d) R is simultaneously symmetric and antisymmetric. 
 (e) R is irreflexive, antisymmetric and transitive. 
 
3. Prove that if R is a relation on X, then R is transitive iff R ￮ R ⊆ R.  

5.4 In summary of the study unit 
 
We can summarise the properties of the relations we considered in this unit: 
 
Let R be a relation on A: 
R is reflexive on A iff for all x ∈ A, we have (x, x) ∈ R. 
R is irreflexive iff for any x ∈ A, (x, x) ∉ R. 
R is symmetric iff for all x, y ∈ A, if (x, y) ∈ R, then (y, x) ∈ R. 
R is antisymmetric iff for all x, y ∈ A, if x ≠ y and (x, y) ∈ R, then (y, x) ∉ R, or 
alternatively: for all x, y ∈ A, if (x, y) ∈ R and (y, x) ∈ R, then x = y. 
R is transitive iff for all x, y, z ∈ A, if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R. 

 
In this study unit you ensured that you can answer the following questions 
regarding set theory: 
 
• What does the term ordered pair mean? 
• What is meant by the term relation? 
• How do we define the Cartesian product of two sets? 
• What does it mean if a relation is reflexive on some set? 
• What does it mean if a relation is irreflexive? 
• What does it mean if a relation is symmetric? 
• What does it mean if a relation is antisymmetric? 
• What does it mean if a relation is transitive? 
• What does the notation R ⊆ A2 mean? 
• When does a relation satisfy trichotomy? 
• How does one form the inverse relation R-1 of a given relation R? 
• How do we form the composition of two relations? 

 
In the following study unit we will learn more about additional properties that 
relations might have and also study special kinds of relation.  
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Study unit 6  Special kinds of relation 
 

Key questions for this study  unit 

• Provide a list of the properties each kind of special relation has. 
• What do we mean by the terms “order relation” and “n-ary relation”? 
• What do we have to check if we want to determine whether or not a relation is 

a function? 
• What do we mean by a partial or linear order?  
• How do we approach a proof if we want to use “reductio ad absurdum” as a 

proof technique? 
• What are the properties of an equivalence relation? 
• What is meant by an equivalence class and a partition? 

 
 

Activity 6-1: Overview        Study Skill 
Draw a mind map of the different sections/headings you will deal with in this 
study session. Page through this study unit with the purpose of completing the 
map.  
 
Your map should include the concepts of order relations, partial orders, 
trichotomy, total order, equivalence relations, equivalence classes, partitions, 
n-ary relations, functions, domain, range and codomain. 
 
 

Activity 6-2: Concepts        Conceptual skill 
Test your own knowledge and then correct your understanding afterwards. 
How does your understanding deepen as you jot down the terms used in your 
home language? 
 

English term Description Term in your home language 
A weak partial order   
A strict partial order   
A weak total (or 
linear) order 

  

A strict (or linear) 
total order 

  

Equivalence relation   
Equivalence class   
Partition   
n-ary relation   
A functional relation   
A function   
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6.1 Order relations 
 
In the previous study unit we discussed relations, as well as special properties 
a relation may or may not have. In this study unit we shall look at special 
classes or kinds of relation. The properties a relation has, define the kind of 
relation it is classified as. 
 

Activity 6-3: CAI tutorial                
All the concepts in this study unit are covered in the CAI tutorial. Working 
through the relevant theory, examples and exercises will help you to 
understand these concepts. You can also re-visit concepts of study unit 5. 
 
Familiar concepts from study unit 5 play a role in the following definition of a 
special kind of relation, namely a weak partial order: 
 

Definition: Weak partial order 
A relation R on a set A is called a weak partial order iff R is  
reflexive on A,  
antisymmetric, and  
transitive. 

We will later see that it is possible for some order relation to be irreflexive, antisymmetric 
and transitive. We call such a relation a “strict partial order”.  

 
Examples 

Let A = { {a}, {a, b} }. A relation S on A is defined by (B, C)∈ S iff B ⊆ C, i.e. 
S = { ({a}, {a}), ({a}, {a, b}), ({a, b}, {a, b}) }. (Each first co-ordinate is a subset of 
the second co-ordinate.) 
 
Prove that S is reflexive on A, antisymmetric and transitive (a weak partial 
order). 
 
Reflexivity: Is it true that (B, B) ∈ S for all B ∈ A? 
 
Yes, S is reflexive on A: 
Each element of A is related to itself: ({a}, {a}) ∈ S and ({a, b}, {a, b}) ∈ S. 
 
Antisymmetry: Is it true that for all B, C ∈ A, if B ≠ C and (B, C) ∈ S then 
(C, B) ∉ S? 
 
Yes, S is antisymmetric: 
We see that {a} ≠ {a, b} and ({a}, {a, b}) ∈ S, but ({a, b}, {a}) ∉ S. 
 
Transitivity: Is it true that for all B, C, D ∈ A, if (B, C)∈ S and (C, D)∈ S, then 
(B, D) ∈ S? 
 
Yes, S is transitive:  
We have ({a}, {a})∈ S and ({a}, {a})∈ S, then also ({a}, {a})∈ S (({a}, {a}) plays a 
triple role); 
({a}, {a})∈ S and ({a}, {a, b})∈ S, then also ({a}, {a, b})∈ S; 
({a}, {a, b})∈ S and ({a, b}, {a, b})∈ S, then also ({a}, {a, b})∈ S; and lastly 
({a, b}, {a, b})∈ S and ({a, b}, {a, b})∈ S, then also ({a, b}, {a, b})∈ S. 
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Another example: The relation R on Z+ is defined by x R y iff x = k⋅y for some  
k ∈ Z+. (x is a multiple of y.) Is R a weak partial order? 
 
Let us synthesize some ordered pairs that belong to R: 
We see that (6, 2) ∈ R: x = 6 = (3)(2) = (k)(y) with k = 3. Some other elements 
of R are (6, 3), (35, 5) and (24, 4), and so on. These pairs meet the requirement 
that x = ky for some k ∈ Z+. 
 
Investigate whether R is reflexive on Z+, antisymmetric and transitive: 
 
Reflexivity: 
For each x ∈ Z+ we have that x = 1⋅x with k = 1, so (x, x) ∈ R.  
 
Therefore R is reflexive on Z+. 
 
Antisymmetry:  For all x, y∈ Z+, if x ≠ y and (x, y) ∈ R, is (y, x) ∉ R? 
 
 Suppose x ≠ y and (x, y) ∈ R  
 then  m⋅y  =  x for some  m ∈ Z+ 

 i.e.  y  =  (1/m) ⋅ x,   but   1/m ∉ Z+. (Remember, x ≠ y.) 
 Hence  (y, x) ∉ R. 
  
 Therefore R is antisymmetric. 
 
Transitivity: For all x, y, z ∈ Z+ such that (x, y) ∈ R and (y, z) ∈ R. Does it follow 
that (x, z) ∈ R? 
 
Suppose (x, y) ∈ R and (y, z) ∈ R 
then   x = m⋅y ➀ for some m ∈ Z+ and y = k⋅z ➁  for some k ∈ Z+.  
 
Now we substitute ➁ into ➀, 
then x = (m⋅k)⋅z with k⋅m ∈ Z+. 
Hence (x, z) ∈ R.  
  
Therefore R is transitive. 
 
R is a weak partial order because it is reflexive, antisymmetric and transitive. 
 

Activity 6-4: Weak partial orders 
For each of the following relations, determine whether or not the relation is a 
weak partial order on the given set: 
 
(a) Let A = {a, b, {a, b} }. S is the relation on A is defined by 
 (c, B)∈ S iff c ∈ B. 
(b) Define R ⊆  Z × Z by x R y iff x + y is even. 
(c) Define R on Z × Z by (a, b) R (c, d) if either a < c or else  
 (a = c and b ≤ d). 

It is possible that an order relation could be irreflexive, antisymmetric and transitive?  
Yes, we call it a strict partial order. 
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Definition: Strict partial order 
A relation R on a set A is called a strict partial order iff R is  
irreflexive,  
antisymmetric, and  
transitive. 

   
Example 

Let A = {1, 2, 3} and let S on A be the relation S = { (1, 2), (1, 3), (2, 3) }.  
(Each first co-ordinate is less than the second co-ordinate.) 
 
Is S is a strict partial order, i.e. is S irreflexive, antisymmetric and transitive?  
 
Irreflexivity: Is it true that (x, x) ∉ S for any x ∈ A? 
 
Yes, S is irreflexive: 
No element of A is related to itself, so (x, x) ∉ S for any element of A. 
 
Antisymmetry: Is it true that for all x, y∈ A, if x ≠ y and (x, y) ∈ S then (y, x) ∉ S? 
 
Yes, S is antisymmetric: 
We see 1 ≠ 2 and (1, 2) ∈ S, but (2, 1) ∉ S, 
1 ≠ 3 and (1, 3) ∈ S, but (3, 1) ∉ S, and 
2 ≠ 3 and (2, 3) ∈ S, but (3, 2) ∉ S. 
 
Transitivity: Is it true that for all x, y, z ∈ A, if (x, y)∈ S and (y, z)∈ S, then 
(x, z) ∈ S? 
 
Yes, S is transitive:  
We have (1, 2) ∈ S and (2, 3) ∈ S, then also (1, 3) ∈ S. 
 
It follows that S is a strict partial order because it is irreflexive, antisymmetric 
and transitive. 
 
This relation S also satisfies the condition of trichotomy (as defined in the 
previous study unit).  Any element of A is related to any other element of A 
that is different from itself. We have (1, 2), (1, 3) and (2, 3) ∈ S. 
 

Activity 6-5: Strict partial orders 
For each of the following relations, determine whether or not the relation is a 
strict partial order on the given set: 
 
(a) Let A = {a, {a}, {b}} and let S on A be the relation S = { (a, {a}), (a, {b})}. 
(b) Define R ⊆ (Z × Z) × (Z × Z) by (a, b) R (c, d) iff a < c.  

Why do we use the word partial?  The reason for this is that, if we choose any two 
elements from A, say x and y, they need not be related. The two most basic examples of 
partial orders are the usual ordering of numbers, on the one hand, and the subset 
relation on the other. A comparison of these relations illustrates that the “is less than or 
equal to” relation has a property (namely “trichotomy”) that the subset relation does not 
have. We will presently give a name to these new kinds of relation with this property. The 
word “partial” indicates that some of the relations that we are talking about might not 
have this special property. 
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Let’s look at the concept of power sets again. Consider the set  
U = {1, 2}. Then Ƥ (U) has as members the subsets 0/, {1}, {2} and {1, 2}. 
 
Let R be a relation on Ƥ (U) defined by R = {(A, B) | A is a subset of B}. 
 
Then we can claim that 0/ R 0/, 0/ R {1},  0/ R {2}, 0/ R {1, 2}, {1} R {1}, {1} R {1, 2}, 
{2} R {2}, {2} R {1, 2} and {1, 2} R {1, 2}. (We use infix notation.) 
 

Activity 6-6:  Notation 
Replace the letter R used above by the symbol we usually use for the subset 
relation, namely ⊆. Then read the definition of R again.  
E.g. {1} R {1, 2} can now be written as {1} ⊆ {1, 2}. It should now be clear what 
is meant by {1} R {1, 2}. 
 
Can we say that any two subsets of U can be compared (are comparable) in 
terms of the subset relation? The answer is NO. 

For instance, pick the subsets {1} and {2}. Not every element of {1} belongs to {2}, so we 
do not have {1} ⊆ {2}. Similarly, not every element of {2} belongs to {1}, so we don't have 
{2} ⊆ {1}. This means that it is not the case that if we pick any two elements from the 
subset relation on Ƥ (U), that they are related, i.e. that they are comparable.  

 
The situation can be illustrated by the following Venn diagram: 
 
 
 
 
 
 
 
 
 
In this diagram A = {1}, B = {2} and U = {1, 2}.  
 
Order relations are important in computer science because of our interest in 
sorting elements in a certain order. We usually want to sort lists of things that 
are ordered in such a way that any two things are comparable in terms of the 
order relation, i.e. given two different things in the list, we want to be sure that 
one of them comes before the other. So we might as well give a special name to 
the order relations we are most likely to use. 
 

Definition: A total (or linear) order relation 
A relation R on a set A is called a total (or linear) order if R is a partial order on 
A which satisfies the additional property that for all x, y ∈ A, either x R y or  
y R x, i.e. R satisfies the condition of trichotomy (as defined in the previous 
study unit). 

A simple way to remember what this means is to think of any two members of the set A as 
being comparable (related). 

 

A B

U

1 2
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Examples 
The relation ≤  is a weak total order relation on Z. (In Activity 6.6 you will 
determine that ≤ is reflexive, antisymmetric and transitive.)                                                                                                                                                       
We define the relation: ≤ = {(m, n)| m ≤  n with m, n ∈ Z}  
i.e. for all m, n ∈ Z, either m ≤ n or n ≤ m. 
 
The relation ≤ is a weak total order relation on Z because we can compare any 
two integers in terms of this total order relation. We see that either the first 
co-ordinate is less than the second, or they are equal, or the second co-
ordinate is less than the first. 
 
In an example that we encountered previously in this study unit, we proved 
that the relation 
 
S = { (1, 2), (1, 3), (2, 3) } on A = {1, 2, 3}  
 
is irreflexive, antisymmetric, transitive and satisfies trichotomy, thus we can 
say that S is a strict total order relation on A. 
 
Let’s consider some elements of Z and then compare them:  
 
0, −1  then −1 ≤ 0. 
1, 1  then 1 ≤ 1. 
45, 113 then 45 ≤ 113. 
−20, −250 then −250 ≤ −20 … and so on. 
 
Any element in Z is either smaller or greater than, or equal to any other 
element in Z.  

We see that it is possible to differentiate between weak and strict total order relations. 
The difference being that a weak total order relation is reflexive, whereas a strict total 
order relation is irreflexive. This means that “≤” is a weak total order and “<” is a strict 
total order. 

 
For your own notes: A summary of the properties of order relations 
 
Let’s consider some relations on A: 
 
A weak partial order is reflexive on A, antisymmetric and transitive, 
a strict partial order is irreflexive, antisymmetric and transitive, 
a weak total (or linear) order is reflexive on A, antisymmetric and transitive, 
and satisfies trichotomy, and  
a strict total (or linear) order is irreflexive, antisymmetric and transitive, and 
satisfies trichotomy. 
 
N.B.: Note the way in which we differentiate between a “weak” order and a 
“strict” order. 
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6.2 Some comments on proof strategies 
 
When we consider relations (or functions, a topic which is studied later in this 
study unit) and we want to investigate whether or not they have certain 
properties, we must keep the following in mind: 
One cannot use examples to prove general statements of the form: 
 
 “for all x, ...”, or 
 “for all pairs (x, y), ...” 
 
We need to use abstract reasoning to produce a general proof. 

We have made the point that an example does not constitute a general proof. However, 
examples have a valuable role to play in helping us to get an intuitive “feel” for some 
problems.   

 
Suppose we are investigating a relation T, where T is the relation on Z defined 
by the rule (x, y) ∈ T iff x − y = 3k for some k ∈ Z. 
 
The first thing you should do is to get a “gut feel” for T by determining some of 
its outputs.  We know that the difference between x and y should be a multiple 
of 3, so we determine the outputs of T when the following ordered pairs are 
the inputs: 
 
(10, 7)  where 10−7  = 3  = 3(1) 
(80, 50) where 80−50  = 30  = 3(10) 
(28, 73) where 28−73  = −45  = 3(−15) 
(−9, −3) where −9−(−3)  = − 6  = 3(−2) 
(2, 2)  where 2 − 2  = 0  = 3(0) 
 
Thinking about these pairs and outputs will help you as you consider the tests 
for the various properties, and will make it easier to decide on your approach 
to the proof – or, maybe to provide a counterexample. 
 

Example 
Say, for example, we want to investigate whether or not the previous relation 
T is reflexive on Z, i.e. for all x ∈ Z, is it the case that (x, x) ∈ T? We must 
provide a general proof: 
 
x – x = 0 
i.e. x – x = 3⋅0 with k = 0, 
so (x, x) ∈ T for all x ∈ Z. 
 
Therefore T is reflexive on Z. 
 
We can, however, definitely use an example to show that a general statement 
is false.  Find a case for which the statement does not hold and you have done 
it!  This is called a counterexample. (We used counterexamples in a previous 
study unit.) 
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Example 
We use a counterexample to prove that the relation T in the previous example 
does not satisfy trichotomy: 
 
Consider the elements 1, 5 ∈ Z. Neither (1, 5) nor (5, 1) are elements of T 
(1 – 5 = –4 and 5 – 1 = 4, and neither –4 nor 4 can be written as a multiple of 
3).  
 
So T does not satisfy trichotomy. 

Another approach to prove something is called the brute force approach. What we do in 
this type of proof is to write down all the elements we are working with, and show that 
whatever we want to prove holds for all the possible elements. The first exercise in the 
following activity is an example of such a proof. 

 
Activity 6-7: Self-assessment exercises                                                           Application skills 

1. Let X = {a, b, c}.  Write down all strict partial orders on X.  Which of 
them are linear? 

 
Strict partial orders on X are irreflexive, antisymmetric and transitive. We 
write down a few examples: 
 
{ (a, b) }, { (a, c) }, … write down the other 4 strict partial orders that have only 
one element; 
 
{ (a, b), (a, c) }, { (a, b), (c, b) }, … write down the other 4 strict partial orders 
that have two elements; and 
 
{ (a, b), (b, c), (a, c) }, … write down the other 5 strict partial orders that have 
three elements. 
 
2. In each of the following cases, determine whether or not R is some sort 

of order relation on the given set X (weak partial, weak total, strict 
partial, or strict total).  Justify your answer. 

 
 (a) X = { 0/, {0}, {2} } and R = { (0/, {0}) , (0/, {2}) }.  
 (b) X = { 0/, {0/}, {{0/}} } and R = ⊆ (i.e. R is the relation of all ordered 
 pairs where each first co-ordinate is a subset of the 2nd co- 
 ordinate, and R ⊆ X × X. For example, 0/ ⊆ {0/}, so (0/, {0/})∈ ⊆ or 
 (0/, {0/})∈R. ) 
 (c) X = Z  and  R = ≤. 
 (d) X = Z  and  R = >. 
 (e) X = Z+ and R is defined by the requirement that x R y iff x divides 

into y with zero remainder, i.e. y = kx for some k ∈ Z+. This means that 
x is a factor of y and y is a multiple of x.  

 Note: x R y is another way of saying (x, y) ∈ R. 

6.3 Equivalence relations 
 
During your computing studies you will often come across the term 
“equivalence relation”. This type of relation is used in many applications and 
what make them special are the properties that these relations have. 
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Definition: Equivalence relation 
A relation R on a set A is called an equivalence relation if R is  
reflexive on A,  
symmetric, and  
transitive.  
 
Objects within a relation may have different characteristics. It is sometimes 
very useful to lump together objects that have one particular characteristic in 
common and ignore the other characteristics. This is where equivalence 
relations come in handy. 
 

Examples 
Suppose A is the set of all people that were living in the Republic of South 
Africa on the night of the last census. Let R be the relation on A defined by  
x R y if x slept under the same roof as y on that particular night. If we ignore 
the possibility of someone sleepwalking from one house to another, then R is 
an equivalence relation. This means that we divide the population not into 
humans with individual characteristics, but into households. The single 
property we use to separate objects into groups is the place where a person 
slept on that particular night. 
 
Another example: Suppose students are evaluated for an assignment on a scale 
from A to E. For example, if a student has a score such that 0 ≤ score ≤ 20, he 
gets an E. If a student has a score such that 21 ≤ score ≤ 40, she gets a D, and so 
on. All the students who get an E will be in the same equivalence class 
although they had different individual scores. The same is true for all the other 
symbols (A to D). This relation divides the students into different equivalence 
classes and is an equivalence relation. 
 
This leads us to a very important concept regarding equivalence relations: an 
equivalence relation R on some set A partitions A into equivalence classes in 
the following way:  
 

Definition: Equivalence class 
For each x ∈ A we define the equivalence class [x] by 
[x] = {y | y ∈ A and x R y}. 
 
Although it takes a bit of practice to feel comfortable with equivalence classes, 
you have been using them all your life without realising it. Let's illustrate this: 
 

Consider the rational numbers (or fractions). You are probably used to thinking of 
rational numbers as quotients of integers a/b with b ≠ 0. But do you regard 1/3 as 
different from 2/6, or 2/5 as different from 20/50? No of course not. 
 
Now, let A be the set of all quotients a/b where a, b ∈ Z and b ≠ 0. 
Then A is not exactly the set of rational numbers, because we can find different quotients 
in A which represent the same rational number. We can define this relation R on A by  
a/b R c/d iff ad - bc = 0. (b ≠ 0 and d ≠ 0.) 
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Activity 6-8: Equivalence relation 
By using the description of the relation R above, show that R is an equivalence 
relation on A. 
 
Now all the quotients a/b, 2a/2b, 3a/3b, 4a/4b, … are equivalent to one 
another, in other words, each belongs to the equivalence class [a/b]. These 
equivalence classes are actually the rational numbers. When we write 1/3, we 
really mean [1/3], the equivalence class of 1/3, because when we write 1/3 
we are talking simultaneously about all the equivalent fractions 1/3, 2/6, 
4/12, and so on.  
 

Activity 6-9: Equivalence class 
Let R be the relation on Z defined by (x, y) ∈ R iff y − x is even. 
 
Then      [x] =  { y | y − x  =  2k for some k ∈ Z } 
   =  { y | y  =  2k + x for some k ∈ Z } 
 
We substitute values for x until we no longer encounter new equivalence 
classes: 
 
Let x  =  0, then  [0]  =  { y | y  =  2k + 0 for some k ∈ Z } 
                                       =  { ..., −8, −6, −4, −2, 0, 2, 4, 6, 8,... } 
This is the set of even integers.   
 
We also have …[ 0 ] = [−2 ] = [ 2 ] = [ 4 ]…etc. 
 
Let x = 1, then [1] =  { y:  y  =  2k + 1 for some k ∈ Z } 
    =  { ..., −7, −5, −3, −1, 1, 3, 5, 7, ... } 
This is the set of odd integers.  
We also have …[−1 ] = [ 1 ] = [−3 ] = [ 3 ]…etc. 
 
Note:  The equivalence classes [0] and [1] are the “parts” of the partition S of 
the set Z induced by the relation R.   
 
S = { [ 0 ], [ 1 ] }. This shows that there are only two different (non-empty) 
equivalence classes, namely [ 0 ] and [ 1 ]. 
 
It is clear that [ 0 ] ∩ [ 1 ] = 0/ and [ 0 ] ∪ [ 1 ] = Z. 

A given equivalence class [x] can be described in many ways. To be precise, [x] = [y] for 
each y ∈ [x]. We say that we have made a choice of representative x or y, depending on 
whether we denote this one equivalence class by [x] or by [y]. When we deal with 
equivalence relations, it is conventional to pick as representative the smallest non-
negative member of the equivalence class. E.g. if {2, 4, 6, …} is an equivalence class of 
some relation, we denote the class by [2]. 
 
Let R3 be the relation Z that maps an integer x to the result of calculating x modulo 3. 
This means that x maps to the remainder of x/3. Since the remainder can only be 0, 1 or 
2, we have three equivalence classes, namely [0], [1] and [2]. 
 
(For integers x, y (y ≠ 0) and a, x modulo y = a means that a is the remainder when x 
divided by y.)  
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Activity 6-10: Self-assessment exercises                                                              Application skills 
1. Let X = {a, b, c}.  Write down all the equivalence relations on X.  
 
2. In each of the following cases, determine whether or not the given 

relation R on X is an equivalence relation.  If it is, describe the 
equivalence class(es) of R. Justify your reasoning. 

 (a) X = {a, b, c} and R = {(c, c), (b, b), (a, a)} 
 (b) X = {a, b, c} and R = X × X 
 (c) X = Ƥ (Y) where Y = {1, 2, 3} and R consists of all pairs (C, D) such 
   that C ∩ {2} = D ∩ {2} 
 
3. Let R be the relation on Z such that (x, y) ∈ R iff x − y is a multiple of 4. 
 
 (a) Do tests on R for all of the following properties: reflexivity, 

irreflexivity, symmetry, antisymmetry, transitivity and trichotomy. 
 (b) Now say what kind of relation R is.  
 (c) If R is an equivalence relation, give the equivalence classes of R, 

and show some members of each class. 
 
4. Suppose Q+ is the set of all positive quotients n/m, where  
 n, m ∈ Z+, i.e. Q+ is the set of positive rational numbers. Let R be the 

relation on Q+, defined by the rule (x, y) ∈ R iff y = (a⋅x) / b  
 for some a, b ∈ Z+. Prove that R is an equivalence relation and show 

the equivalence classes of R. 
 
5. Prove that if R is a relation on Z+, then R is symmetric iff R = R-1. 

We have seen that the basic thing an equivalence relation R on A does, is to split the set A 
into a bunch of subsets, each of which is an equivalence class. We formally state this. 

 
Theorem 6.1  

(i) If R is an equivalence relation on A, then x ∈ [x] for each x ∈ A, i.e. every 
member of A belongs to some equivalence class with respect to R. 

(ii) If x R y, then [x] = [y], i.e. if two elements are equivalent with respect to 
R, then they belong to the same equivalence class. 

(iii) If [x] = [y], then x R y, i.e. if x and y are different representatives of the 
same equivalence class, then x and y are equivalent with respect to R. 

(iv) Either [x] = [y] or [x] ∩ [y] = 0/, i.e. different equivalence classes do not 
have any elements in common. 

 
Proof  

(i)  R is reflexive on A, so (x, x) ∈ R for all x ∈ A, i.e. x ∈ [x] for all x ∈ A. 
 
(ii)  Suppose (x, y) ∈ R. We want to show that [x] = [y], so we have to show 

that the two sets, [x] and [y], are equal. 
 
w ∈ [x] 
iff x R w 
iff w R x   (by symmetry) 
iff w R y   (since x R y and R is transitive) 
iff y R w   (by symmetry)  
iff w ∈ [y]. 
Hence [x] = [y]. 



Study unit 6  Special kinds of relation                  COS1501/1 

 94  

(iii)  Suppose [x] = [y]. We want to show that x R y. 
 
y ∈ [y] (by (i)), 
i.e. y ∈ [x] (since [x] = [y] ) 
i.e. x R y. 
 

(iv) Let us suppose that [x] ≠ [y]. We will show that [x] ∩  [y] = 0/. The 
method we use is known as reductio ad absurdum, or (in English) 
reduction to an absurdity. The idea is to assume temporarily the 
opposite of what we want to prove, and to derive a contradiction. Since 
contradictions cannot be tolerated, it would mean that something is 
wrong somewhere. But the only weak link in our argument is the 
temporary assumption we have made, so we have to conclude that our 
assumption was wrong. 

 
Right, let's start. We assume that [x] ≠ [y]. Our temporary assumption is: 
[x] ∩  [y] ≠ 0/. 
 
A consequence of this assumption is that there is some v ∈ A with  
v ∈ [x] and v ∈ [y]. Then x R v and y R v. By symmetry, v R y. By 
transitivity, this means that x R y and thus that [x] = [y]. But this 
contradicts our original statement that [x] ≠ [y].  
 
So we reject the supposition that [x] ∩  [y] ≠ 0/. 
 
We have therefore shown the following: 
 
There are two possibilities for [x] and [y]. Either [x] = [y] or [x] ≠ [y] . 
But if [x] ≠ [y], then [x] ∩ [y] = 0/. 
So either [x] = [y] or [x] ∩ [y] = 0/ 

QED 
The above theorem suggests a simple and fail-safe way to build 
equivalence relations. We'll get to it in a moment. But first, we 
reconsider a new term we have already referred to earlier in the 
context of equivalence relations. 

 
When we split a set A into a bunch of non-empty subsets in such a way 
that each element of A lives in one of these subsets, and no two of these 
subsets have any elements in common, then we say that we have 
partitioned A. More formally: 

 
Definition: Partitions  

For a nonempty set A, a partition of A is a set S = {S1, S2, S3, …}. The members of 
S are subsets of A (each set Si is called a part of S) such that 
 
1. for all i, Si =/ 0/ (that is, each part is nonempty), 
2. for all i and j, if Si =/ Sj, then Si ∩ Sj = 0/ (that is, different parts have 

nothing in common), and 
3. S1 ∪ S2 ∪ S3 ∪ … = A (that is, every element in A is in some part Si). 
 
If S is a partition of A, then there exists an equivalence relation R on A whose 
equivalence classes are precisely the parts (elements) of S.  
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Examples 
For example, let A = {a, 2, b}. Let's split A into two subsets {a, 2} and {b}. Then 
{{a, 2}, {3}} is a partition of A, because 
 
1. the two subsets are not empty,  
2. the intersection of {a, 2} and {b} is empty, and 
3.  the union of {a, 2} and {b} gives {a, 2, b} = A. 
 
But suppose we throw the subsets {a} and {b} of A in a set, then the resulting 
set {{a}, {b}} is not a partition of A, because 2 has no part (subset) where it 
belongs; {a} ∪ {b} = {a, b} ≠ {a, 2, b}. 
 

Activity 6-11:  Partitions 
Suppose we split A = {goat, pig, cow} into the subsets {goat, pig} and 
{pig, cow}. Is the set { {goat, pig}, {pig, cow} } a partition of A? 
 
No, it is not. One of the conditions of a partition is that the intersection of its 
parts must be the empty set. 
 
{goat, pig} ∩ {pig, cow} = {pig} ≠ 0/. So {{goat, pig}, {pig, cow}} is not a partition 
of A. 
 
A partition splits a set into subsets just like a fence subdivides a farm into 
different parts. Each animal on the farm reside in some part of the farm, and 
no animal can be in two areas at the same time. 
 
Theorem 6.1 tells us that every equivalence relation R on A partitions A. What is 
of great interest to us is that one can go backwards: If A is partitioned, we can 
find an equivalence relation on A which has as its equivalence classes 
precisely the partitioning subsets. 
 

Example 
Consider the partition of {1, 2, 3} given by { {1, 2}, {3} }. 
 
The subset {1, 2} tells us that [1] = {1, 2} = [2]. This means that a relation R has 
the pairs (1, 1), (2, 2), (1, 2) and (2, 1) as elements. 
 
And the subset {3} tells us that [3] = {3}, i.e. (3, 3) ∈ R.  
 
So R = { (1, 1), (2, 2), (1, 2), (2, 1), (3, 3) }. 
 

Of course, the fact that something works for one example doesn't mean it will always 
work. So let's try to prove that it always works. 

 
Theorem 6.2 

Suppose A is a nonempty set, and suppose further that we have a partition of  
A.  Then the relation R defined on A by (x, y) ∈ R iff x and y belong to the same  
partitioning subset, is an equivalence relation on A. 
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Proof  
Let's see whether R is reflexive on A. Suppose x is an arbitrary member of A. 
Then certainly x is in the same partitioning subset of A as itself. So x R x. 
Let's see whether R is symmetric. Suppose x R y, then x and y belong to the 
same partitioning subset of A. But we can just as well say that y and x belong 
to the same partitioning subset of A. So y R x. 
Let's see whether R is transitive. Suppose x R y and y R z. The former implies 
that x and y live in the same partitioning subset. The latter implies that y and z 
live in the same partitioning subset. Since y can only live in one partitioning 
subset, it follows that x, y and z are all present in the same partitioning subset. 
So, more particularly, x and z live in the same partitioning subset, which 
means that x R z.                  

QED 
Activity 6-12: Self-assessment exercises                                                          Application skills 

Determine whether P is a partition of X in each of the following cases.  If it is, 
describe the corresponding equivalence relation. 
 
(a) X = {1, 2, 3} and P = { 0/, {1}, {2, 3} } 
(b) X = {1, 2, 3} and P = { {1}, {2}, {1, 3} } 
(c) X = {1, 2, 3} and P = { {1,3}, {2} } 
(d) X = {1, 2, 3} and P = { {1}, {2} } 
(e) X = Z and P = {{0}, Z+, Neg} where Neg = {x | x ∈ Z and x < 0} 
(f) X = Z and P = { [0], [1], [2], [3], [4] }  where 
[0] = {x | x − 0 is divisible by 5 with zero remainder} 
[1] = {x | x − 1 is divisible by 5 with zero remainder} 
[2] = {x | x − 2 is divisible by 5 with zero remainder} 
[3] = {x | x − 3 is divisible by 5 with zero remainder} 
[4] = {x | x − 4 is divisible by 5 with zero remainder}. 

Let us conclude this section by asking the following question: Why does one need to know 
about equivalence relations and partitions? 
 
Firstly, you will apply this knowledge in the field of Boolean algebra, which you will 
encounter in other Computing modules. 
 
Secondly, in later modules you will encounter things called finite state machines, and you 
will learn how to reduce the complexity and cost of such finite state machines by a 
minimisation process. The minimisation process involves defining a certain equivalence 
relation on the machine. 

6.4 n-ary relations 
 
Up to now we have worked with relations that had ordered pairs as members. 
Just as we can form ordered pairs, we can form ordered triples (x1, x2, x3) in 
which x1 is the first co-ordinate, x2 the second co-ordinate and x3 the third co-
ordinate; ordered quadruples (4-tuples) (x1, x2, x3, x4) in which x1 is the first 
co-ordinate, x2 the second, x3 the third, and x4 the fourth; ordered quintuples 
(5-tuples) (x1, x2, x3, x4, x5), and so on. 
 
In general, if n is some positive integer greater than, or equal to 2, then 
(x1, x2, ..., xn) is an ordered n-tuple in which x1 is the first co-ordinate, x2 the 
second, ..., and xn the nth and last co-ordinate. 
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Now, a set of ordered pairs (a relation), is actually a binary or 2-ary relation; the word 
binary tells us that the relation consists of ordered pairs, not triples or 6-tuples. 
 
A set of ordered triples such as {(1, 0, 0), (0, 1, 2), (-1, -2, 5)} will be called a 3-ary or 
ternary relation. Similarly a 4-ary (quaternary) relation consists of ordered quadruples, 
and in general an n-ary relation consists of ordered n-tuples. 
 
Just as a binary relation R could be viewed as a subset of a Cartesian product A ×  B  
(or A × A), so an n-ary relation can be viewed as a subset of a Cartesian product A1 × A2 × 
, ... , × An , where by A1 × A2 × , ... , × An is the set of all ordered n-tuples with first co-
ordinates from Al, second co-ordinates from A2, ... , and n-th co-ordinates from An.  

 
But why are these complications useful? All the important relations dealt with 
so far have been binary relations. 
 

Worked example 
Consider the student records of some university. They contain various 
different kinds of data. The data items of each type can be grouped quite 
naturally into a set. This might, for example, yield the following sets: 
 
X1 = {x | x is a valid student name} 
X2 = {x | x is a valid student number} 
X3 = {x | x is a valid date of birth} 
X4 = {x | x is either MALE or FEMALE} = {MALE, FEMALE} 
X5 = {x | x is a valid student home address} 
X6 = {x | x is a valid module} 
X7 = {x | x is a valid number of credits} 
X8 = {x | x is a valid value for balance brought forward} 
X9 = {x | x is a valid value for paid to date} 
X10 = {x | x is a valid value for amount owing}  
 
Suppose we choose a student from the set X1 above, and then select, in the 
same order as the sets above, a data item associated with that student from 
each of the remaining sets. We end up with a 10-tuple (or just "a tuple") that 
looks something like this: 
 
(Joe Johnson, 519-229-7, 14-FEB-1990, MALE, 21 GREEN ROAD IRENE 0002, 
COS1521, 159, R700-00, R2500-00, R350-00). 
 
The set of all such 10-tuples forms a 10-ary relation  
R ⊆ X1 × X2× X3 × X4 × X5 × X6 × X7 × X8 × X9 × X10. 
 
Of course, for some applications not all items of data are relevant. We can, for 
instance, restrict ourselves to forming tuples from the sets X1, X4 and X7, for 
example (Mary Wright, FEMALE, 113). 
 
The set of all such 3-tuples forms a 3-ary relation S ⊆ X1 × X4 × X7. 
 
The relations that we form depend on the applications we have in mind for the 
data. But the point is that by forming appropriate n-ary relations, we can 
organise the storage of information in a computer in such a way that the data 
is easily accessible, the storage space is efficiently utilised, and the data can 
easily be modified. This approach to database organisation is called the 
relational database model. This will be discussed further in the modules on 
databases. 
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6.5 Functions 
A relation from X to Y can be functional.  What does this term mean? 
 

Definition: Functional relation 
Suppose R is a relation from X to Y (i.e. R ⊆ X × Y).  Then R is functional iff any 
element x in X that appears as a first co-ordinate in an ordered pair of R, does 
so in exactly one ordered pair.   
That is, if (x, y) ∈ R and (x, z) ∈ R, then y = z.  
 
We can say that a relation is functional iff each first co-ordinate lives with only 
one second co-ordinate in an ordered pair of the relation. Let’s look at some 
examples. 
 

Examples 
Suppose S is a relation from {1, 2, 3} to {a, b, c}, then S = { (1, a), (2, c) } is  
functional.  We can claim this because 1 and 2 are members of {1, 2, 3}, and 
each one of the elements 1 and 2 appears as first co-ordinate in exactly one 
pair of S. 
 
If we consider a relation R on Z defined by (x, y) ∈ R iff y = x + 5, then we can 
determine whether or not this relation is functional: 
 
Suppose (x, y) ∈ R and (x, z) ∈ R.  Is it the case that y = z? 
Well, since (x, y) ∈ R, y = x + 5 and since (x, z) ∈ R, z = x + 5. 
So z = x + 5 = y, which means that R is functional. 

 
 We have shown that each first co-ordinate lives with only one special second 
co-ordinate in an ordered pair of R. 

There are many examples of relations from X to Y, whether they are 
functional or not, that might be very small subsets of X × Y. Some elements 
of X and of Y might not appear at all as co-ordinates of pairs in these 
relations. For example, if X = Y = Z and R = { (2, 3), (3, 4), (5, 100) }, then 
most integers do not appear as co-ordinates of the functional relation R. 
We should be able to refer to the subsets of X and Y whose elements play a 
role in such a relation. Let’s recap on the definitions of domain, range and 
codomain that were provided in the previous study unit. 

 
Definitions: Domain / Range / Codomain 

Suppose R is a relation from X to Y, then the domain of R 
(dom(R)) is a subset of X, and the range of R (ran(R)) is a subset 
of the codomain of R where the codomain is the set Y.  
We have dom(R) = {x | for some y ∈ Y, (x, y) ∈ R} (i.e. the set of 
first co-ordinates) and 
ran(R) = {y | for some x ∈ X, (x, y) ∈ R} (i.e. the set of second co-
ordinates). 

  
This brings us to a very important point in this study unit, namely the concept 
of a function. A function is a special kind of relation. 
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Definition: Function 
Suppose R ⊆ A × B is a binary relation (i.e. it involves two sets) from a set A to 
a set B. We may call R a function from A to B if every element of A appears 
exactly once as the first co-ordinate of an ordered pair in R (i.e. f is functional), 
and the domain of R is exactly the set A, i.e. dom(R) = A. 
This function is denoted by R: A → B, i.e. R is a function from A to B.   
 

Examples 
Suppose S = {(1, c)} is a relation from A = {1, 3} to B = {a, c}, then S is 
functional but it is not a function since dom(S) ≠ {1, 3}. 
 
In a previous example we proved that the relation R on Z defined by (x, y) ∈ R 
iff y = x + 5, is functional. Now we also determine the domain of R: 
 
Dom(R)  
= {x | for some y ∈ Z, (x, y) ∈ R} 
= {x | for some y ∈ Z, y = x + 5} 
= {x | x + 5 is an integer}         (y ∈ Z and y = x + 5, thus (x + 5) ∈ Z.) 
= Z. 
R is functional and dom(R) = Z, thus R is a function. We may write R: Z → Z. 

Note: If it must be proved that the relation R in the above example is a function, then a 
general statement such as “every element of Z appears exactly once as the first co-
ordinate of an ordered pair in R, and the domain of R is exactly the set Z” does not 
constitute a proof. Rather: It should be proved that R is functional and dom(R) should 
be determined (by using the definition of “domain”) to prove that dom(R) = A. 
 
We determine a few ordered pairs belonging to R: if x = 0 then x + 5 = 5, thus (0, 5) ∈ R; if 
x = 1 then x + 5 = 6, thus (1, 6) ∈ R; if x = −2 then x + 5 = 3, thus (−2, 3) ∈ R.  
 
We usually give relations names such as R or S, but because functions are so important, 
we usually denote these as f, g or h, and so on. We use the notation f: X → Y to indicate 
that f is a function from X to Y. 

 
Suppose f is a function from A to B. If a pair (a, b) belongs to f, then we know 
that b is the only element that can be the second co-ordinate next to the 
element a. This means we can use a new way to say that (a, b) belongs to f. We 
can write in words “b is the image of a under f”, or “a maps to b”, or we can 
write in symbols f(a) = b, i.e. “f of a is equal to b”. 
 
The equation f(a) = b means, of course, that f(a) is an alternative name we may 
use for that particular b which stands next to a in the ordered pair. 

The usefulness of functions is based on the fact that we can think of a function as a rule 
that tells us how to get from A to B – if you're at the point a ∈ A, go to f(a) ∈ B. This 
works only because we are never uncertain about where to go – for each a ∈ A there is 
only one f(a) ∈ B, since “a” appears as first co-ordinate in only one ordered pair of f. Can 
you spot the application of this reasoning in the following function g? 
 
Let A = {Mary, Thabo, Shawren} and B = {Memel, Polokwane, Durban, Ibhayi} and let 
g = {(Mary, Memel), (Thabo, Ibhayi), (Shawren, Durban)} be a function from A to B such 
that a person and the city where he/she resides are grouped together in an ordered pair.  



Study unit 6  Special kinds of relation                  COS1501/1 

 100  

Activity 6-13: Determine whether or not a given relation is a function 
As we have seen in the definition of a function, there are two things we need to 
determine when we want to determine whether some relation is a function: 
 
(i) Is the relation functional?  
(ii) What is the domain of the relation? 
 
Suppose we are given a relation R from A to B and we need to prove that R is a 
function from A to B, then we should prove that  
 
R is functional, i.e. if (x, y) ∈ R and (x, z) ∈ R, then y = z, and we should also   
prove that the domain of R, i.e. is the set  
dom(R) = {x | for some y ∈ Y, (x, y) ∈ R},  is equal to A. 
 
Note: Vague explanations will not do, so formal proofs should be provided. 
 
Let’s quickly recap: A function f from A to B is a binary relation with domain A 
and codomain B, with the property that for every x ∈ A, there is exactly one 
element y ∈ B such that (x, y) ∈ f. (f is functional.) 
 
We note that for every element x in A, there is exactly one element y in B such 
that (x, y)∈ f.  This means that dom(f) must be equal to A, i.e. each domain 
element must appear exactly once as first co-ordinate, and that ran(f) ⊆ B. 

 
Now if we consider some relation from X to Y, it will not necessarily be true 
that every element in X appears as first co-ordinate in the relation, nor is it 
necessarily true that the elements in X are related to exactly one element in 
the codomain Y. 

 
To illustrate: Let S = {(1, a), (1, c)} be the relation from X to Y where 
X = {1, 2, 3} and Y = {a, b, c}.  It is clear that 1 is the only element in X that 
appears as first co-ordinate in ordered pairs of S (each element in X does not 
appear as first co-ordinate, i.e. dom(S) ≠ X). It is also the case that 1 appears as 
first co-ordinate in more than one ordered pair, so 1 is related to more than 
one element in the codomain (so S is not functional).  dom(S) ≠ X and S is not 
functional, thus S is not a function.  
 
Let’s investigate whether the following relation S is a function: 

 
Example 

Let S = {(4, a), (5, b), (6, a)} be a relation from X to Y with X = {4, 5, 6} and 
Y = {a, b, c}. 
 
S is functional: 
If (x, y) ∈ S and (x, z) ∈ S, then  
either x = 4 with y = a = z, or x = 5 with y = b = z, or x = 6 with y = a = z.  
This means that for every x ∈ X, there is exactly one element y ∈ Y such that 
(x, y) ∈ S.  
 
We also see that dom(S) = {4, 5, 6} = X. 
 
We have shown that S is functional and that dom(S) = X, thus S is a function. 
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On the other hand, S-1 = {(a, 4), (b, 5), (a, 6)} is not functional, because it is 
possible to find pairs (x, y) ∈ S-1 and (x, z) ∈ S-1 such that y ≠ z, namely the 
pairs with x = a, y = 4 and z = 6. 
 

More examples 
We look at some examples of functions that arise in Computing: 
 
Since a function f: A → B may be thought of as something which transforms 
input (the elements a of A) into output (the elements b of B), one can regard a 
C++ compiler as a function that transforms a source program (the input) into 
its corresponding object program (the output). 
 
In C++ a function called trunc, the truncation function, are often used and it is a 
function from R to Z which transforms a real number into an integer by 
deleting any fractional part, e.g. trunc (3.78) = 3, trunc (5) = 5, 
trunc (−7.22) = −7. 
 

SOMETHING FOOLISH THAT MIGHT HELP YOU REMEMBER THE BASIC IDEA: Think of a 
function f: A  →  B as a monster that eats little woolly a-nimals that live in A and spits out 
each little woolly animal's b-ackbone to be b-uried in B. 

 
Another example 

Prove that f defined by (x, y) ∈ f iff y = 5x2 + 3 is a function on R. 
 
We investigate whether f is functional and determine whether dom(f) = R: 
 
Suppose (x, y) ∈ f and (x, z) ∈ f.  Is it the case that y = z? 
Well, since (x, y) ∈ f, y = 5x2 + 3 and since (x, z) ∈ f, z = 5x2 + 3. 
So z = 5x2 + 3 = y, which means that f is functional. Furthermore, 
 
Dom(f)  
= {x | for some y ∈ R, (x, y) ∈ f} 
= {x | for some y ∈ R, y = 5x2 + 3} 
= {x | 5x2 + 3 is a real number} 
= R. 
 
We can now say that f is a function because we proved that f is functional and 
that dom(f) = R. 
 

Activity 6-14: Self-assessment exercises                                                           Application skills 
1. Give 5 functions from A = {1, 2, 3, 4} to B = {a, b, c}.  
 
2. Give all the functions from A = {a, b} to B = {5, 6, 7}. 
 
3. Give 3 functions from A × A to B if A = {a, b} and B = {5, 6, 7}. 
 
4. Let R be a relation on A = {1, 2, 3, {1}, {2}} defined by  
 R = { (1, {1}), (1, 3), (2, {1}), (2, {2}), ({1}, 3), ({2}, {1}) }. 
 
 (a) Is R a function from A to A? 
 (b) Is ran(R) equal to the codomain of R? 
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5. Consider the set Ƥ (A) = {0/ , {a}, {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}}. 
 Show that the relations f, g, and h described below are functional and 

have as domains Ƥ (A),  Ƥ (A) × Ƥ (A),  and  Ƥ (A) × Ƥ (A) respectively: 

 (a) Let f = {(x, y) | x, y ∈Ƥ (A) and y = x′}. 

 (b) Let g = {((u, v), y) | (u, v) ∈Ƥ (A) × Ƥ (A) and y = u ∪ v}. 

 (c) Let h = {((u, v), y) | (u, v) ∈Ƥ (A) × Ƥ (A) and y = u ∩ v}. 
 
6. For each of the following relations from X to Y, determine whether or 

not the relation may be regarded as a function from X to Y.  
 (a) X = Y = Z and R = {(x, y) | y = x}. 
 (b) X = Y = Z and R = {(x, y) | y = x + 1}. 
 (c) X = Y = Z and R = {(x, y) | y = 3 – x}. 
 (d) X = Y = Z and R = {(x, y) | y = }, where the notation  refers to 
  the positive square root of x. 
 (e) X = Y = Z and R = {(x, y) | y2 = x}. 
 (f) X = Y = R and S = {(x, y) | x2 + y2 = 1}. 
 
7. Is the relation R on Z+, which consists of all pairs (x, y) such that  
 y = x − 1, a function from Z+ to Z+? 
  
8. Let A = {a, b, c}.  Consider all the equivalence relations on A (see 

activity 6.9 (1)). How many relations are also functions from A to A?  
(We use brute force and then abstract reasoning in our answer.  We 
recommend the latter.) 

 
9. Let A = {a, b, c}. 
 (In the answers to the questions that follow, we use brute force (refer 

to activity 6-6(1)) and also abstract reasoning in our proofs.  We 
recommend the latter.) 

 (a) How many weak partial orders on A (reflexive, antisymmetric and 
  transitive) are also functions from A to A? 
 (b) How many strict partial orders on A (irreflexive, antisymmetric  
  and transitive relations) are also functions from A to A? 

6.6 In summary of the study unit 
 
In this study unit you ensured that you can answer the following questions on 
special kinds of relation: 
 

• What does the term order relation mean? 
• What is the difference between a partial order and a total (linear) order? 
• What is the difference between a weak total order and a strict total order? 
• What does the term trichotomy mean? 
• What are n-ary relations? 
• How is an equivalence relation defined? 
• What is an equivalence class? 
• What does the term partition mean? 
• What does the term “functional” mean? 
• When is a relation a function? 

 
In the following study unit we will learn more about the properties of 
functions. 
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Study unit 7  More about functions 
 

Key questions for this study unit 

• What is the usefulness of properties of functions such as “surjectivity”, 
“injectivity” and “bijectivity”? 

• How do we test whether a function has the properties listed above? 
• How do we form the composition of two functions? 
• How do we construct the inverse of a function? 

 
 
 
Activity 7-1: Overview      Study skill 

Draw a mind map of the different sections/headings you will deal with in this 
study session. Then page through the unit with the purpose of completing the 
map.  
 
Your map should include the concepts of surjectivity, injectivity, an invertible 
function, the identity function, function composition, the composition of 
relations and bijectivity.  

 
Activity 7-2: Concepts      Conceptual skill 

Test your own knowledge and then correct your understanding afterwards. 
How does your understanding deepen as you jot down the terms used in your 
home language? 

 
English term Description Term in your home language 

Surjective function   
Injective function    
Composition of 
relations  

  

Composition of 
functions 

  

Inverse relation   
Bijective function   
Invertible function   
Identity function   
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7.1 Surjective functions 
 
Suppose we have a function f: A → B. As you know, one may think of f as a rule 
that tells one how to get from A to B. A very sensible question to ask is the 
following: Can every b∈ B be reached from some a∈ A? 
 
It's rather like having a set A of factories, a set B of markets, and a set f of 
roads connecting each factory in A with one of the markets in B. (In other 
words, f is a function from A to B and we interpret each ordered pair in f as 
saying “There is a road from my first co-ordinate to my second co-ordinate”.) 
Because f is a function, every factory in A is connected to a market in B by only 
one road. It is important to know whether all the markets in B can be reached.  
 
In order to discuss this question, we give a special name to the set of 
“markets” that can be reached. 
 

Definition: The range of a function 
Given a function f: A → B, the range or image set of f is the subset {f(x) | x ∈ A} 
of B, which may be denoted by either ran(f) or f[A] . 
 
In other words, the range of a function f: A → B is the subset ran(f) of B 
consisting of those elements in B for which there exists an x ∈ A such that 
f(x) ∈ ran(f). 
 

Does this definition remind you of the definition of the range of a relation that was 
provided in the previous study unit? If f is a function on A, the sets {f(x) | x ∈ A} and 
{y | for some x ∈ A, (x, y) ∈ f } both defines ran(f). 

 
Examples 

Suppose A = {1, 2, 3} and B = {5, 7, 9} and h: A → B is the function defined by 
the following: h(1) = 5, h(2) = 5 and h(3) = 7. 
 
Then ran(h) = {5, 7}. If 1, 2 and 3 represent factories and 5, 7 and 9 represent 
markets, then the fact that ran(h) is not equal to codomain B means that not 
all the markets can be reached using the roads in h. 
 
Let's look at another example: Suppose f: Z → Z is defined by y = 2x (the 
codomain is Z). Then the range ran(f) (or f[Z]) consists of all the even 
integers. Why do we say this? 
 
ran(f) = {f(x) | x ∈ Z} = {2x | x ∈ Z} 

= {y | for some x ∈ Z, y = 2x}    (y = 2x, i.e. x = y/2) 
= {y | y/2 is an integer} 
= {y | y is an even integer} 

  
Note that if x ∈ Z then x = y/2 is also an integer. It follows that y/2 is an 
integer only if y is an even integer.  So the range of f is not equal to the 
codomain Z because the odd integers are not included in the range. 
 
If, for some reason, we want to prove that ran(f) ≠ Z, we can provide a 
counterexample: Choose y = 3, then there is no x ∈ Z such that 2x = 3 
(i.e. x = 3/2 ∉ Z) and so 3 ∉ ran(g). Thus ran(g) ≠ Z. 
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Yet another example: What is the range of g: Z → Z defined by g(x) = x + 5? 
 
ran(g) = {g(x) | x ∈ Z} 
= {x + 5 | x ∈ Z} 
= {y | y − 5 is an integer} (y = x + 5, i.e. x = y − 5) 
= Z 
 
So for the function g the range is equal to the codomain. 
 

Definition: Surjectivity  
Given a function f: A → B, we say that f: A → B is surjective iff the range of f is 
equal to the codomain of f, i.e. f[A] = B. 
 
Since the range of f is defined to be a subset of the codomain, we know that 
f[A] ⊆ B.  
 
For equality, we also require that B ⊆ f[A]. So f: A → B is surjective iff for every 
b ∈ B, we can find some a ∈ A such that b = f(a). 
 

Activity 7-3: Surjective functions 
Explain in your own words what it means when a function is surjective.  
 
Do you agree that g: Z → Z defined by g(x) = x + 5 is surjective because 
g[Z] = Z? (Determine g[Z] as shown in a previous example.) 
 
And do you agree that f: Z → Z defined by f(x) = 2x is not surjective because 
f[Z] ≠ Z? (Provide a counterexample as shown in a previous example. 
 
People often say f maps onto B when they want to explain what it means when 
a function is surjective. 
 
An example of a surjective function would be the following: 
Let A = {1, 2, 3} and B = {5, 7}.  
 
Define f: A → B by 
f(1) = 5, f(2) = 5, and f(3) = 7, then 
f is the function {(1, 5), (2, 5), (3, 7)}. 
 
Clearly f[A] = {5, 7} = B. 
 
Note: The range of f, i.e. f[A], is the set {5, 7} - one cannot merely give 5, 7 as 
the range.  
 

Activity 7-4: Self-assessment exercises     Application skills 
1. In each of the following cases, write down the possible surjective 

functions from X to Y. We will do the first one. 
 
(a) X = {a, b} and Y = {c}. 
 

To obtain a surjective function from X to Y, we must try to fill in the  
template { (a,     ), (b,     ) } in such a way that all the elements of Y are  
used. This can only be done as follows: g = { (a, c), (b, c) }. 
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(b) X = {a, b} and Y = {c, d}. 
(c) X = {a, b} and Y = {c, d, e}. 
 
2. Let f: Z → Z be defined by f(x) = x + 1. 
 
(a) Determine f[Z] (or ran(f)). (Do not give specific examples of elements in 

f[Z].) 
(b) Is f surjective? If f is not surjective, provide a counterexample to show 

why it is not surjective. 
 
3. Let g: Z → Z be defined by g(x) = 4x + 8.  
 
(a) Determine g[Z] (or ran(g)). (Do not give specific examples.) 
(b) Is g surjective? If g is not surjective, provide a counterexample to show 

why it is not surjective. 

7.2 Injective functions 
 
Suppose a company buys 5 new word processor packages. Nine typists are 
hoping to obtain one of the new word processor packages.  
 
If we think of A as the set of word processors and of B as the set of typists, 
then an allocation of word processors to typists can be thought of as a function 
f : A → B, where for each a ∈ A the image f(a) is the lucky typist who gets a 
word processor. 
 
Suppose one of the typists is the favourite of the company director. Would it 
be a good idea for him to give her two of the word processors? I doubt it. Some 
unlucky typist who didn't get a word processor would be most upset. We see 
that it is important for f to map different word processors to different typists. 
 
Another way to think of it is that each typist should get at most one word 
processor. 
 
Let's formalise this property we want f to have. 
 

Definition: Injectivity 
A function f: A → B is injective iff f has the property that  
whenever f(a1) = f(a2) then a1 = a2. 
 

What would the formal version of this reasoning look like? If a typist gets a word 
processor, then the typist can be called f(a1), where a1 is the word processor she gets. To 
make sure that she gets no more than a single word processor, we could require that 
whenever f(a1) = f(a2) then a1 = a2, i.e. whenever a typist receives word processors a1 and 
a2, then it should be the case that  a1 and a2 represent the same word processor. 

 
Alternative definition:  
A function f: A → B is injective iff f has the property that  
whenever a1 ≠ a2 then f(a1) ≠ f(a2). 
 
The definition captures the idea that different word processors must go to 
different typists. Instead, we could have captured the idea that each typist 
should get at most one word processor.  
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In the part on logic that follows in a later study unit, we will show you that the following 
two conditions: 
 
(i) if a1 ≠ a2 then f(a1) ≠ f(a2), and 
(ii)       if (a1) = f(a2) then a1 = a2 

 

 are equivalent, since the one is what we call the contrapositive of the other. 
 
Instead of using the term “injective”, people often say a function f is one-to-one. 

 
Examples 

Let A = {1, 2, 3} and B = {6, 7, 8}.  
 
The function f: A → B defined by 
f (l) = 7,  
f(2) = 6, and 
f(3) = 8 
 
is injective since different elements of the domain clearly go to different 
elements of the range. 
 
However, the function h: A → B defined by  
h(l) = 7, 
h(2) = 8, and   
h(3) = 8  
 
is not injective, since h(2) = 8 = h(3) but 2 ≠ 3. 
 
Consider our old friend, the function g: Z → Z defined by g(x) = x + 5. We 
determine whether or not g is injective. 
 
Assume g(u) = g(v) 
then     u + 5 = v + 5 
i.e.          u = v. 
  
Therefore f is injective.  
 

Activity 7-5: Self-assessment exercises     Application skills 
In each of the following cases, write down the injective (one-to-one)  
functions from X to Y (if possible). We will do the first one. 
 
(a) X = {2, 4} and Y = {1}. 
 
We can build an injective function from X to Y by filling in the template  
{ (2,  ), (4,  ) } in such a manner that different pairs contain different elements 
of Y. But this is not possible, because Y has only one member, and there are 
two pairs. So there is no injective function from X to Y in this case. 
 
(b) X = {2, 4} and Y = {1, 3}. 
(c) X = {2, 4} and Y = {1, 3, 5}. 
 
Consider h: Z → Z defined by h(x) = 2x − 5. Determine whether or not  
h is injective.  
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Examples 
We look at some diagrams that show different correspondences: 

 
 

 
Activity 7-6: Self-assessment exercises 

For each of the above diagrams, write down the corresponding relation or 
function it represents, then provide the reason(s) why the relation or function 
has the given property or properties. 

7.3 The composition of relations / functions 
 
Let's forget about functions for a moment and recap some definitions that are 
closely related to what we discuss in this section. So we have a little bit of 
repetition here.  
 
Suppose we have a relation R from A to B, in other words R ⊆  A × B, and a 
relation S from B to C, in other words S ⊆  B × C.  
 
In study unit 5 we have already seen that there is an important way to build a 
new relation from R and S, called forming the composition of R followed by S. 
This new relation is denoted by S ￮ R (pronounced S little circle R) or we can 
write R; S. According to the convention, although it is the composition of R 
followed by S, we write down S ￮ R, i.e. we write down S first (i.e. on the left) 

and then R. (Remember, by using the notation R; S rather than S ￮ R, it helps 
us to remember that R is followed by S.) 
 
What exactly is S ￮ R? 
 

Definition: The composition of relations 
Given relations R from A to B and S from B to C, the composition of R followed 
by S is the relation from A to C defined by  

S ￮ R = {(a, c) | there is some b ∈ B such that a R b and b S c}. 

 

It is worth spending some time thinking about this definition. If x is a first co-ordinate in 
some pair of S ￮ R, is it clear to you that x must be a member of A? We can say this 

because if x appears as a first co-ordinate in S ￮ R, then there has to be some b∈ B such 

that (x, b)∈ R. Similarly, if y appears as a second co-ordinate in S ￮ R then there has to be 
some b ∈ B such that (b, y) ∈  S, which means that y must be a member of C. So the 
definition ensures that S ￮ R ⊆  A × C. 
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What is the intuitive idea behind the composition definition? Let’s think in terms of a 
concrete example: Suppose A is a set of people who work in Johannesburg, but live in 
Limpopo, and B is a set of busses taking people from Johannesburg to Polokwane. C is a 
set of taxi services between Polokwane and other towns in Limpopo. Think of each 
ordered pair (a, b) in R ⊆  A × B as representing the fact that “there is bus service for 
person a to town b”. Suppose further that each ordered pair (b, c) in S ⊆  B × C represents 
“there is a regular taxi service between b and c”. Then S ￮ R consists of pairs (a, c) which 
may be thought of as saying “there is an efficient transportation service for person a to 
town c”. 

 
The following diagram illustrates how S ￮ R links elements of A to elements of 
C by using elements of B as intermediate points. 

x

y

u

z

v

w

A B C

R

R

S

S

S

 
Examples 

Suppose A = {1, 2, 3}, B = {4, 5} and C = {6, 7, 8, 9}.  
Let R = { (1, 4), (1, 5), (3, 5) } and S = { (4, 7), (5, 8) }.  
 
Then S ￮ R = { (1, 7), (1, 8), (3, 8) }. 
 
With the same sets A, B, and C, let f: A → B be { (1, 4), (2, 4), (3, 5) } and let  
g: B → C be { (4, 7), (5, 9) }. 
 
Then g ￮ f = { (1, 7), (2, 7), (3, 9) }. 
 

Did it surprise you to suddenly see functions popping up? But remember, functions are 
relations with special properties! 
 
The composition of relations is a pretty useful construction, but it becomes really special 
when you apply it to functions. We'll see some of the uses later. First we must ask 
ourselves some obvious questions. 

 
What happens when we form the composition of two functions? Will the result 
be a function? 
  

Activity 7-7: The composition of functions  
Suppose we have functions f: A → B and g: B → C. Is the composition  
g ￮ f a function from A to C? 
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Yes, indeed. Let’s consider a ∈ A. Since f is a function, there is exactly one b ∈ B 
such that (a, b) ∈ f. But now b belongs to the domain of g, and g is also a 
function. This means that there is exactly one c ∈ C such that (b, c) ∈ g. Clearly 
the a with which we started has exactly one c linked to it through the 
intermediary b.  
 
That is, for each a ∈ A there exists just one c ∈ C such that (a, c) ∈ g ￮ f. 

Therefore we may write g ￮ f: A → C 
 
We have proved the following theorem: 
 

Theorem 7.1 
The composition of two functions is also a function. 
 
Now that we know that the composition of two functions is a function, we 
provide the following definition: 
 

Definition: Composition of functions 
Given the functions f: A → B and g: B → C the composite function 

g ￮ f: A → C is defined by g ￮ f(x) = g(f(x)). 

The composite function g ￮ f is defined for all x for which f(x) and g(f(x)) exist. 
 

The image of an element x ∈ A under the function g ￮ f is denoted by (g ￮ f)(x). If we think 

a little about how the composition is defined, it becomes clear that (g ￮ f)(x) = g( f(x) ) 

since, to find (g ￮ f)(x), we first feed x to f, which gives f(x), and then feed this result to g, 
i.e. we feed the element called f(x) to g, and g sends it to the image g( f(x) ). 

 
Let’s look at some examples. 
 

Examples 
Suppose f: Z → Z is defined by f(n) = 3n + 1 and 
g: Z → Z is defined by g(n) = n3. We determine g ￮ f: 
 
g ￮ f: Z → Z is defined by 

(g ￮ f)(n) = g( f(n) ) 
  = g(3n + 1) (g(f(n)) = g(3n + 1), i.e f(n) is replaced by 3n+1)
  = (3n + 1)3 (g(n)  =  n3, thus g(3n + 1) = (3n + 1)3) 
  = (3n + 1)(3n + 1)2 
  = (3n + 1)(9n2 + 6n + 1) 
  = 27n3 + 18n2 + 3n + 9n2 + 6n + 1 
  = 27n3 + 27n2 + 9n + 1 
 

Note: g ￮ f is a function on Z and (g ￮ f)(n) is called the image of n under g ￮ f. 
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Another example: Suppose f: R → R is defined by f(x) = 2x and 
g: R → R is defined by g(x) = 3x2 + 5. We determine g ￮ f: 
 
g ￮ f: R → R is defined by 

(g ￮ f)(x) = g( f(x) ) 
  = g(2x)  (g(f(x)) = g(2x), note that f(x) is replaced by 2x)
  = 3(2x)2 + 5 (g(x)  =  3x2 + 5, thus g(2x) = 3(2x)2 + 5) 
  = 3(4x2) + 5 
  = 12x2 + 5 
 
Note: g ￮ f is a function on R and (g ￮ f)(x) is called the image of x under g ￮ f. 

 

Let’s investigate further: Suppose we start off with two surjective functions f: A → B and 
g: B → C. Is the composition g ￮ f: A → C by any chance surjective? 
 
Yes! We mentioned above that the composition of functions is special. To check whether 
g ￮ f: A → C is surjective, one must check that every c ∈ C appears as second co-ordinate 

in some pair in g ￮ f, i.e. that for each c ∈ C there is some a ∈ A such that c = g(f(a)). 
 
Is this reasonable? Well, pick any c ∈ C. Since g: B → C is surjective, we can find some 
b ∈ B such that c = g(b). Now let's focus on that specific b. Since f: A → B is surjective, we 
can find an a ∈ A such that b = f(a). But this means that there exists an a ∈ A such that  
c = g( f(a) ), i.e. such that (a, c) ∈ g ￮ f.  Hence g ￮ f: A → C is surjective. 

 
So we have proved the following theorem: 
 

Theorem 7.2 
The composition of two surjective functions is surjective. 
 

Activity 7-8: The composition of injective functions 
Does the same hold for injective functions?  
Suppose f: A → B and g: B → C are both injective. Do we have grounds to claim 
that g ￮ f: A → C is injective? 
 
Well, suppose that inside C we find elements g( f(a1) ) and g( f(a2) ). Using only 
the information we have about f and g, we need to show that  
if g( f(a1) ) = g( f(a2) ), then a1 = a2. 
 
But since we know that g is injective, it follows from g( f(a1) ) = g( f(a2) ) that 
f(a1) = f(a2).  (Remember that the injective function g spits out equal things 
only if fed equal things). 
 
And because we know that f is injective, it follows from f(a1) = f(a2) that a1 = a2. 
 
Hence we have proved the following theorem: 
 

Theorem 7.3  
The composition of two injective functions is injective. 
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Activity 7-9: Self-assessment exercises   Application skills 
Determine f ￮ f, g ￮ g, g ￮ f, and f ￮ g in each of the following cases: 
(a) f: Z → Z is defined by f(x) = x + 1 and 

g: Z → Z is defined by g(x) = x − 1. 
(b) f: R → R is defined by  f(x) = 3x − 2  and  g: R → R  is defined by 

g(x) = x2 + x. 
(c) f: Z≥ → Z≥ is defined by  f(x) = 113  and  g: Z≥ → Z≥ is defined by   

g(x) = x + 1. 

7.4 Bijective functions and inverses 
 
As we have discussed in study unit 5, if R is a relation from A to B, then we can 
form a new relation from R by simply reversing every ordered pair in R. 
 
For example, if A = {1, 2, 3}, B = {5, 6, 7}, and R = { (1, 7), (3, 5) } then the new 
relation R-1 (called the inverse relation of R) is the relation from B to A: 
R-1 = { (7, 1), (5, 3) }. 
 

Remark: For a real number x, the notation x -1 means 1/x. But if we apply the notation to 
a relation R, then we must be careful not to read into the notation things that aren't 
there. We have not defined anything of the form 1/R.  

 
Definition: Inverse relation  

For any relation R, the inverse relation, denoted by R-1, is the set  
{(y, x) | (x, y) ∈ R}. 
 
Now let’s return to functions. Given a function f: A → B, then since f is a 
relation, we can form its inverse relation. But the crucial question is the 
following: Under what conditions would the inverse relation of a function 
f: A → B itself be a function from B to A? 
 
We will only be able to answer this question by using the following two 
definitions and the theorem that follows from them:  
 

Definition: Bijective functions 
A function f: A → B is bijective iff f is both surjective and injective. 
 
What does this definition mean?  We can say that  
if a function is bijective, then it is both surjective and injective, and 
if a function is both surjective and injective, then it is bijective. 
 
In this unit we have proved that the function g: Z → Z defined by g(x) = x + 5 
is injective and surjective, hence we can say that g is a bijective function. 
 

Definition: Invertible functions 
A function f: A → B is invertible iff the inverse relation f-1 of f is a function from 
B to A. 
 
This means that if a function f: A → B is invertible, then the inverse relation f-1 
of f is a function from B to A, and if the inverse relation f-1 of f is a function 
from B to A, then f is invertible. 
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Theorem 7.4 
Let f: A → B be a function. Then f is invertible iff f is bijective. 

 
Proof  

Since we have an if and only if statement to prove, our argument will have to 
run in two directions. 
 
First suppose that f: A → B is invertible. We want to use this information to 
show that f is bijective.  
 
But if f: A → B is invertible, it means that f-1 = {(y, x) | (x, y) ∈ f} is a function 
from B to A. 
 
So the domain of f-1 is B. But the domain of f-1 is also the set of all y's such that 
(x, y) ∈ f for some x, i.e. the domain of f-1 is just the range of f. So the range of f 
is B, which means that f: A → B is surjective. 
 
Furthermore, f-1 is a function, so an element y ∈ B appears just once as first  
co-ordinate in an ordered pair of f-1. That is, if (y, x1) and (y,  x2) are both in f-1, 
then x1 = x2. In other words, if (x1, y) and (x2, y) are both in f, then x1 = x2. 
 
Thus if f(x1) = f(x2), then x1 = x2, which in turn tells us that f is injective. 
 
Now let us argue in the reverse direction. Suppose f: A → B is bijective.  If we 
flip around the ordered pairs in f to get f-1, is the result a function from B to A? 
 
The surjectivity of f: A → B means that every element of B appears as second 
co-ordinate in an ordered pair of f, which means that every b ∈ B appears as 
first co-ordinate in an ordered pair of f-1, so the domain of f-1 is B. 
 
Furthermore, the injectivity of f means that every b in the range of f appears 
just once as second co-ordinate in an ordered pair of f, i.e. every b ∈ B appears 
just once as first co-ordinate in an ordered pair of f-1, so f-1 is a function. 
 
Since the second co-ordinates of f-1 are clearly members of A, we may say that 
f-1: B → A, i.e. f-1 is the inverse function from B to A. 
 

Example 
Let us again consider g: Z → Z defined by g(x) = x + 5. In this unit we have 
proved that g is injective and surjective, i.e. g is a bijective function. Because g 
is bijective, it is invertible (from Theorem 7.4), so by definition g-1 is a function 
from Z to Z, i.e. g-1 is the inverse function from Z to Z.  We determine the 
inverse function g-1: 
 
 (y, x) ∈ g-1 iff  (x, y) ∈ g 
   iff   y  =  x + 5 
   iff   x  =  y − 5 
 
Hence g-1: Z → Z is defined by g-1(y) = y − 5. 
 

Before we close this discussion of functions and their properties, there is one important 
function we need to introduce namely the identity function. 
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Definition: Identity function 
For any set A, define the function iA: A → A by requiring that  
iA(x) = x for all x ∈ A. This function is called the identity function on A, since 
what it spits out is identical to what it eats. 
 

Activity 7-10: Identity function 
Consider the identity function iB: B → B with B = {1, 2, 3, 4}. Which members 
live in this set?  
 
Since iB(x) = x for all x ∈ B, we have iB(1) = 1, iB(2) = 2, iB(3) = 3 and iB(4) = 4, 
so iB = {(1, 1), (2, 2), (3, 3), (4, 4)}. 
 
Can you see that “iB” is just another name for the equality relation usually 
called “=”? 
 

Activity 7-11: Self-assessment exercises     Application skills 
1. In each of the following cases, write down the bijective (one-to-one 

correspondence) functions from X to Y (if possible): 
 
(a) X = { 0/, {113} } and Y = { {1} }. 
(b) X = { 0/, {113} } and Y = { {1}, {2} }. 
(c) X = { 0/, {113} } and Y = { {1}, {2}, {7} } 
 
2. Check the following functions for injectivity (one-to-one), surjectivity 

(onto) and bijectivity (i.e. functions that are both injective and 
surjective), and give the inverse function of each: 

 
(a) f: Z→ Z is defined by f(x) = x + 1. 
(b) f: Z → Z is defined by f(x) = x2. 
(c) f: Z → Z is defined by f(x) = 3 – x. 
(d) f: Z → Z is defined by f(x) = 4x + 5. 
 
3. Consider an identity function iC: C → C. 
 
(a) Prove that iC: C → C is bijective. 
(b)  Prove that iC is an equivalence relation on C. 
 

7.5 In summary of the study unit 
 
In this study unit you ensured that you can answer the following questions 
regarding relations and functions: 
 
• When is a function surjective? 
• When is a function injective? 
• When is a function invertible? 
• How do we map the composition of functions? 
• How do we find the inverse of a function? 
• What does the term bijective mean? 
• How is the identity function defined? 
 
In the following study unit we will learn more about some special operations 
and their properties. 
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Study unit 8  Operations 
 

Key questions for this study unit 

• What is a “binary operation”? 
• How do we know whether an operation is commutative? 
• How do we add two vectors? How do we add two matrices? 
• How do we multiply a vector by a scalar?  
• How do we multiply a matrix by a scalar? 
• How do we determine the sum and dot product of two vectors?  
• How do we determine the sum and product of two matrices? 

 
 
Activity 8-1: Overview        Study skill 

Draw a mind map of the different sections/headings that you will deal with in 
this study session. Then page through the study unit with the purpose of 
completing the map.  
 
Your map should include the concepts of finite and infinite sets, binary 
operations, vectors, scalars, the vector sum and dot product of two vectors, 
matrices, matrix addition and multiplication. 

 
Activity 8-2: Concepts       Conceptual skill 

Test your own knowledge and then correct your understanding afterwards. 
How does your understanding deepen as you jot down the terms used in your 
home language? 

 
English term Description Term in your home language 

Finite set   
Infinite set   
A commutative binary 
operation 

  

An associative binary 
operation 

  

An identity element of a 
binary operation 

  

Vector   
Vector sum    
Vector / scalar product   
Dot product   
Matrix    
Matrix addition   
Matrix multiplication   
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8.1 Binary operations 
Suppose we have a universal set U consisting of objects, variables and 
numbers. We can take two subsets of U, say A and B, and combine them to 
form a new subset, namely A ∪ B. 
 
This is like having a function which takes the ordered pair (A, B) as input and 
delivers A ∪ B as output. What is the domain of this function? Well, if it eats 
ordered pairs of subsets of U, then the domain must be the Cartesian product 
Ƥ (U) × Ƥ (U). And since the function spits out subsets of U, a reasonable 

choice for the codomain would be Ƥ (U). So if we give the function the name f, 
we have the function 
 
f: Ƥ (U) × Ƥ (U) → Ƥ (U) defined by f(A, B) = A ∪ B for all A, B ⊆ U. 
 

Example 
Consider some universal set U = {a}, then Ƥ (U) = { 0/, {a} } and  

Ƥ (U) × Ƥ (U) = { (0/, 0/), (0/, {a}), ({a}, 0/), ({a}, {a}) }.  
 
Suppose we want to determine the function g: Ƥ (U) × Ƥ (U) → Ƥ (U) defined 
by g(A, B) = A ∪ B for all subsets A and B of U.  
 
If (0/, 0/) is the input, then 0/ ∪ 0/ = 0/ is the output, if (0/, {a}) is the input, then 
0/ ∪ {a} = {a} is the output, the input ({a}, 0/) delivers {a}, and the input  
({a}, {a}) delivers {a}. 
 
We can write g in list notation: 
{ ((0/, 0/), 0/),  ((0/, {a}), {a}), (({a}, 0/), {a}), (({a}, {a}), {a}) } 
 

In mathematics, we frequently find functions such as these, which “eat” pairs and “spit 
out” single objects. So they deserve a special name. We call them binary operations. The 
word “binary” (binary meaning two) reminds us that the inputs are ordered pairs. 

 
Definition: Binary operation 

If f: X × X → X then f is called a binary operation on X. 
 
Suppose that f is the name of some binary operation. The image of a pair (x, y) 
can be given either in prefix notation, as f(x, y), or in infix notation, as x f y. 
While infix notation probably looks odd to you, the interesting fact is that we 
normally use it for binary operations such as the addition and multiplication 
of real numbers. 
 
Let’s think about addition. It is a way to combine two real numbers in order to 
get a third. So addition is a function (that is traditionally called “+”) with R × R 
as its domain and R as codomain, 
 
i.e.  +: R × R → R. 
 
But instead of writing +(3, 5) = 8, we are quite accustomed to write 3 + 5 = 8. 
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Similarly, the multiplication “⋅” of real numbers is a binary operation: 
 
⋅ : R × R → R 
 
and we usually write ⋅ (x, y) as x⋅y. 
 
Of course, the example with which we started, i.e. the binary operation 
involving the formation of unions of sets, is usually written using infix 
notation, so we write A ∪ B rather than ∪ (A, B). 
 

The binary operations we have discussed so far have all been of the form g: A × A → A for 
some set A. That is, the codomain and the relevant sets that were used to form the 
Cartesian product have been equal. This is no coincidence. Binary operations are usually 
supposed to take two animals of the same species and use them to produce another 
animal of the same species. 
 
When we have a binary operation of the form g: A × A → A we may say A is closed under 
g, or g is a binary operation on A, to indicate that g spits out elements of A and not things 
totally different from the animals living in A. 

 
Quite often one is interested in binary operations on a finite set. We first look 
at the concepts of finite and infinite sets. 
 

Informal definition: Finite and infinite sets   
A finite set can informally be defined as a set whose cardinality is a non-
negative integer. 
If a set is not finite (i.e. its cardinality is not a non-negative integer), then it is 
an infinite set. 
 

Examples 
We look at some examples to illustrate the concepts of finite and infinite sets: 
 
Let the following sets be subsets of a universal set Z+: 
 
A = {1, 2, 3, 4} = {x | 0 < x ≤ 4} 
B = {2, 4, 6, 8, …, 16, 18} = {y | x ∈ Z+, y = 2x and y ≤ 18} 
C = {1, 4, 9, 16, …} = {y2 | y ∈ Z+} 
 
Sets such as A and B are finite sets. The cardinality of these sets are 
respectively |A| = 4 and |B| = 9. (We can count the number of distinct elements 
in these two sets.) 
 
The cardinality of C cannot be determined hence it is an infinite set. 
 

A very popular way to describe binary operations on finite sets is to use a table. The 
operators “+”, “•” and “∧” in the following examples do not refer to addition, 
multiplication and conjunction as we know it. The entries in the tables are not 
determined by any logic calculation.  
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Examples 
1. Suppose A = {a, b, c, d}. Then we could define a binary operation (which 

we shall call “+”) on A by providing the following table: 
 

+ a b c d 
a a b c d 
b b c d a 
c c d a b 
d d a b c 

 
How does one interpret such a table? The idea is that if we want to 
know what “+” does to a pair such as (b, d) for example, then we look at 
the row labelled b and the column labelled d, and the entry at the 
intersection tells us what +(b, d) is. In this case +(b, d) = a.  

 
Note:  Here the symbol + does not stand for ordinary addition. We use 
the symbol “+” to denote the function defined by the table. It need not 
even be the case that a, b, c and d are numbers. When you work with a 
binary operation, you have to make a deliberate effort to forget that 
ordinary addition on R is also called +. 

 
2. Let us define a different binary operation on the set A = {a, b, c, d}.  Let’s  

use “•” to represent the new operation, and let us call it the dot 
operation: 

 
• a b c d 
a a b c d 
b b a d c 
c c d a b 
d d c b a 

 
Notation: Just as + is a popular name to give to binary operations, so  
is •. 
 
Note: Here the symbol • is not being used to denote the ordinary 
multiplication of real numbers. 

   
3.       Consider the binary operation ∇: {T,F} × {T,F} → {T,F} defined by  

∇ = { ((T, T), T),  ((T, F), T),  ((F, T), F),  ((F, F), T) }. 
(The domain elements are members of the Cartesian product 
{T, F} × {T, F}.) 
 
In tabular form, this operation is presented as follows: 

 
∇ T F 
T T T 
F F T 
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8.2 The properties of binary operations 
 
In this section we investigate properties of binary operations by using the 
following binary operation: 
 
Define the function *:  {1, 2} × {1, 2} → {1, 2} as the binary operation  
{ ((1, 1), 1),  ((1, 2), 2),  ((2, 1), 2),  ((2, 2), 1) }. 
(The domain elements are all the members of the Cartesian product 
{1, 2} × {1, 2}.) 
 
We can write this operation in tabular format:  
 

* 1 2 
1 1 2 
2 2 1 

 
 

Definition: A commutative binary operation 
A binary operation  ◊:  X × X → X is commutative iff x ◊ y = y ◊ x for all x, y ∈ X. 
 

 

 

Refer to the table provided in the above example, then it is clear that * is 
commutative: 
 
1 * 1 = 1 * 1 = 1, 
1 * 2 = 2 * 1 = 2, and 
2 * 2 = 2 * 2 = 1. 

 

We can also observe from the table that * is commutative, because there is 
symmetry about the diagonal from the top left to the bottom right corners 
of the table. 

 
Definition: An associative binary operation 

The binary operation  ◊:  X × X → X is associative iff (x ◊ y) ◊ z = x ◊ (y ◊ z) for all 
x, y, z ∈ X. 
 

 

 
In the context of the given example we can determine whether * is associative: 
 
(1 * 1) * 1 = 1 * 1 = 1 and 1 * (1 * 1) = 1 * 1 = 1, 
(1 * 1) * 2 = 1 * 2 = 2 and 1 * (1 * 2) = 1 * 2 = 2, 
(1 * 2) * 1 = 2 * 1 = 2 and 1 * (2 * 1) = 1 * 2 = 2 
(1 * 2) * 2 = 2 * 2 = 1 and 1 * (2 * 2) = 1 * 1 = 1, 
(2 * 2) * 1 = 1 * 1 = 1 and 2 * (2 * 1) = 2 * 2 = 1, 
(2 * 2) * 2 = 1 * 2 = 2 and 2 * (2 * 2) = 2 * 1 = 2, 
(2 * 1) * 1 = 2 * 1 = 2 and 2 * (1 * 1) = 2 * 1 = 2, and 
(2 * 1) * 2 = 2 * 2 = 1 and 2 * (1 * 2) = 2 * 2 = 1. 

 
This proves that * is associative. 

 
Definition: An identity element of a binary operation 

An element e of X is an identity element in respect of the binary operation  
◊ :  X × X → X iff e ◊ x = x ◊ e = x for all x ∈ X. 
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In the given example of the binary operation *, 1 is the identity element: 
 
1 * 1 = 1 * 1 = 1 and 
1 * 2 = 2 * 1 = 2. 
 

Another example 
Suppose we want to construct a binary operation on the set A = {a, b, c}. 
Construct a table with columns and rows labelled with the elements of A and 
put the symbol you want to use for the operation in the upper left-hand 
corner: 
 

□ a b c 
a    
b    
c    

 
Now simply fill in the spaces where the rows and columns intersect with 
elements of A according to taste, for example: 
 

□ a b c 
a b c a 
b c a b 
c a b c 

 
The resulting table is a shorthand description of the function □: A × A → A that 
is such that  
a □ a = b (because the entry where the row labelled “a” and the column 
labelled “a” intersect, is “b”),  
a □ b = c (because the entry where the row labelled “a” and the column 
labelled “b” intersect, is “c”),  
a □ c = a (because the entry where the row labelled “a” and the column 
labelled “c” intersect, is “a”), and so on… 
 
We are going to investigate the properties of □: Is □ commutative, is  □ 
associative and does □ have an identity element?   
 
Commutativity:  Is x □ y = y □ x for all x, y ∈A? 

 
As you can see, we need to use a brute force approach in order to determine 
whether □ is commutative, so we consider all possible cases: 
  

Case  x □ y  y □ x 
 x = y = a a □ a = b a □ a = b 
 x = a, y = b a □ b = c b □ a = c 
 x = a, y = c a □ c = a c □ a = a 
 x = b, y = a b □ a = c a □ b = c 
 x  = y = b b □ b = a b □ b = a 
 x  = b, y = c b □ c = b c □ b = b 
 x  = c, y = a c □ a = a a □ c = a 
 x  = c, y = b c □ b = b b □ c = b 
 x  = y = c c □ c = c c □ c = c 
 
In every case, x □ y = y □ x so □: A × A →  A is commutative. 
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By looking at the table which defines the operation, one can also see that □ is 
commutative:  Draw a diagonal line from the top leftmost corner to the bottom rightmost 
corner of the table. Then it is clear that you have mirror images of the two triangles. 

 
Associativity:  Is (x □ y) □ z = x □ (y □ z) for all x, y, z ∈A? 
 
To verify that □: A × A → A is associative is a tedious, but easy task.  There are 
27 cases to be considered.  We look at a few: 
 
 Case    (x □ y) □ z  x □ (y □ z) 
 x = a, y = a, z = a (a □ a) □ a = b □ a = c a □ (a □ a) = a □ b = c 
 x = a, y = a, z = b (a □ a) □ b = b □ b = a a □ (a □ b) = a □ c = a 
 x = a, y = a, z = c (a □ a) □ c = b □ c = b a □ (a □ c) = a □ a = b 
 x = a, y = b, z = a (a □ b) □ a = c □ a = a a □ (b □ a) = a □ c = a 

x = a, y = b, z = b (a □ b) □ b = c □ b = b a □ (b □ b) = a □ a = b, … 
 
And so one can go on to inspect all the combinations of x, y and z to see that  
(x □ y) □ z = x □ (y □ z) in all the different cases. This means that □ is 
associative. 
 
Identity element:  Is it possible to identify an element e in A such that  
e □ x = x □ e = x for all x∈A? 
 
To determine whether or not □: A × A → A has an identity element, one has to 
find an element in A that can connect with any x in A via the binary operation 
□ without changing x. 
 
We first look at the number set Z.  In the set Z, 0 is an additive identity (i.e.  
m + 0 = m = 0 + m for all m ∈ Z) and 1 is a multiplicative identity (i.e.  
m⋅1 = m = 1⋅m for all m ∈ Z).  So 0 is the identity element with respect to  
+: Z × Z → Z and 1 is the identity element with respect to ⋅ : Z × Z → Z. 
 
Back to the function □: A × A → A:  Does the set A = {a, b, c} have an element 
that can successfully play the role of an identity element with regard to □?   
 
Well, if we inspect the table describing □, we can see similar orderings of the 
variables (a, b and c) in the top row and the row labelled c:   
 

□ a b c 
a b c a 
b c a b 
c a b c 

 
We can also see similar orderings of the variables in the left-most column and 
the column labelled c:  
 

□ a b c 
a b c a 
b c a b 
c a b c 

 
These similar orderings are an indication that c is the identity element. 
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We can now confirm that c is indeed the identity element: 
 
 c □ a = a □ c = a, 
 c □ b = b □ c = b, and 
 c □ c = c □ c = c. 
 
So c acts as an identity element with regard to □. 
 

Activity 8-3: Self-assessment exercises     Application skills 
1. Let X be {2, 7}.  
 

(a) Provide 3 binary operations on X, both in list notation and in 
  tabular form.  

 (b) Check the 3 operations for commutativity and associativity. 
 
2. Provide 2 binary operations on X = {a, b, c} and check them for 

commutativity and associativity. 
 
3. Consider the dot operation, “•”, defined in Section 8.1. Let us compare  
 the dot operation on A = {a, b, c, d} with ordinary multiplication.  

 
(a) We know that ordinary multiplication on R is commutative. 
  Now examine x•y and y•x for each x, y ∈ A. Is • commutative? 
(b)  We know that R has an identity element for multiplication,  

  namely 1.  
  This means that 1⋅x = x = x⋅1 for all x ∈ R. Does A have an 
  element that behaves similarly for •? 

 
Activity 8-4: Reflection on binary operations 

Think carefully about the following statement:  Does it bother you to see old 
familiar symbols such as + and ⋅ being used as names for unfamiliar things? 
 

We have discussed only binary operations so far, i.e. functions of the form 
 
f: A × A → A. 
 
But the word “operation” is also applicable to functions of the form 
 
f:  A → A                               (a unary operation) 
g: A × A × A → A                 (a 3-ary, or ternary, operation) 
h: A × A × A × A → A          (a 4-ary, or quaternary, operation) 
 
and so on. 

8.3 Operations on vectors 
 
The word vector, for our purposes, will be understood to mean an ordered  
n-tuple of numbers.  
 

Definition: Vector  
A vector is represented by an n-tuple in the following way: 
u = (u1, u2, ..., un) for some n ≥ 2. 
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You have already encountered such specimens in study unit 5. In that unit, our 
discussion of n-ary relations should have left you with the feeling that n-tuples 
(or vectors as we call them in this unit) can be used to represent information. 
What is new in this present discussion is the idea that there are useful ways to 
combine old vectors in order to get new vectors. 
 

Example 
At the Benoni Institute of Technology, Professor Thaddeus Twiddle teaches a 
course in Creative Television Repair. He has 43 students in his class. 
 
During the year each student earns a year mark (out of a possible total of 100). 
If the students are ordered alphabetically, the year marks can be represented 
by a vector 
 
a = (a1, a2, ..., a43), 
 
where co-ordinate ai is the year mark of the i-th student.  
 
In the final exam, each student earns an exam mark (again out of a possible 
maximum of 100). The exam marks can be represented by a vector 
 
b = (b1, b2, ..., b43). 
 
To determine whether a student passes or fails, Professor Twiddle must 
combine the year mark and exam mark and express the result as a percentage. 
If the percentage is higher than 79%, the student passes. (This is an imaginary 
university, so we can afford to have an ideal pass mark.) 
 

Activity 8-5: Vector arithmetic 
How should Professor Twiddle work out the percentage that each student 
obtains? He can do it for each student separately, or he can use the vectors a 
and b. 
 
If there were some kind of addition on vectors, he could first use it to combine 
a and b. Then, if there were some sort of multiplication available, he could 
multiply a + b by some factor to get a vector whose co-ordinates are the 
percentages. 
 
Suppose we combine a and b by adding corresponding co-ordinates. Then we 
get the following: 
  
a + b = (a1 + b1, a2 + b2, ..., a43 + b43). 
 
Now each co-ordinate is a mark out of a possible total of 200. So to change 
these marks to percentages, all we need to do is to multiply each of them by ½. 
 
So, what we can do, is to define the product of the number ½ and the vector  
(a + b) to be the new vector 
 
½ (a + b) = (c1, c2, ..., c43)  
 
where each ci is ½ (ai + bi). 
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The example suggests the following definitions: 
 

Definition: Vector sum 
If u and v are vectors with the same number of co-ordinates, then their sum, 
denoted by u + v, is the vector obtained by adding the corresponding co-
ordinates of u and v, i.e. 
  
u + v = (u1, u2, ..., un) + (v1, v2, ..., vn) = (u1+ v1, u2+ v2,..., un+ vn). 
 

Definition: Scalar-vector product 
If u is a vector and r is some number (scalar), then the product of the number r 
and the vector u is the vector r⋅u obtained by multiplying each co-ordinate of u 
by r, i.e. 
 
r⋅u = r(u1, u2, ..., un) = (ru1, ru2, ..., run). 
 

Important terminology:  The number r is often called a scalar, and the operation defined 
above is then referred to as the multiplication of a vector by a scalar. 

 
Activity 8-6: Self-assessment exercise     Application skills 

If u = (3, 1), v = (−4, −4), and w = (0, −1), determine 
 
(a) 2u + v 
(b) u − 3v 
(c) −3(v + w) 
 

So far we have defined a kind of addition for vectors, and a weird kind of multiplication 
which combines vectors and things that aren't vectors (i.e. scalars) to produce a new 
vector. 
 
There is another kind of multiplication which is useful. It is called the dot product, and it 
combines two vectors to obtain a scalar as the answer. 

 
Definition: Dot product 

The dot product of vectors u = (u1, u2, ..., un) and v = (v1, v2, ..., vn) is denoted by 
u⋅v and defined by u⋅v = u1v1 + u2v2 + ... + unvn. 
 
Note : This operation is sometimes called the inner product. 
 
The above definition means that we multiply corresponding co-ordinates 
together. This is no problem for us, because the co-ordinates are real numbers 
and we can use ordinary multiplication. Then we add the results together (i.e. 
u1v1 + u2v2 + ... + unvn), and this constitutes no problem because the results are 
real numbers and we can use ordinary addition. 
 
Of what use is the dot product? Well, suppose you want to buy groceries: a1 
tins of beans, a2 tins of peas, and so on. The quantities you need to buy can be 
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represented by the vector a = (a1, a2, ..., an). Now suppose that each tin of beans 
costs b1 cents, each tin of peas costs b2 cents, and so on. 
 
The costs of the various items can be represented by the vector 
 
b = (b1, b2, ..., bn). 
 
The total amount you spend can now be determined by taking the dot product 
of a and b, since 
 
a⋅b = a1b1 + a2b2 + ... + anbn. 
 

Activity 8-7: Self-assessment exercise     Application skills 
If u = (1, 2, 5) and v = (2, 3, 5), determine 
 
(a) u⋅v  
(b) v(2u)  

 

8.4 Operations on matrices 
In the previous section we saw that vectors can be used to represent 
information. Sometimes the information you're working with can best be 
represented in tabular form, i.e. using tables. 
 

Example 
Suppose you are going shopping. You want to pop in at the bakery to buy 3 
loaves of whole wheat bread and 1 fruit cake. Then you want to go to the local 
grocer to get 2 of their whole wheat loaves and 5 of their cream cakes. One can 
display this information in a table as follows: 
 

 Bakery Grocer 
loaves 3 2 
cakes 1 5 

 
If one rewrites the table in a streamlined form, omitting the labels, one gets: 
 

 
 
We call this a matrix, and the numbers inside the square brackets are called 
the entries. Of course, one can replace the original table with the streamlined 
version only if the context makes it clear what the various rows and columns 
represent. In the example above, we need to agree that the first row will deal 
with loaves, and the second row with cakes, while the first column will deal 
with the bakery, and the second column with the grocer. 
 

Remember that the term “matrix” carries the connotation that the positions of entries 
are important. The plural of the word “matrix” is “matrices”, pronounced “maytrisseez” 
and not “matresses”. 
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A matrix, then, is an array of numbers organised into rows and columns and 
enclosed within brackets. If there are m number of rows and n number of 
columns, we speak of an m × n matrix (an "em-by-en" matrix, when you read it 
out loud). 
 
For example:       is a 2 × 2 matrix, 
 

whereas    is a 3 × 4 matrix. 

 
In general, matrices have the form 
 

                          























aaa

aaa
aaa

mnmm

n

n

...
...
...

...

...

 

21

22221

11211

 

 
where aij is the entry in the i-th row and j-th column of the above m × n matrix. 
We can define a kind of addition for matrices which is pretty useful. Let's look 
at an example. 
 
Suppose our old friend, the matrix      
 
represents our shopping plans for Monday, and that the following matrix 
represents our shopping list for a later date: 
 

 
 
That is, the first matrix (let's call it A) represents the table 
 

 Bakery Grocer 
loaves 3 2 
cakes 1 5 

 
while the second matrix (let's call it B) is a streamlined version of the table  
 

 Bakery Grocer 
loaves 4 1 
cakes 4 2 

 
Then the matrix A + B =     , which is obtained by adding corresponding 
entries, represents the total purchase for the two occasions.  
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The previous example suggests the following definition: 
 

Definition: Matrix addition 

Let A = 























aaa

aaa
aaa

mnmm

n

n

...
...
...

...

...

 

21

22221

11211

  and B   =  























bbb

bbb
bbb

mnmm

n

n

...
...
...

...

...

 

21

22221

11211

 

 
then the matrix A + B is provided by 
 























+++

+++
+++

bababa

bababa
bababa

mnmnmmmm

nn

nn

C

...
...
...

...

...

 = 

2211

2222222121

1112121111

 
 
 
One can only add matrices if they are of the same “size”. 
 

Activity 8-8: Self-assessment exercises     Application skills 
For each pair A and B given below, determine A + B (if possible): 
 
(a) A =               B =  
 
(b) A =               B =  
 
(c) A =           B =  
 
(d) A =            B =  

 
Example 

One can also multiply a matrix by a number to get a new matrix. For instance, 
suppose our old friend 
 

 A =  
 
represents our shopping list for a certain day and we discover that twice as 
many guests than expected will be visiting. Since the demand for groceries has 
doubled, we must use a revised shopping list in which each entry has been 
multiplied by two: 
 
 2A  =  
 
This example leads us to the next definition. 
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Definition: Matrix multiplication 
Given a real number r and a matrix  
 

A     =      























aaa

aaa
aaa

mnmm

n

n

...
...
...

...

...

 

21

22221

11211

 

 
the matrix rA is provided by       
 

rA     =     























rarara

rarara
rarara

mnmm

n

n

...
...
...

...

...

 

21

22221

11211

 
 

Activity 8-9: Self-assessment exercise     Application skills 
Perform the indicated operation:  
   
















+
















−















 −

5
1
2

4
0
1
2

3
3
2
1

2  

 

At this stage you might well ask “Is it possible to multiply matrices”?  There is actually a 
special kind of multiplication of matrices that resembles the dot product of vectors, 
except that in the end we get a matrix, not a real number. 

 
To illustrate matrix multiplication, we'll start with a simple example that 
shows how similar the dot product of vectors and matrix multiplication really 
is. 
 

Example 
Let A be the matrix [3   ½].  
 
Since A has only a single row, it is common to refer to A as a row matrix. 
 
Let B be the column matrix   . 

Now AB = [ 3   ½ ]  
is calculated by 
 
(i) multiplying appropriate entries of A and B, and 
(ii) adding the results together. 

 
AB = [ 3⋅1 + (½)⋅4 ] = [ 3 + 2 ] = [5]. 
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Note that the answer is a matrix and therefore has square brackets around it. Of course, 
a 1 × 1 matrix such as [5] is nothing other than a number, but we will shortly see 
examples in which the answer is a bigger matrix. 
 
First, let us remind ourselves why this sort of multiplication is useful. (At the same time, 
we're really reminding ourselves why the dot product of vectors is useful.) 

 
Let’s get back to the bakery problem:  
 
The local bakery produces three items, namely brown bread, white bread, and 
raisin bread. The prices of these items are R7, R9, and R12 per loaf, 
respectively. In a certain week the bakery sells 3000 loaves of brown bread, 
4800 loaves of white bread and 937 loaves of raisin bread. 
 
Now the total revenue (i.e. money the bakery gets) is  
(7)(3000) + (9)(4800) + (12)(937) Rands.  
 
This can be represented as the product AB of the matrix 
 
A = [7  9  12] 
 
which displays the prices of the items, and the matrix 
 

B =  

 
which represents the sales of the bakery.  
 

AB  = [7  9  12]  

 
=  [(7)(3 000) + (9)(4 800) + (12)(937)] 
= [21 000 + 43 200 + 11 244] 
= [75 444] 
 

Note that the multiplication must match brown bread with brown bread, white bread 
with white bread, and raisin bread with raisin bread. 

 
Well, how do we multiply more general matrices? We’ll illustrate the 
procedure by working out a typical product, namely 
 

   

 
To obtain the entries of the product, we multiply the rows of the left matrix by 
the columns of the right matrix, taking care to arrange the products in a 
specific way to yield a matrix. Start with the first (top) row on the left, [2  1], 
and the first column on the right,  . 
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Their product is [2⋅1 + 1⋅4]  =  [6], so we enter 6 as the entry a11 of the 
product: 
 

    =  

 
Next, we obtain the product of the first row on the left and the second column 
on the right, which is [2⋅1 + 1⋅2] = [4], so in the resulting product matrix we 
have a12 = 4: 
 

   =  

 
Now there are no more columns that can be multiplied by the first row, so we 
move down to the second row and start the same process again using the first 
column of the right-hand matrix: 
 

   =  

 
 
and for the second column: 
 

    =  

 
We have now exhausted the second row on the left, so we shift our attention 
to the third row. Of course, we also move down a row in the resulting product: 
 
Third row, first column: 
 

   =  

 
Third row, second column: 
 

    =  

 
Now we have multiplied every row of the left matrix by every column of the 
right matrix, so we can stop. 
 

Our product is . 
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Let's do another example: We have to calculate 
 
                  
 
Determine the entries of the resulting matrix: 
 
a11:     =     
 
a12:       =     
 
a21:       =     
 
a22:       =       
 
which is our answer. 
 

Note that this method cannot always be used to compute AB. For the procedure to work, 
a row in A must have as many entries as a column in B. So if we want to multiply A by B, 
the sizes of A and of B must match up in a special way. We can form AB if A is m × n and B 
is n × k. The product is an m × k matrix. 
 
Schematically:              A      ⋅         B      =        C 
                                     m × n         n × k         m × k 
                                               
                                       (equal) 

 
What would a general definition of matrix multiplication look like? Well, if 
 

 A   =   























aaa

aaa
aaa

mnmm

n

n

...
...
...

...

...

 

21

22221

11211

  and 

       

  B   =  























bbb

bbb
bbb

nknn

k

k

...
...
...

...

...

 

21

22221

11211

 

 
then AB is the matrix C in which Cij is the dot product of the i-th row in A with 
the j-th column in B, i.e.  
 
cij = (ai1 ⋅  b1j) + (ai2 ⋅  b2j ) + ... + (ain ⋅  bnj ) 
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Example 
As a last example before you tackle some exercises, let's look at the 2 x 2 zero 
matrix. This is a matrix of which all the entries are zero: 
 
  

What is the product of this zero matrix and the matrix   
 
Work it out step by step and test this for yourself. For instance, the product of 
the first row of the zero matrix with the first column of the other matrix is 
(0)(2) + (0)(1) = 0. 
 
Can you see that the product of a zero matrix with any other appropriately 
sized matrix will always be equal to a zero matrix? 
 

Definition: Identity matrix 
If A is a matrix, then an identity matrix I with respect to A is a matrix such that  
IA = AI = A. 
 
This means that if we have an n × n matrix, and we calculate IA, the result is A. 
Similarly, if we calculate AI, we get A. (I is also a n × n matrix.) 
 

Example 
Let A be the 2 × 2 matrix 
 

      







23
51

 
 
We need to find an identity matrix I such that IA = AI = A. 
 

Let’s try   I = 







10
01

  
Calculating AI and IA gives A, so I is an identity matrix. 
 

Activity 8-10: Self-assessment exercises 
Perform the indicated matrix operations (if possible): 
 
1. 

 






























 −

5
1
0

003
152
2331

 
 
2. 

 
































15
42
01

03
51
39
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3. 















 −















 −

052/1
13/11
310

303
460
231

 
 
4.  Provide examples of matrices X and Y such that XY is a 3 × 3 matrix, but 

YX is a 2 × 2 matrix. 
 
5. Provide examples of matrices X and Y such that both X and Y have at 

least some nonzero entries, but XY is the 2 × 2 zero matrix, 
 

i. e.  XY = 







00
00

 
 
6. Prove that addition is a commutative operation on the set of 2 × 2  
 matrices and that there is a 2 × 2 matrix that acts as an identity element  
 in respect of addition. 
 
7. Prove that multiplication is not a commutative operation on the set of 

2 × 2 matrices, and that there is a 2 × 2 matrix that acts as an identity 
element in respect of multiplication. 

8.5 In summary of the study unit 
 
In this study unit you ensured that you can answer the following questions 
regarding operations in general, and operations on vectors and matrices in 
particular. 
 
• What is a binary operation? 
• What is a vector? 
• What is a scalar? 
• How do we add two vectors? 
• How do we perform vector multiplication? 
• What does the term matrix mean? 
• How do we perform matrix addition and matrix multiplication? 
 
In the following study unit we will learn more about logic and how truth tables 
are used in this field.  
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Study unit 9  Logic: Truth tables  
 

Key questions for this study unit 

• What does the following terms mean: “connectives”, “a simple declarative 
statement (or a proposition)”, “truth tables”, “compound statements”, 
“disjunction”, “conjunction”, “negation” and “biconditional”? 

• What is meant by the term “logical equivalence”? 
• How does one construct a truth table? 
• How does one determine whether or not a given statement is a tautology, a 

contradiction, or neither of the two? 

 
Activity 9-1: Overview       Study skill 

Draw a mind map of the different sections/headings you will deal with in this 
study session. Then page through the unit with the purpose of completing the 
map.  
 
Your map should include the concepts of a simple declarative statement, a 
compound statement, truth tables, connectives, the conditional, the 
biconditional, conjunction, disjunction, negation, tautology, contradiction and 
logical equivalence.  

 
 
Activity 9-2: Concepts       Conceptual skill 

Test your own knowledge and then correct your understanding afterwards. 
How does your understanding deepen as you jot down the terms used in your 
home language? 

 
English term Description Term in your home language 
A simple 
declarative 
statement  (or  a 
proposition) 

  

A compound 
statement  

  

Connective    
Conjunction   
Disjunction   
Conditional    
Biconditional    
Negation    
Truth tables   
Tautology   
Contradiction   
Logical 
equivalence 
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9.1 Statements and connectives 
 
Why do mathematicians and logicians spend so much time talking about 
proofs? 
 
Well, like all scientists they're interested in discovering, as best they can, the 
truth about things. But it is not good enough for them to establish the facts to 
their own satisfaction; they also have to establish the facts to the satisfaction 
of everybody else. So whenever a logician (or computer scientist!) makes a 
claim, she/he has to be willing to justify it by presenting a convincing 
argument in support of her/his claim. That is to say, he/she needs to provide a 
proof. 
 
The purpose of a proof is to convey information. One conveys information by 
making what is called a declarative statement (also called a proposition in 
some literature). (Declarative is a word that comes from the verb to declare.)  
 

Some examples of simple declarative statements (or propositions): 
 
"The capital of France is Paris."  
"3 is an even integer." 
"5 + 3 > b" 
"This sentence is false." 
 
Some examples of statements which are not declarative: 
 
"Is 3 an even integer?" (A question, asked in order to acquire information, not to convey 
it.) 
"Add 3 to 5!" (A command, given in order to induce certain behaviour, not to convey 
information.) 
"Inconceivable!" (An exclamation, uttered in order to give vent to some emotion, not to 
convey information.) 

 
Clearly, in writing proofs we have to restrict ourselves to declarative 
statements. But not all declarative statements are usable. For instance, there is 
something peculiar about the declarative statement 

 
"This sentence is false." 

 
When we use a declarative statement in a proof, our purpose is to convey 
information. The information either gives an accurate picture of the facts (i.e. 
the statement is true) or it does not (i.e. the statement is false).  

 
Examples 

"3 is an even integer" is false, because dividing 3 by 2 leaves a remainder of 1,  
 
but the statement 

 
"The capital of France is Paris" is true, because Paris really is the capital of 
France.  
 
However the isolated statement "This sentence is false" has no truth value, i.e. 
is neither true nor false. 
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To see this, suppose the statement was true. If it is true, its description of the facts is 
accurate. So the sentence is false. Similarly, if we begin by assuming the statement to be 
false, we can reason quite logically to reach the conclusion that the sentence is true. But 
since it makes no sense to say of a statement that it is both true and false, we conclude 
that this particular statement is neither true nor false. 

 
In proofs, we only use declarative statements that have a truth value of either 
true or false. 
 
Such declarative statements are of two kinds: 
 
• The examples we've seen so far are simple (or atomic) statements, 

conveying just one (true or false) fact.  
• Other statements are compound; they are built up by connecting simple 

statements.  
 

Example 
"   > 1 and < 2 " is a compound declarative statement which is clearly 
either true or false (and, in fact, is true). It is a compound statement, because it 
is built up by connecting the two simple statements "  > 1 " and " < 2 " 
with the word "and".  
 
An interesting thing is that the compound statement  
 

"    > 1 and    < 2"  
 
is true precisely because both of the simple statements from which it is built 
up are true.  
 

Activity 9-3: The truth value of compound statements 
How would we check whether or not a given compound statement is true? 
 
Let’s take the statement "   > 1 and    < 2 " as an example: 
 
We would first investigate whether or not > 1 by some argument such as 
" 2 = 2, but 12 = 1, so  must be greater than 1". Then we would check that 

< 2, by a similar process of reasoning. 
 
So the truth value of a compound statement is determined by the truth values 
of its component statements. 
 
How is this done? We want to examine the truth values of compound 
statements. To begin with, we can list all the logical connectives that we are 
allowed to use in order to build compound statements, together with the 
symbols by which they are abbreviated, and their official names: 

 
and     ∧ conjunction 
or     ∨ disjunction 
if ..., then ...    → the conditional (also 

referred to as implication)                                        
if and only if    ↔ the biconditional 
it is not the case that     ¬  negation 
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Definition: Conjunction  
If p and q represent statements, then p ∧ q represents the statement “p and q”, 
and is called the conjunction of p and q. 
 

Example 
Let p represent “All rational numbers are repeating decimals” and let q 
represent “All irrational numbers are non-repeating decimals”. Then p ∧ q 
represents “All rational numbers are repeating decimals and all irrational 
numbers are non-repeating decimals”. 
 

Conjunction: Let us analyse the way in which the truth values of the component 
statements p and q determine the truth value of the compound statement p ∧ q. The 
following example will assist us. 
 
(a)   Grass is green  and  1 + 1 = 2. 
(b)   Grass is green  and  1 + 1 = 3. 
(c)   Grass is blue    and  1 + 1 = 2. 
(d)  Grass is blue    and  1 + 1 = 3. 
 
The first compound statement is true (T) since both component statements are true. Each 
of the compound statements (b) to (d) is false (F), because each has at least one 
component statement that is false. 
 
This leads us to summarise in tabular form the rule that p ∧ q is true if p and q are both 
true, but false otherwise. 

 
The conjunction of two statements is reflected in the following truth table: 
 

p q p ∧ q 
T T T 
T F F 
F T F 
F F F 

 
It is possible that p and/or q could represent compound statements. 
 
Let p represent a compound declarative statement r ∧ s. This means that p is 
only true when both r and s are true. As a result p ∧ q is only true when r, s 
and q are true. 
 
Later in this study unit we will see how a truth table for more than two 
statements can be compiled.  
 

In English there are different ways in which to say the same thing. For instance, the 
statement “Rationals are repeating decimals and irrationals are non-repeating decimals” 
conveys the same information as “Rationals are repeating decimals, but irrationals are 
non-repeating decimals”. Perhaps “but” also gives a feeling of opposing things being 
compared, but (!) for the purposes of logic we ignore vague statements (or statements 
that are ambiguous) and formalise statements of the form “p but q” as “p and q”, that is, 
“p ∧ q”. 
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Definition: Disjunction  
If p and q represent statements, then p ∨ q represents the statement “p or q”, 
and is called the disjunction of p and q. 
 

Example 
Let p represent “113 divides 17 304 without a remainder” and let q represent 
“113 leaves a remainder of 2 when divided into 17 304”. Then p ∨ q 
represents “113 divides 17 304 without a remainder or 113 leaves a 
remainder of 2 when divided into 17 304”. 
 

Disjunction: The basic idea behind disjunctions is that we want p ∨ q to stand for “either 
p, or q, or both”. For reasons of brevity we write “either ... or ... or both” simply as “or”. 
Now consider the example below. 
 
(a)    Grass is green    or    1 + 1 = 2. 
(b)    Grass is green    or   1 + 1 = 3. 
(c)    Grass is blue      or    1 + 1 = 2. 
(d)    Grass is blue      or   1 + 1 = 3. 
 
The first three compound statements are true, because in each case either the first or the 
second or both component statements are true. The last compound statement is false, 
because both component statements are false.  
 
We summarise in tabular form the rule that p ∨ q is true if at least one of p and q is true – 
otherwise it is false. 

 
The disjunction of two statements is presented in the following truth table: 
 

p q p ∨ q 
T T T 
T F T 
F T T 
F F F 

 

The word “or” is used in two different ways in an ordinary English conversation. Some-
times it means “either ... or ... but not both”, which is called the exclusive sense of “or”.  
 
Sometimes it means “either ... or ... or both”, which is called the inclusive sense of “or”. We 
use only the inclusive “or” when we write “∨”. The reason is that we shall be able to 
express statements of the form “p or q, but not both” in terms of conjunctions, 
disjunctions, and negations. 

 
Definition: Conditional  

If p and q represent statements, then p → q represents the statement “If p, 
then q”, and we may describe p → q as a conditional statement with hypothesis 
p and conclusion q. 
 

Example 
Let p represent “  has a non-repeating decimal expansion”, and let  
q represent “   is irrational”. Then p → q represents 
“If  has a non-repeating decimal expansion, then  is irrational”. 
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A conditional: The essential idea of a conditional statement is that it represents a sort of 
promise. Suppose a father says to his daughter: “If we go to town today, then I will buy 
you an ice-cream”. This promise will be broken only if they do go to town that day, but 
the father fails to buy an ice-cream for his daughter. If something has cropped up to 
prevent them from going to town, we cannot say that the promise was false. So, thinking 
of the promise as p → q, we get the following truth table: 

 
A conditional statement is presented in the following truth table: 
 

p q p → q 
T T T 
T F F 
F T T 
F F T 

 
We see that the first row of the truth table corresponds to the case in which 
they do go to town (since p is true) and she does get her ice-cream (q is true). 
Then the promise is fulfilled, so p → q ought to be true. 
 
The second row corresponds to the case in which they do go to town (p is 
true), but she does not get her ice-cream (q is false). The promise has been 
broken, so p → q should be false. 
 
The third and fourth rows both correspond to situations in which they do not 
go to town. Whatever else may happen, i.e. whether or not the daughter gets 
an ice-cream, the father did not break his promise and so p → q ought not to 
be false, i.e. it must be regarded as being true.  
 

In p → q, p is often referred to as the antecedent (which means “an event that happens 
before another”) and q as the consequent. 
 
Conditional statements are also called implications. 
 
There are many ways to express p → q in English. Some are listed below. Remember, each 
statement below really means “If p, then q”, i.e. p → q. 
 
• p implies q 
• p only if q 
• q is a necessary condition for p 
• p is a sufficient condition for q 
• q if p 
• q provided that p 
• q whenever p 
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You might require a slightly more mathematical motivation for the truth table of p → q. 
Think of it this way: If q is true, then q is true regardless of whether anything else is true 
or false. That is, “If p then 1 = 1” is true for any statement p, whether p is true or false, 
because 1 = 1. So we give the conditional → the value T in rows one and three in its truth 
table. 
 
As for row four, which involves the falsity of both antecedent and consequent, consider a 
statement such as “If 1 = 2 then 3 = 4”. This statement deserves to be regarded as true, 
because if we assume that 1 = 2, then we can prove that 3 = 4: 
 
Assume 1 = 2. 
Add 2 to each side of the equation then 3 = 4. 

 
Definition: Biconditional 

If p and q represent statements, then p ↔ q represents the statement “p if and 
only if q” which, as we saw in earlier study units, can be written as “p iff q”. 
This is referred to as the biconditional. 

 
Example 

Let p represent “  + 1 has a non-repeating decimal expansion” and q 
represent “ + 1 is irrational”. Then p ↔ q represents “  + 1 has a non-
repeating decimal expansion iff + 1 is irrational”. 
 

Biconditional: What is the basic idea behind biconditional statements? Well, as a first 
approximation think of p ↔ q as p and q saying the same thing in different words. Then 
clearly the only circumstance under which p ↔ q really must be false is when p and q 
have opposite truth values. The truth table below summarises this idea: 

 
A biconditional statement is presented in the following truth table: 
 

p q p ↔ q 
T T T 
T F F 
F T F 
F F T 

 
 

There are many ways to express p ↔ q in English. Remember that each of the following 
really means “p iff q”. 
 
• p is a necessary and sufficient condition for q 
• p implies q and conversely 
• if p then q, and conversely 
• p implies q and q implies p  
• if p then q, and if q then p  
• p is equivalent to q 

 
Definition: Negation 

If p represents some statement, then ¬p represents the statement “It is not the 
case that p”, or more briefly “not p”. This is called the negation of a given 
statement. 
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Example 
Let p represent “  is irrational”. Then ¬ p represents “It is not the case that 

 is irrational” which could be rewritten as “  is not irrational”. 
 

Clearly the statements p and ¬ p must always have opposite truth values. This 
leads to the following truth table: 
 

p ¬ p 
T F 
F T 

 

Negation is different from the other connectives (such as conjunction) because it doesn't 
actually connect two statements. However, it is an important way to build compound 
statements from simple statements.  
 
English can be confusing where negations are involved. For instance, the negation of “I 
like Brazilian jazz” is “It is not the case that I like Brazilian jazz”. Usually we say this 
more briefly as “I do not like Brazilian jazz”. The danger is that we might think that this 
is the same as “I dislike Brazilian jazz”. Of course it isn't. Someone who has no particular 
preference in this regard may feel completely neutral about Brazilian jazz music and 
may say “I do not like Brazilian jazz” without meaning “I dislike Brazilian jazz”. It is to 
avoid this sort of confusion that we make a point of putting the “not” in front of the state-
ment, at least until we feel confident. After all, it is not quite so easy to slide from “It is not 
the case that I like Brazilian jazz” to “I dislike Brazilian jazz”. 

 
What have we done so far? We have constructed the fundamental truth tables 
for conjunctions, disjunctions, conditionals, biconditionals, and negations. 
 
This enables us to take any compound statement (which is, after all, built up 
from simple statements by means of the connectives) and construct a truth 
table for it. Such a truth table then displays the way in which the truth values 
of the simple statements determine the truth value of the whole statement. 
 

Convention: In the following discussion, lower-case letters of the alphabet such as p, q, 
and r will be used to denote simple statements. The order in which a compound 
statement is built up from simple statements will usually be indicated by brackets, except 
that we reduce the number of brackets required by agreeing that it applies to the 
shortest statement following it. So we may omit the brackets in p ∧ (¬ q) and write it as  
p ∧ ¬ q . However, in the case of p ∧ ¬ (q ∨ r) we may not drop the brackets, since ¬ 
applies to q ∨ r, not just q. 

 
Before we discuss the truth table procedure in general, consider the following 
two illustrative examples. 
 

Example 
We construct a truth table for p ∧ (¬ q) in a number of steps. 
 
Step 1: List the simple statements p, q across the top:  
 

p q  
   

 



Study unit 9  Logic:  Truth tables                   COS1501/1 

 143  

Step 2: Each simple statement has one of two possible truth values – either T 
or F. So there are four possible combinations of truth values to be entered in 
successive rows: 
 

p q  
T T  
T F  
F T  
F F  

 
Step 3: In building up the compound statement p ∧ (¬ q) from the simple 
statements p and q, one first forms ¬ q. (After all, expressions in brackets 
come first.) So we list ¬ q at the top of the third column and enter the truth 
values by looking at the q column: 
 

p q ¬ q  
T T F  
T F T  
F T F  
F F T  

 
(Here we have used our knowledge of the truth table for negation, which tells 
us that when q is T then ¬ q is F and vice versa.) 
 
Step 4: Finally, to get p ∧ (¬ q) one combines the component statements p and 
¬ q by conjunction. List p ∧ (¬ q) at the top of the fourth column and enter the 
truth values by using our knowledge of conjunction: 
 

p q ¬ q p ∧ (¬ q) 
T T F F 
T F T T 
F T F F 
F F T F 

 
How exactly do we use our knowledge of conjunction here? Well, take row 1. 
We see that columns 1 and 3 give the truth values T and F for p and ¬ q 
respectively. By looking again at the following truth table for conjunction, we 
see that the combination T and F appears in row 2 and we see that the truth 
value for p ∧ q is F: 
 

p q p ∧ q 
T T T 
T F F 
F T F 
F F F 

 
By the above reasoning it tells us that p ∧ (¬ q) has the truth value F because 
the truth value for p is T and the truth value for ¬ q is F. So we enter F in row 
1 in the fourth column that represents p ∧ (¬ q) in the given table. 
 
Similar reasoning applies to the other rows of the given table. 
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Activity 9-4: Constructing a truth table 
Construct a truth table for [¬ p → (q ∧ r)]  ∨ r  
 
There are eight possible combinations of truth values for the simple 
declarative statements p, q and r. Hence our truth table has eight rows. The 
fourth column contains the truth values of the negation of p. The fifth column 
contains the truth values of the conjunction of q and r. The sixth column 
contains the truth values of the conditional statement ¬ p → (q ∧ r)  Finally the 
seventh column contains the truth values of the disjunction of [¬ p → (q ∧ r)]  
with r. 
 
Therefore, the truth table for this activity is as follows: 
 

p q r ¬ p (q ∧ r) [¬ p → (q ∧ r)] [¬ p → (q ∧ r)]  ∨ r 
T T T F T T T 
T T F F F T T 
T F T F F T T 
T F F F F T T 
F T T T T T T 
F T F T F F F 
F F T T F F T 
F F F T F F F 
       

These examples illustrate the following general approach: 
 
Suppose we want to construct a truth table for a compound statement built up from n 
simple declarative statements. There will be 2n rows in such a table. In the above activity, 
n = 3, thus we have 23 = 8 rows. 
 
To determine the columns, we begin by listing the simple statements. Then we fill up 
these n columns as follows: 
 
In the first column, enter T in the first half of the rows and F in the second half. 
 
In the second column, for the rows which have T in the first column, enter T in the upper 
half and F in the lower half. Then do the same for the rows which have F in the first 
column. 
 
Continue until, in the n-th column, T and F alternate. In the above activity, T and F 
alternate in the third column.  
 
We then form columns for each statement we have built up, and which forms part of the 
compound statement that we're interested in. For instance, when we constructed the 
truth table for p ∧ ¬ q we had a column for ¬ q since it is a statement built up along the 
way to building p ∧ ¬ q. Fill in such columns by consulting the truth table of the relevant 
connective given previously. 
 
The last column represents the compound statement we are interested in. 

 
Activity 9-5: Self-assessment exercises 

1. Suppose that p represents the statement “It is sunny” and q the 
statement “It is humid”. Write each of the following in 
abbreviated form: 

 
(a) It is sunny and it is not humid. 
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(b)  It is humid or it is sunny. 
(c) It is false that it is humid. 
(d)  It is false that it is sunny and humid. 
(e) It is neither sunny nor humid. 
(f) It is not the case that if it is sunny then it is humid. 
(g)  It is humid if it is sunny. 
(h)  It is humid only if it is sunny. 
(i)  It is sunny if and only if it is humid. 
(j) If it is false that it is either sunny or humid, then it is not sunny. 
 
2.  Construct the truth tables for the following compound 

statements:  
 
(a) [(¬q) → (¬p)] → (p → q) 
(b) [¬p → (q ∧ (¬q))] → p 
(c) p ∨ (¬p) 
(d) [p ∧ (p → q)] → q 
(e) (p ∨ q) ∧ (¬p ∨ ¬q) 
(f) (¬p → [ q ∧ r ] ) ∨ r 
(g) (p → [ q ∧ r ] ) ↔ ( [ p → q ] ∨ [ p → r ] )  

 

9.2 Relationships between statements 
 
Sometimes a compound statement is always true. For example, the truth table 
for p ∨ ¬ p shows that this statement is always true: 
 

p ¬ p p ∨ ¬ p 
T F T 
F T T 

 
We call such a statement a tautology. 
 

Definition: Tautology 
Some compound statements are always true. Such a statement is called a 
tautology. 
 
On the other hand, some compound statements are always false. For example, 
the truth table for p ∧ ¬ p shows that this statement is always false: 
 

p ¬ p p  ∧ ¬ p 
T F F 
F T F 

 
We call such a statement a contradiction. 
 

Definition: Contradiction  
Some compound statements are always false. Such a statement is called a 
contradiction. 
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Activity 9-6: Self-assessment exercises 
1. Express the following sentence symbolically and then determine 

whether or not it is a tautology: 
 

If demand has remained constant and prices have been increased, then 
turnover must have decreased. 

 
Use p for “demand has remained constant”, q for “prices have been 
increased” and r for “turnover must have decreased”.  
 

2. Refer to Activity 9-5, Question 2. From the truth tables you have 
constructed for (a) to (g), determine whether each of the statements is a 
tautology, a contradiction or neither of the two. 

 

Suppose that a and b are statements, and not necessarily simple ones. Then we can use 
the concept of tautology to spell out the idea that a and b have the same meaning or that 
a and b say the same thing in different words. 

 
Definition: Logical equivalence 

The two statements a and b are logically equivalent, denoted by a ≡ b, if and 
only if the statement a ↔ b is a tautology.  
 

Activity 9-7: Truth table for the biconditional 
 
Recall that a ↔ b has the value T if and only if a and b have the same truth 
value. So, to check that a ↔ b is always T, it is enough to check that the final 
columns in the truth tables of a and b are identical. 
 

Example 
Let’s look at the truth table for (p → q) ↔ (¬ q → ¬ p): 
 

p q ¬ q ¬ p p → q ¬ q → ¬ p      (p → q) ↔ (¬ q → ¬ p) 
T T F F T T T 
T F T F F F T 
F T F T T T T 
F F T T T T T 

 
Because there are only T’s in the final column, it follows that 
(p → q) ↔ (¬ q → ¬ p) is a tautology. 
 
This tells us that p → q and ¬ q → ¬ p are logically equivalent, 
i.e.  p → q  ≡  ¬ q → ¬ p  
i.e.  p → q has exactly the same meaning as ¬ q → ¬ p. 
 
Note that  ≡  is not just another way to write  ↔.  
 
We may write p → q ≡ ¬ q → ¬ p only because we have shown that  
(p → q) ↔ (¬ q → ¬ p) is a tautology. 
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Activity 9-8: Important logical equivalences 
Take note of the following important logical equivalencies: 
 
(a) p ∨ q ≡ q ∨ p 

p ∧ q ≡ q ∧ p    (commutative laws) 
 

(b) p ∨ (q ∨ r) ≡ (p ∨ q)∨ r 
p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r    (associative laws) 
 

(c) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)  
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)   (distributive laws) 
 

(d) p ∨ p ≡ p 
p ∧ p ≡ p    (idempotent laws) 
 

(e)  ¬ (¬ p ) ≡ p                  (law of double negation) 
 
(f) ¬ (p ∨ q) ≡ ¬ p ∧ ¬ q 

¬ (p ∧ q) ≡ ¬ p ∨ ¬ q    (De Morgan’s laws) 
 

(g) p ∨ ¬ p ≡ TO, where TO is a tautology 
p ∧ ¬ p ≡ FO, where FO is a contradiction (negation) 
 

(h) ¬ FO ≡  TO 
  ¬ TO  ≡  F0    (negations of TO and F0) 

 
(i)  p ∨ FO ≡ p    

 p ∧ TO ≡ p    (identity)    
  

(j) p ∨ TO ≡ TO    
p ∧ FO ≡ FO    (universal bound) 

 
We often refer to these as identities. 
 
(You can use truth tables to verify that these are indeed logical equivalences.) 
 

Now that we have the notion of logical equivalence, we can derive a rather surprising 
result: We only require negation plus the connectives ∧  and ∨ ! 
 
To see this, we firstly show that  
 
p ↔ q is logically equivalent to (p →  q) ∧ (q →  p),  
 
which means that we can always work with the latter rather than use ↔. Then we show 
that  
 
p → q is logically equivalent to ¬ p ∨  q,  
 
so that we can write conditional statements without actually using →. 
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Examples 
 
A truth table can show that (p → q) ∧ (q → p) is logically equivalent to p ↔ q: 
 

p q p → q q → p (p → q) ∧  (q → p) p ↔ q 
T T T T T T 
T F F T F F 
F T T F F F 
F F T T T T 

 
Here we have used a single truth table to show that the truth tables of  
(p → q) ∧  (q → p) and of p ↔ q are identical. Writing out two truth tables 
would have involved some tedious repetition. 
 
Note: It is important to remember that this means that (p → q) ∧ (q → p) ≡  
p ↔ q. As a result we could (if we wanted to) eliminate the use of  ↔. This is 
useful for some special applications of logic. However, for our purposes in this 
module, it is usually convenient to use ↔. 
 
We also use a truth table to show that ¬ p ∨ q is logically equivalent to p → q: 
 

p q ¬ p ¬ p ∨ q p → q 
T T F T T 
T F F F F 
F T T T T 
F F T T T 

 
Again we use a single truth table in which the last two columns are identical, 
rather than write out two separate truth tables. 
 
Note: It is important to remember that this means that ¬ p ∨ q ≡ p → q. As a 
result we could, if we needed to, eliminate the use of the connective “→”. As 
we said previously, it is sometimes necessary to know that any compound 
statement can be built up using only the connectives  ¬, ∧ and ∨. 

 
Activity 9-9: Self-assessment exercises 

1. Rewrite p ↔  q as a statement built up using only ¬, ∧ and ∨. 
 
2. Show that  ≡  is an equivalence relation on statements. 
 
3. Suppose we want to define a new connective, the exclusive disjunction 

also referred to as the “exclusive or”. By p + q we denote “p or q, but not 
both”. Construct a truth table for this connective. 

 
4. Find a statement that is logically equivalent to ¬ (p ∨ ¬ q). 
 
5. Use the law of double negation and De Morgan’s laws to rewrite the 

following statements so that the not symbol (¬) does not appear outside 
parentheses. 

 
 (a) ¬ [(p ∨ q ∨ ¬q) ∧ (q ∧ ¬ p)] 
 (b) ¬ [(p ∨ (p → q)) ∨ (p ∧ q)] 
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6. Determine whether or not the following statements are equivalent: 
 ¬p ∧ (¬p ∧ ¬q) and ¬(p ∨ (p → q)). 

9.3 In summary of the study unit 
 
In this study unit you ensured that you can answer the following questions 
regarding logical connectives and truth tables: 
 

• What do we mean by “a declarative statement”? 
• What do we mean by “a compound statement”? 
• What is a logical connective? 
• Which logical connectives did we look at in this study unit? 
• How do we construct a truth table? 
• How are the truth tables for the different connectives constructed? 
• What is a tautology? 
• What is a contradiction? 
• How do we prove logical equivalence? 

 
In the next unit, we look at quantifiers, some basics for predicate logic are 
introduced, and we look at different proof strategies. 

 
 

NOTES 
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NOTES 
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Study unit 10  Logic: Quantifiers, predicates 
and proof strategies 

 

Key questions for this study unit 

• What do the following terms mean: “universal quantifier”, “existential 
quantifier”, “a counterexample”, “a predicate”, “implication”? 

• What is meant by a proof strategy? 
• What methods of proof are studied in this study unit? 
• What is meant by the terms “converse”, “contrapositive”, “reductio ad 

absurdum” and “vacuous proof”? 
• How does one rewrite the negation of a quantified statement in a useful form? 

 
 

Activity 10-1: Overview       Study skill 
Draw a mind map of the different sections/headings you will deal with in this 
study session. Then page through the study unit with the purpose of 
completing the map.  
 
Your mind map should include the concepts of quantification, implication, 
counterexample, converse and contrapositive, as well as proof strategies.  

 
 
Activity10-2: Concepts       Conceptual skill 

Test your own knowledge and then correct your understanding afterwards. 
How does your understanding deepen as you jot down the terms used in your 
home language? 

 
English term Description Term in your home language 
Universal 
quantifier / 
quantified 
variable 

  

Existential 
quantification 

  

Predicate   
Direct poof   
Reductio ad 
absurdum (proof 
by contradiction) 

  

Contrapositive   
Converse   
Vacuous proof   
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10.1      Quantifiers and predicates 
 
In mathematics, many statements have variables in them which are 
represented by letters such as x, y, and z, which do not name anything specific. 
 
The great logician Alfred Tarski gives a striking example of how useful 
variables can be in shortening what we want to say. Consider the arithmetic 
fact that: 
 
For all real numbers x and y, x3 − y3 = (x − y) (x2 + xy + y2). 
 

Without the use of variables, the same information would be conveyed more clumsily as 
follows: The difference of the third powers of any two real numbers is equal to the 
product of the difference of these numbers and a sum of three terms, the first of which is 
the square of the first number, the second the product of the two numbers, and the third 
the square of the second number. 

 
Statements containing variables pose a special problem. Consider, for 
instance, the statement “x is an even integer”.  
 
Is this statement true or false? How can we decide if we don't know what x is? 
 
There are two ways to change “x is an even integer” into a statement that has a 
truth value. 
 
The first way is to replace the variable x with the name of some specific thing. 
For example, we may substitute  for x to get the statement 
 

“  is an even integer”, which is false. 
 

This is the kind of process we're involved in when we solve equations: to solve 
2x = 6 means to find all objects which, when their names are substituted for x, 
give a true statement. 
 
The second way is to quantify. One can use either universal or existential 
quantifiers. 
 

Description: Universal quantifier 
Universal quantifiers are phrases such as:  
 
“For all x ∈ R …”, or  
“For every x ∈ Z…”, or  
“For each x ∈ {1, 2, 3}…”. 
 
We abbreviate these phrases by writing  

∀ x ∈ R …, or  

∀ x ∈ Z …, or  

∀ x ∈ {1, 2, 3} … respectively. 

 
A variable such as “x” is called “a quantified variable”. 
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Think of ∀ as an upside-down A, standing for “for all”. 

E.g. “∀ x ∈ {1, 2, 3}” is read as “for all elements x in the set {1, 2, 3}”. 
 
Applying universal quantification to “x is an even integer” would give a 
statement such as 

 
“∀ x ∈ R, x is an even integer”, 

 
which is clearly false.  
 
A statement such as “∀ x ∈ R, x is an even integer” is called a “quantified 
statement”.  
 

Description: Existential quantifier 
Existential quantifiers are phrases such as:  
 
“There exists an x ∈ R such that …”, or  
“For some x ∈ Z …”, or 
 “We can find an x ∈ {1, 2, 3} such that…”.  
 
We abbreviate these phrases by writing  

∃ x ∈ R …, or  

∃ x ∈ Z …, or  

∃ x ∈ {1, 2, 3} … respectively. 
 
Think of ∃ as a backwards E, standing for “there exists”. 

E.g. “∃ x ∈ {1, 2, 3}” is read as “there exists an element x in the set {1, 2, 3}”. 
 
Applying existential quantification to “x is an even integer” would give a 
statement such as  

 
“∃ x ∈ {1, 2, 3} such that x is an even integer” 

  
which is clearly true. 
 
Notation: We may omit “∈ A” and simply write “∀ x ∈ A” as “∀ x” if it is 
absolutely clear from the context what set is meant. Similarly, “∃ x ∈ B” may 
be written as “∃ x” if it is absolutely clear from the context what set is meant. 
 

Fundamental rule for quantified statements: A quantified variable is a "dummy" 
variable and can be replaced (in all its occurrences) by any other variable. 
 
For example, the statement ∀ x ∈ R, (x > 2) → (x2 > 4) is logically equivalent to 
∀ y ∈ R, (y > 2) → (y2 > 4), and to 
∀ t ∈ R, (t > 2) → (t2 > 4). (Other variables can also be used.) 
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Examples 
We write down the English equivalences of some statements: 
 
The statement “∃ x ∈ Z+, x > 3” tells us that “there exists some positive integer 
that is greater than 3”. (This statement is true.) 
 
The statement “∀ x ∈ Z≥, x ≥ 0” tells us that “all non-negative integers are 
greater than or equal to 0”. (Since Z≥ = {0, 1, 2, …}, this statement is true.) 
 

Activity 10-3: Self-assessment exercises    Application skills 
Write down the English equivalent of each of the following statements. Give an 
opinion on whether or not the statement is true. 
 
(a) ∃ y ∈ Q, y =  

(b) ∀ x ∈ R, 2x < x2 

(c) ∀ x ∈ Z, x > 0 

(d) ∃ x ∈ Z+, x = 0 
 

A quantified statement such as "∃ x ∈ Z, x > 113" is a declarative statement possessing a 
truth value, i.e. it is the kind of statement we worked with in the previous study unit. And 
so, of course, we can form conjunctions, disjunctions, conditional statements and 
biconditional statements in which one or more of the component statements are 
quantified statements. 

 
When we think carefully about it, we see that universal quantification can be 
regarded as a generalisation of conjunction.  
 
For instance, let A = {1, 2, 3}, then ∀ x ∈ A, x >    
 
means the same as (1 > ) ∧ (2 > ) ∧ (3 > ). 
 
Each one of the component statements (1 > ), (2 > ) and (3 > )is either 
true or false.  The compound statement (1 > ) ∧ (2 > ) ∧ (3 > ), by the 
way, is false. This will be investigated later in this study unit. 
 
Similarly, existential quantification acts like a generalised form of disjunction,  
 
with  ∃ x ∈ A, x >   saying the same as 
 

(1 > ) ∨ (2 > ) ∨ (3 > ). 
 
The usefulness of quantification arises from the fact that the set A over which 
we quantify need not be finite. That is, we can say things such as 
 

∀ x ∈ Z, x2 ≥ 0 
 

which could not be said with the aid of conjunctions alone, because we would 
never finish saying  
(02 ≥ 0) ∧ (12 ≥ 0) ∧ ((−1)2  ≥ 0) ∧ (22 ≥ 0) ∧ ((−2)2 ≥ 0) ∧ ... 
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Similarly  
 
 ∃ x ∈ Z, x > π 
 
could not be said with the help of disjunctions alone, since we would be 
unable to complete the infinitely long statement 
 
(0 > π) ∨ (1 > π) ∨ (−1 > π) ∨ (2 > π) ∨ (−2 > π) ∨ … 
 
We can also form negations (¬ ) of quantified statements. Here we have to be 
aware of an interesting fact: to work effectively with the negation of a 
quantified statement, one must get the negation as far inside as possible. You 
will see what we mean by this when we do some examples.  
 
But first we must answer the following question: How does one get “¬” inside 
a quantified statement? After all, “¬” is something we usually put in front of a 
statement. We first look at the influence “¬” has on compound declarative 
statements. 
 
First, consider a conjunction, say p ∧ q. Negating gives ¬ (p ∧ q).  
 

Activity 10-4:  Self-assessment exercise     Application skills 
Prove by means of truth tables that 
¬ (p ∧ q) ≡ (¬ p) ∨ (¬ q).   
 
Next, consider a disjunction, say p ∨ q. Negating gives ¬ (p ∨ q).  
 

Activity 10-5:  Self-assessment exercise     Application skills 
Prove by means of truth tables that 
¬ (p ∨ q) ≡ (¬ p) ∧ (¬ q). 
 
Now we are ready to tackle the negation of quantification! 
 

Examples 
Consider  

∀ x ∈ {1, 2, 3}, x  >   
 

As we have seen, this means the same as 
 

(1 > ) ∧ (2 > ) ∧ (3 > ).  
 
Negating gives ¬(∀ x ∈ {1, 2, 3}, x  >  ) which means the same as 
 

¬ [(1 > ) ∧ (2 > ) ∧ (3 > )], 
 

which, as you know from the activities you have just completed, is logically 
equivalent to 

  ¬ (1 > ) ∨ ¬ (2 > ) ∨ ¬ (3 > ) 
 

i.e.       (1 ≤  ∨ (2  ≤ ) ∨ (3  ≤ ). 
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Note that we have simply used the fact that if x is not greater than y, then x is less than or 
equal to y, for real numbers x and y. 

 
But now (1 ≤   ∨ (2  ≤ ) ∨ (3  ≤ )  

 
means the same as ∃ x ∈ {1, 2, 3},  x ≤ . 
 
So we conclude that  
 

¬ [∀ x ∈ {1, 2, 3}, x > ] 
can be written as   

∃ x ∈ {1, 2, 3}, ¬ (x >  ) 

i.e.   ∃ x ∈ {1, 2, 3}, x  ≤ . 
 
Reasoning in a similar way, we find that  
 

¬ [∃ x ∈ {1, 2, 3}, (x > π )] 
 

means the same as 
 
∀ x ∈ {1, 2, 3}, ¬ (x > π ) 

i.e. ∀ x ∈ {1, 2, 3},  x  ≤  π. 
 

As we know by now, it can be determined whether a quantified statement is true or false 
if a finite number of statements are given. Later in this study unit we will investigate 
some methods of proof which can be applied to determine whether statements of this 
kind are true or not when an infinite number of statements are given. 
 
Let’s determine whether “∀ x ∈ {1, 2, 3}, x >  ” is true or false: 

 
In order to determine whether or not ∀ x ∈ {1, 2, 3}, x >  is true, one can 
determine whether  
 
(1 > ) ∧ (2 > ) ∧ (3 > ) is true or false. 
 
We investigate each component of this statement: 
 
Since  = 1.4142, we know 1 >  is false, 2 >  is true, and 3 >  is true.   
 
It follows that (1 > ,) ∧ (2 > ) ∧ (3 > ) is false because 1 >  is false. 
 
Alternatively, one could say that ∀ x ∈ {1, 2, 3}, x >  is false since a 
counterexample can be found, namely x = 1.  
 
If x = 1, then 1 >  is false and hence the compound statement is false. In 
other words, “∀ x ∈ {1, 2, 3}, x >  ” is false because we have shown that x is 
not greater than  for all x ∈ {1, 2, 3}. We supplied a counterexample. 
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We have seen that it can be determined whether a statement is true or false for some 
quantified variables. For instance, in the previous example we determined whether the 
statement “x > ” is true or false for each x ∈ {1, 2, 3}. We name such statements 
“predicates”: 

 
Definition: Predicate  

A statement P(x) is called a predicate if it expresses some property of a 
variable x ∈ A, and returns either true or false depending on the value of x. 
P(x) is true for any variable x ∈ A that has the property, and P(x) is false if x 
does not have the property. 
 
For example, the statement “n is even” (with n ∈ Z), is a predicate that can be 
written as P(n), such that P(n) is true for all even integers and P(n) is false for 
all non-even (odd) integers. In this case, statements such as P(−2) and P(6) are 
true, whereas P(−3) and P(7) are false. 
 
We also re-visit examples discussed previously in this study unit: 
 

Example 
If P(x) is the predicate “x >  ”, then 
“∀ x ∈ {1, 2, 3}, x  >  ” can be written as  

“∀ x ∈ {1, 2, 3}, P(x)”, and 
 
if Q(x) is the predicate “x > π”, 
then “∃ x ∈ {1, 2, 3}, x > π” can be written as  

“∃ x ∈ {1, 2, 3}, Q(x)”. 
 

We summarise the rules for writing the negation of a quantified statement in a useful 
form (i.e. with the “not” taken as far inside the statement as possible): 

 
Rules: Negation of quantified statements 

If P(x) is a predicate containing some variable x, then we can write 
 

(a)  ¬ (∀ x ∈ A, P(x)) as ∃ x ∈ A, ¬ P(x), and 

(b)  ¬ (∃ x ∈ A, P(x)) as ∀ x ∈ A, ¬ P(x). 

 
These rules should be applied when x ranges over an infinite set A. 
 

Examples 
Determine the negation of the quantified statement “∀ x ∈ A, P(x) ∨ Q(x)”. 
 
¬ (∀ x ∈ A, P(x) ∨ Q(x)) 

≡ ∃ x ∈ A, ¬ (P(x) ∨ Q(x)) (from rule (a) above) 

≡ ∃ x ∈ A, ¬ P(x) ∧ ¬ Q(x) (refer to Activity 10-5) 
        QED 
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Another example: 
 
Determine the negation of the quantified statement 

“∃ y ∈ Z≥, (y + 1 > 0) ∧ (y3 ≤ 1)”. 
 

¬ (∃ y ∈ Z≥, (y + 1 > 0) ∧ (y3 ≤ 1)) 

≡ ∀ y ∈ Z≥,  ¬ ((y + 1 > 0) ∧ (y3 ≤ 1)) 

≡ ∀ y ∈ Z≥,  ¬ (y + 1 > 0) ∨ ¬ (y3 ≤ 1) 

≡ ∀ y ∈ Z≥,  (y + 1 ≤ 0) ∨ (y3 > 1) 
 
Which one is true, the original or the negated statement? 
 
Well, if y = 1, then  
(y + 1> 0) means that (1 + 1> 0) i.e. (2 > 0), and 
 (y3 ≤ 1) means that (13 ≤ 1) i.e. (1 ≤ 1). 
 
Both (2 > 0) and (1 ≤ 1) are true statements, so there exists an element 
y ∈ Z≥, namely y = 1 such that the original statement is true. 
 

In the previous study unit we proved that p → q ≡  ¬ p ∨ q. It is convenient to apply this 
equivalency when we want to get rid of “→” in some statement. 
For example, when we want to determine the negation of ∀ x ∈ A, P(x) → Q(x), 

i.e. ¬ (∀ x ∈ A, P(x) → Q(x)), we can write this statement as ¬ (∀ x ∈ A, ¬ P(x)∨ Q(x)). 
 
We apply this equivalency in the following example: 

 
Example 

Determine the negation of the statement  
“∀ x ∈ Z+, (x ≤ 2) → (x2 + 2x > 1)”. 

 
¬ (∀ x ∈ Z+, (x ≤ 2) → (x2 + 2x > 1)) 

≡ ¬ (∀ x ∈ Z+, ¬ (x ≤ 2) ∨ (x2 + 2x > 1)) 

≡ ∃ x ∈ Z+, ¬ (¬ (x ≤ 2) ∨ (x2 + 2x > 1)) 

≡ ∃ x ∈ Z+, ¬ ¬ (x ≤ 2) ∧ ¬ (x2 + 2x > 1) 
≡ ∃ x ∈ Z+, (x ≤ 2) ∧ (x2 + 2x ≤ 1) 
 

Activity 10-6: Self-assessment exercises     Application skills 
Determine the negations of the following quantified statements: 
(Show all the steps.) 
(a) ∀ x ∈ Z+, x > 3 

(b)  ∃ x ∈ R, 2x = x2 

(c)  ∀ x ∈ Z, (x > 0) ∨ (x2 > 0) 

(d) ∃ y ∈ Z+, (y ≤ 10) ∧ (y ≠ 0) 

(e) ∃ x ∈ A, P(x) ∧ Q(x) 

(f) ∀ x ∈ Z+, (x ≤ 3) → (x3 ≥ 1) 
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Activity 10-7: Self-assessment exercises     Application skills 
For each of (a) to (d) in activity 10-6, try to decide whether the original 
statement is true, or whether its negation is true, or whether neither of the 
two is true. 

10.2    Proof strategies 
 
In this section we look at a number of standard proof strategies or “methods 
of proof” frequently used in discrete mathematics. The idea is that we want to 
prove that a certain statement is always true, i.e. it is true for all variables in 
the relevant domain. This domain might be infinite. Suppose we want to prove 
the statement  
 
 “For all integers, if n is an even integer, then n2 + n + 1 is odd.” 
 
There are a number of different proof strategies we can follow. In this study 
unit we look at a direct proof, a proof by contradiction (reductio ad absurdum), 
a proof by contrapositive and a vacuous proof.  
 
If we cannot prove that a statement is true, we have to provide only one 
counterexample that illustrates that the statement is false.  
 
Let’s look at the individual strategies. 
 

10.2.1 Direct proof 
  

When using this strategy, we start the proof by assuming the truth of p (the 
“if” part of the statement), and then reason step by step until we can show that 
q (the “then” part of the statement) is true.  
 
How about an example? Well, there are plenty, but here is one that you haven't 
encountered before. 

 
Example 

Prove that the following statement is true for all x ∈ R: 
 
“If x2 - 4x + 3 < 0, then x > 0.” 
  

Remark: We in fact want to prove that the above holds for all real numbers x∈ R. 

 
We start the proof by assuming that x2 – 4x + 3 < 0 (the “if” part of the 
statement) is true. 
 
Assume  x2 – 4x + 3 < 0 
i.e. (x – 3)(x – 1) < 0      (by factorisation) 
then 
 
(i) (x – 3) > 0 and (x – 1) < 0  (since a plus times a minus gives a minus) 
 
i.e. x > 3 and x < 1, but this cannot be the case since there are no real numbers 
that are simultaneously greater than 3 and less than 1. 
 
OR 
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(ii) (x – 3) < 0 and (x – 1) > 0    (since a minus times a plus gives a minus) 
i.e. x < 3 and x > 1, 
i.e. 1 < x < 3 
so x > 0  
which is what we had to prove. 
 

10.2.2 Proof by contradiction (reductio ad absurdum) 
 
 We have already looked at a couple of examples of such a proof, namely in 
study unit 2 (where we showed that  is not a rational number) and in the 
discussion of equivalence relations in study unit 6.  
 
Suppose we have to prove by contradiction that “if p then q”. The basic 
principle we use in this strategy is to assume that p is true. At this point, we 
have two possibilities – either q is false (the “bad” possibility) or q is true (the 
“good” possibility). What we do now is to assume that q is false. By using step-
by-step reasoning we get a contradiction. This shows that q must be true. 
 
Let’s illustrate this with the same example that we used when we applied the 
direct proof. 
 

Remark: We are going to start the same way as with the direct proof. Then, at the 
strategic moment, we'll throw in the questionable assumption (the “bad” possibility). 
We’ll show that it leads to a contradiction and will therefore conclude that the 
questionable assumption was false. 

 
Example 

We start the proof by assuming that the antecedent is true:  
 

Assume x2 – 4x + 3 < 0. (initial assumption) 
 
We consider two possibilities: 
either the consequent (x > 0) is true (the “good” possibility), or 
the consequent is false (the “bad” possibility), i.e. x ≤ 0.  
 
Now we’ll prove that the “bad” possibility leads to a contradiction and then 
deduce that the “good” possibility must be true. 
 
Assume  x  ≤ 0      (the “bad” possibility which is the questionable assumption) 
then  –4x  ≥  0     (since a minus times a minus gives a plus) 
so  x2 – 4x + 3 > 0  (since x2 + 3 > 0, and also –4x  ≥  0) 
 
However, this contradicts the initial assumption. Hence it cannot be the case 
that x  ≤ 0, and thus we conclude that our questionable assumption was 
incorrect, and consequently it is true that x > 0. 
 

10.2.3 Proof by contrapositive 
 
Another technique, proof by contrapositive is based on the following fact: 
 

Definition: Contrapositive  
The contrapositive of p → q is ¬ q → ¬ p. In other words: 
p → q is logically equivalent to  ¬ q → ¬ p. 
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(p → q) ↔  (¬ q → ¬ p) is a tautology. This means that, in order to prove that 
p → q, we may, if we wish, prove that ¬ q→ ¬ p. 

 
Let’s use the same example as before: 
 

Example 
We want to prove that “if x2 − 4x + 3 < 0, then x > 0”. 
 
We can do this (using the contrapositive) by proving that 
 
 if  ¬ (x > 0) then ¬ ( x2 − 4x + 3 < 0): 
 
First we assume that ¬ (x > 0) is true, i.e. we assume that x  ≤  0.  
 
Now we factorise the expression x2 – 4x + 3: 
 

x2 – 4x + 3  = (x – 3)(x  – 1)  
 
We already know that x  ≤  0, which means that 
 
 (x – 3) ≤  0 and (x – 1) ≤  0. 
 
So  (x – 3)(x – 1) ≥ 0 (since a minus times a minus gives a plus) 
i.e.        x2 − 4x + 3    ≥ 0 
i.e. ¬ ( x2 − 4x + 3 < 0). 
 

Let’s analyse the proof:  
 
Let p represent “x2 − 4x + 3 < 0” and let q represent “x > 0”. 
 
We need to prove that p → q. If we want to prove this using contrapositive, we need to 
prove that ¬ q → ¬ p, i.e. if it is not the case that “x > 0”, then it is also not the case that 
“x 2 – 4x + 3 < 0”.  
 
N.B.:  Do not confuse the contrapositive of a statement with the converse, which is defined 
as follows: 

 
Definition: Converse 

The converse of p → q is written as q → p. 
 
Proving the converse q → p does not establish p → q. Many people seem to 
think it does, but this can produce ridiculous arguments such as: “If an exam is 
too difficult then students fail. So if students fail, the exam was too difficult.” It 
could be that they did not study enough! Let’s look at this in more detail. 
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From the statement 
 
"If x ∈ Z + then x2 > 0"  
 
we cannot conclude 
 
"If x2 > 0 then x ∈  Z +”, since x might have a value such as –113. 
 
Similarly, from 
  
"If one is hanged by the neck, then one is dead"  
 
we can't conclude that 
 
"If one is dead, then one was hanged by the neck",  
 
for it may well have been a logician enraged by the confusion of converse and 
contrapositive who battered the poor victim to a pulp with a truth table. 

 
We have encountered the following example of a statement and its 
contrapositive in the discussion on injective functions: 
 

Example 
“If f(x) = f(y), then x = y” 
 
“If x ≠ y, then f(x) ≠ f(y)” 
 
Because of our knowledge of logic, the equivalence of these two statements 
should now be clear. 
 

Activity 10-8: Implication  
Show by means of truth tables that p → q and q →  p are not logically 
equivalent. 
 
Having covered a number of different ways in which we can prove statements 
such as p → q, what other kinds of proof do we still have to consider? 
 

10.2.4  Proofs involving quantifiers 
 
Truth tables cannot be used to prove any quantified statement where the 
domain is infinite. What should we do when we have to prove a statement 
such as “∀ x ∈ A, P(x)” where A is finite? 
 
Well, in order to prove “∀ x ∈ A, P(x)”, just think of the statement as being 
equivalent to  

“x ∈ A → P(x)”. 
 
We have discussed the ways in which we can prove statements such as p → q, 
so we can apply our knowledge of implications directly to quantified 
statements. 

  



Study unit 10  Logic: Quantifiers, predicates,  and proof strategies    COS1501/1 

 163  

Let’s look at an example: 
 

Example 
To prove ∀ x ∈ R, x2 + 1 > 0, we reason as follows: 

 
If x ∈ R then 
x2  ≥  0 
i.e.   x2 + 1 ≥ 1 
i.e.   x2 + 1 > 0 

  
In words this says: "If x is any real number, then x2 ≥ 0, i.e. x2 + 1 ≥ 1, which 
means that x2 + 1 > 0.” The word "any" can be included, because x is a variable. 
 

Our conclusion:  Proving a statement of the form ∀ x ∈ A, P(x) offers no new problems. 
We apply the knowledge we already have. 

 
On the other hand, we sometimes want to disprove a statement. 
 
For instance, given the statement 
 

∀ x ∈ R, x2 – 4x + 3 ≥ 0, 
 
we may decide after some thought that it is false. How do we prove that it is 
false? Well, by proving that its negation is true. 
 
The negation of  
 

∀ x ∈ A, P(x) 
  

 is the statement  
 

¬ (∀ x ∈ A, P(x)),  
 

which, in a more useful form, is  
 

∃ x ∈ A, ¬ P(x) . 
 

And in order to prove an existential statement, it is enough to find a single 
element of A which acts in the right way. 

 
Activity 10-9: Counterexample  

Show by means of a counterexample that the statement  
∀ x ∈ R, x2 – 4x + 3 ≥ 0 is not true. 
 
To disprove  

 
∀ x ∈ R, x2 – 4x + 3 ≥ 0, 

 
we only have to prove that 

 
∃ x ∈ R, x2 – 4x + 3 < 0. 
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Choose x = 3/2. 
 
Then (3/2)2 – 4(3/2) + 3 = 9/4 – 12/2 + 3  

= 9/4 – 24/4 + 12/4 
= – 3/4 which is less than 0. 

 
So we have shown that there exists some x (in this case x = 3/2) such that 

x2 – 4x + 3 < 0. 
 
One counterexample is enough to disprove the given statement, but there 
might exist some other counterexamples that will also show this. 
 

10.2.5 Vacuous proof 
 
We first look at an example to illustrate this proof method: 
  

Example 
Suppose we want to prove that  
 0/ ⊆ X. 
 
Then, by the subset definition provided in a previous study unit, we have to 
show that  
 if x ∈ 0/ then x ∈ X. 
 
Proof: 
 0/ is an empty set, 
 so “x ∈ 0/” is false, 
 thus “if x ∈ 0/ then x ∈ X” is vacuously true. 
       QED 
 
What does the last line in the proof say? We can refer to the truth table of the 
conditional statement “if p then q” in the previous study unit. Whenever p is 
false, we know that p → q is true, no matter whether q is true or false. In our 
example “x ∈ 0/” is false, so no matter whether “x ∈ X” is true or false, we may 
say that the statement “if x ∈ 0/ then x ∈ X” is vacuously true. 
 
Let’s look at another example: 
  

Example 
Let S be a relation on {a, b, c, d}: 
 S = {(a, b), (a, d)}. 
 
Is S transitive? 
 
Proof: 

By the definition of transitivity provided in a previous study unit, 
whenever (x, y) ∈ S and (y, z) ∈ S then  

 (x, z) must also live in S.  
 
 It is not possible to find two pairs of the form (x, y) and (y, z) in S, 

so it is vacuously true that S is transitive. 
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Activity 10-10: Self-assessment exercises    Application skills 
1. Prove each of the following statements by direct proof, contrapositive 

and contradiction (reductio ad absurdum) respectively.  Which strategy 
works best?  

 
(a) If  x2 − 3x + 2 < 0, then  x > 0. 

 
(b) If  x2 − x − 6 > 0, then  x =/ 1. 

 
(c) For all a, b ∈ Z, if a + b is odd, then exactly one of a or b is odd. 

 
(d) For all x ∈ Z, if x is even, then x2 + 4x + 2 is even. 

 
(e) If n is a multiple of 3, then n3 + n2 is a multiple of 3. 

 
2. Provide a counterexample to show that the statement 

“If x > 0, then x2 − 3x + 1 < 0” is not true for all integers x > 0. 

10.3      In summary of the study unit 
 
In this study unit you ensured that you can answer the following questions: 
 

• What is meant by the term “universal quantifier”? 
• What does “existential quantifier” mean? 
• What does “implication” mean? 
• What is meant by the concept “predicate”? 
• How do we approach each method of proof discussed in section 10.2? 
• How do we express the converse of an implication? 
• How do we express the contrapositive of an implication? 
• How do we use a counterexample to show that a statement is not true? 
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INDEX 
 
Q (rational numbers), 22 
R (real numbers), 25 
Z+ (positive integers), 3 
Z≥ (non-negative integers), 7 
Z (integers), 11 
 
A 
absolute value, 17 
abstract reasoning, 89 
antecedent, 140 
 
B 
base, 9 
biconditional, 141 
binary operation, 116 
 
C 
Cartesian product, 73 
codomain, 98 
common factor, 6 
common denominator, 24 
complement, 50 
conclusion, 139 
conditional, 139 
conjunction, 138 
connective, 137 
consequent, 140  
contradiction, 145 
contrapositive, 160 
converse, 161 
counterexample, 61, 89, 156 
 
D 
decimals 

non-repeating, 29 
repeating, 29 

de Morgan’s laws, 147 
digit, 8 
denominator, 23 

common, 24 
least common, 24 

disjunction, 139 
domain, 74, 98 
dot product, 124 
 
E 
element (member), 3, 36 
ellipses, 35 
equivalence class, 91 
exclusive, 44 
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F 
factorisation, 11 
fraction 

equivalent, 24 
improper, 30 
proper, 30 

function 
bijective, 112 
composition, 108 
identity, 114 
injective, 106 
invertible, 112 

 little circle, 108 
 one-to-one, 107 
 onto, 105 
     surjective, 105 
functional, 98 
 
 
G 
general proof, 89 
generalisation of conjunction, 154 
generalised form of disjunction, 154 
 
H 
hypothesis, 139 
 
I 
identity, 53, 61, 147 
     additive, 10 
iff, 56 
implication, 140 
Inclusion-exclusion principle, 63 
inclusive, 41, 139 
infix notation, 72, 116 
integer 

even, 27 
odd, 27 

intersection, 42, 50 
inverse 

additive, 15 
multiplicative, 25 
 

L 
logical equivalence, 146 
logical equivalences, 147 
logical connective, 137 
lowest terms, 26 
 
M 
matrix, 125 

addition, 127 
column, 126 
identity, 132 
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multiplication, 128 
row, 126 
zero, 132 

member, 36 
modulo, 92 
monotonicity, 19, 20 
 
N 
negation, 141 
n factorial (n!), 18 
notation 

infix, 72, 116 
list (roster method), 34 
prefix, 116 
set-builder, 35 

number 
prime, 18 

number line, 16 
numbers 

irrational, 28 
real, 29 

numerator, 23 
 
O 
operation 

3-ary, 122 
4-ary, 122 
binary, 116 

 unary, 122 
or 

exclusive, 139 
inclusive, 139 

order 
weak partial, 84 
strict partial, 86 

ordered pairs, 70 
origin, 70 
 
P 
partition, 94 
power set, 45 
predicate, 157 
proof 

by contradiction, 160 
by contrapositive, 107, 160 
direct, 159 

proposition, 136 
Pythagoras’ Theorem, 25 
 
Q 
QED, 23 
quantified variable, 152 
quantifier 

existential, 153 
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universal, 152 
R 
radix, 9 
range, 98, 104 
ran(T), 74 
rational numbers, 22 
reciprocal, 25 
reduction ad absurdum, 26, 94, 160 
reflexive, 75 
relation, 73 

antisymmetric, 76 
binary, 74, 97 
composition, 79, 108 
equivalence, 91 
inverse, 79, 112 
n-ary, 97 
order, 71 
reflexive, 75 

    irreflexive, 75 
symmetric, 76 
ternary, 97 
total order, 87 
transitive, 77 

relationship, 72 
repeated addition, 13 
repeating decimals, 29 
roster method, 34 
 
S 
scalar, 124 
set, 3, 34, 35 

cardinality, 44 
complement, 42, 43 
difference, 42 
disjointness, 44 
empty, 38 
equality, 49 
finite, 117 
identity, 53 
infinite, 117 
intersection, 41, 50 
power, 45 
symmetric difference, 43, 51 
union, 41, 50 
universal, 39, 48 

square root, 11, 12, 15, 17 
statement 

atomic, 137 
compound, 137 
declarative, 136 

 simple, 137 
subset, 40 

proper, 41 
sum rule, 63 
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T 
tautology, 145 
transitivity, 19 
trichotomy, 78 
truth value, 154 
 
U 
union, 41, 50  
 
V 
variable, 35 
vector, 122 

dot product, 124 
sum, 124 

Venn diagrams, 48 
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