
BAR CODE

Learn without limits. university
of south africa

Tutorial Letter 202/1/2014

Numerical Methods II

APM3711

Semester 1

Department of Mathematical Sciences

IMPORTANT INFORMATION:

This tutorial letter contains solutions
to assignment 02

APM3711/202/1/2014

ONLY FOR SEMESTER 1 STUDENTS
ASSIGNMENT 02

FIXED CLOSING DATE: 16 APRIL 2014
Unique Number: 859053

Question 1

Consider the eigenvalue problem Ax = λx with

A =

 −6 0 6
4 9 2
−3 0 5

 and A−1 =

 − 5
12

0 1
2

13
54

1
9
−1

3

−1
4

0 1
2

 .
(a) Apply Gerschgorin’s theorem to find regions in the complex plane within which the eigenval-

ues must lie. Sketch these regions and give the number of eigenvalues within each.

Use the power method to estimate

(b) the dominant eigenvalue and the associated eigenvector,

(c) the eigenvalue with the smallest absolute value and the associated eigenvector,

(d) the remaining eigenvalue and the associated eigenvector.

In all cases, start with the vector (1, 1, 1) and iterate three times. Use at least 4 decimal digits
with rounding.

SOLUTION

Given

A =

 −6 0 6
4 9 2
−3 0 5

 , A−1 =

 − 5
12

0 1
2

13
54

1
9
−1

3

−1
4

0 1
2

 .
(a) Gerschgorin’s circle theorems can be formulated as follows:

Theorem I

Let A be an n × n matrix (with the aijs real– or complex–valued), then all the eigenvalues of
A lie in the union of the following n disks, Di, in the complex plane:

Di =

{
z ∈ C : |z − aii| ≤

n∑
j=1, j 6=i

|aij|

}
, i = 1, 2, . . . , n.

2

APM3711/202

(Di is simply the disk with centre aii and radius equal to the sum of the absolute values of the
entries in row I which are not on the main diagonal.)

Theorem II

If k of these disks do not touch the other n − k disks, then exactly k eigenvalues (counting
multiplicities) lie in the union of those k disks.

For the matrix A above we have

D1 = {z ∈ C : |z − (−6)| ≤ |0|+ |6| = 6}
D2 = {z ∈ C : |z − 9| ≤ |4|+ |2| = 6}
D3 = {z ∈ C : |z − 5| ≤ |−3|+ |0| = 3} .

According to Gerschgorin I and II one eigenvalues lies in D1 and the other two lie in D2 ∪D3.

For the sake of interest we shall verify this by calculating the eigenvalues and the correspond-
ing eigenvectors analytically. We have

Ax = λx

(A− λI)x = 0

3

where I denotes the 3× 3 identity matrix. If x 6= 0 we must have |A− λI| = 0. Now

|A− λI| =

∣∣∣∣∣∣
−6− λ 0 6

4 9− λ 2
−3 0 5− λ

∣∣∣∣∣∣
= (9− λ)

∣∣∣∣ −6− λ 6
−3 5− λ

∣∣∣∣
= (9− λ) {(−6− λ) (5− λ)− 6 (−3)}

= (9− λ)
(
λ2 + λ− 12

)
= (9− λ) (λ+ 4) (λ− 3) .

Hence the characteristic equation is

(9− λ) (λ+ 4) (λ− 3) = 0

with roots, i.e. the eigenvalues of A,

λ = −4, 3, 9.

This confirms our earlier conclusion, because −4 lies in D1 while 3 and 9 lie in D2 ∪D3.

The eigenvectors:

λ = −4

(A− λI)x = 0

⇔

 −6− (−4) 0 6
4 9− (−4) 2
−3 0 5− (−4)

 x1
x2
x3

 =

 0
0
0



∴ −2x1 + 6x3 = 0 (1)
4x1 + 13x2 + 2x3 = 0 (2)

−3x1 + 9x3 = 0 (3)

From (1) and (3) it follows that x1 = 3x3, so that (2) implies that

x2 = − 1

13
(4x1 + 2x3) = −14

13
x3,

while an arbitrary value can be taken for x3. Hence the eigenvectors for λ = −4 are given by

x =

(
3m, −14

13
m, m

)
= m

(
3, −14

13
, 1

)
, m arbitrary.

4

APM3711/202

λ = 3

(A− λI)x = 0⇔

 −6− 3 0 6
4 9− 3 2
−3 0 5− 3

 x1
x2
x3

 =

 0
0
0



−9x1 + 6x3 = 0 ⇒ x3 =
3

2
x1

4x1 + 6x2 + 3x3 = 0 ⇒ x2 = −1

6
(4x1 + 2x3) = −7

6
x1

−3x1 + 3x2 = 0 ⇒ x3 =
3

2
x1

The eigenvector for λ = 3 is

x =

(
n, −7

6
n,

3

2
n

)
= n

(
1, −7

6
,

3

2

)
, n arbitrary.

λ = 9

(A− λI)x = 0⇔

 −6− 9 0 6− 9
4 9− 9 2
−3 0 5− 9

 x1
x2
x3

 =

 0
0
0



−15x1 − 3x3 = 0 ⇒ x3 = −5x1

4x1 + 2x3 = 0 ⇒ x3 = 2x1 ⇒ x1 = x3 = 0

−3x1 − 4x3 = 0

The eigenvector for λ = 9 is

x = (0, p, 0) = p (0, 1, 0) , p arbitrary.

(b) The power method

The dominant eigenvalue can be found by applying the power method to the matrix A.

Thus for Ax = λx :  −6 0 6
4 9 2
−3 0 5

 1
1
1

 =

 0
15
2

 = 15

 0
1

0.1333


 −6 0 6

4 9 2
−3 0 5

 0
1

0.1333

 =

 0.8000
9.2667
0.6667

 = 9.2667

 0.0863
1

0.0719



5

After 2 iterations we obtain

λ = 9.2667, x = (0.0863, 1, 0.0719) .

After 10 iterations we obtain

λ = 8.9994, x = (0.0001, 1, 0.0000) .

Compare this with the result in (i) when λ = 9 and p = 1 :

x = (0, 1, 0) .

(c) The smallest absolute eigenvalue can be obtained by computing the inverse of A and then
using the power method because

Ax = λx⇒ x = A−1Ax = A−1λx⇒ A−1x =
1

λ
x

and conversely

A−1x = µx⇒ x = AA−1x = Aµx⇒ Ax =
1

µ
x.

This proves that λ1, λ2, . . . , λn are the eigenvalues of A if and only if the eigenvalues of A−1

are 1
λ1
, . . . , 1

λn
. Hence the eigenvalue of A with smallest absolute value is the inverse of the

eigenvalue of A−1 with largest absolute value. So compute A−1 and apply the power method. − 5
12

0 1
2

13
54

1
9
−1

3

−1
4

0 1
2

 1
1
1

 =

 0.0833
0.0185
0.2500

 = 0.25

 0.3333
0.0741

1


 − 5

12
0 1

2
13
54

1
9
−1

3

−1
4

0 1
2

 0.3333
0.0741

1

 =

 0.3611
−0.2449
0.4167


= 0.4167

 0.8667
−0.5877

1


After 2 iterations we estimate the dominant eigenvalue of A−1 as

0.4167

and the corresponding eigenvector as

x = (0.8667, −0.5877, 1) .

6

APM3711/202

The eigenvalue of least magnitude of A is therefore

λ =
1

0.4167
= 2.4000

and the corresponding eigenvector is the one given above.

After 10 iterations we obtain

λ =
1

0.3407
= 2.935, x = (0, 6884, −0.7805, 1) .

Compare this with the result in (i) when λ = 3 and n = 2
3

:

x =

(
2

3
, −7

9
, 1

)
= (0, 6667, −0.7778, 1) .

The convergence of the power method is slower than in (a) because the magnitude of the
dominanet eigenvalue of A−1, 1

3
, is not much larger than that of the eigenvalue with the second

largest magnitude, −1
4
.

(d) The two calculated eigenvalues, λ1 ≈ 9.2667 and λ2 ≈ 2.4000, both lie in the union of the
disks D2 and D3. Hence we know from (i) that the remaining eigenvalue λ3 must lie in D1,
i.e. λ3 must be near −6. In order to use the inverse power method we must first shift the
eigenvalues.

If λ is an eigenvalue of A with corresponding eigenvector x, then

Ax = λx

∴ Ax− (−6) Ix = λx− (−6)x

∴ (A+ 6I)x = (λ+ 6)x

Hence the eigenvalues of A+ 6I are

λ1 + 6, λ2 + 6, λ3 + 6

and the eigenvalues of (A+ 6I)−1 are

1

λ1 + 6
,

1

λ2 + 6
,

1

λ3 + 6
.

Note that the eigenvectors reamin unchanged. Since λ3 is near −6, λ3 + 6 will be small.
Thus 1

λ3+6
will be the dominant eigenvalue of (A+ 6I)−1 (compared to 1

λ1+6
≈ 0.0655 and

7

1
λ2+6

≈ 0.1190), and so the power method can be used to find it. First we use the Gauss–
Jordan method to obtain (A+ 6I)−1 : 0 0 6 1 0 0

4 15 2 0 1 0
−3 0 11 0 0 1


∼

 1 0 −11
3

0 0 −1
3

4
15

1 2
15

0 1
15

0
0 0 1 1

6
0 0


∼

 1 0 −11
3

0 0 −1
3

0 1 10
9

0 1
15

4
45

0 0 1 1
6

0 0


∼

 1 0 0 11
18

0 −1
3

0 1 0 −10
54

1
15

4
45

0 0 1 1
6

0 0



∴ (A+ 6I)−1 =

 11
18

0 −1
3

−10
54

1
15

4
45

1
6

0 0


Now the power method is applied 11

18
0 −1

3

−10
54

1
15

4
45

1
6

0 0

 1
1
1

 =

 0.2777
−0.0296
0.1667


= 0.2777

 1
−0.1067
0.6000


 11

18
0 −1

3

−10
54

1
15

4
45

1
6

0 0

 1
−0.1067
0.6000

 =

 0.4111
−0.1390
0.1667


= 0.4111

 1
−0.3380
0.4054


After 2 iterations we obtain

1

λ3 + 6
= 0.4111 ∴ λ3 =

1

0.4111
− 6 = −3.5676

x = (1, −0.3380, 0.4054) .

After 10 iterations we obtain

λ3 =
1

0.5000
− 6 = 4.000, x = (1, 0.3590, 0.3333) .

8

APM3711/202

Compare this with the result in (a) when λ = −4 and m = 1
3

:

x =

(
1,

14

39
,

1

3

)
= (1, 0.3590, 0.3333) .

Question 2

Given the characteristic value problem
y′′ − 3y′ + 2k2y = 0, y(0) = 0, y(1) = 0, (1)

using the method of finite differences, derive an eigenvalue problem for determining the non–zero
values of k for which the differential equation has non–trivial solutions.

Solution
The problem (1) has the trivial solution y ≡ 0. For certain values of k, called characteristic val-
ues of the problem, it may also have non–trivial (non–zero) solutions. “Solving” the characteristic
value problem consists of finding these characteristic values, and usually finding the corresponding
solutions as well.

First, we set up the system of equations corresponding to the boundary–value problem, as usual,
by replacing the differential equation in (1) with a finite–difference equation at the grid points. Let
xi denote the grid points, h = xi+1 − xi and yi = y(xi). Replacing derivatives of y with respect to
x by central differences, we see that the differential equation in (1) can be approximated at a grid
point xi by the difference equation

yi−1 − 2yi + yi+1

h2
− 3

yi+1 − yi−1
2h

+ 2k2yi = 0

which we rewrite as
yi−1(1 +

3

2
h)− 2yi(1− k2h2) + yi+1(1−

3

2
h) = 0. (2)

For each value of h we get a set of grid points xi. We will need to apply (2) at each interior grid
point xi, 0 < xi < 1. The given boundary values y(0) = y(1) = 0 will give the values yj at the two
grid points xj which coincide with the boundaries x = 0 and x = 1. This will give us a set of linear
equations from which the yi–values can be solved, providing us with the approximate values of the
solution function y(x) at the grid points xi. The identification of characteristic values k, for which
non–zero solutions y exist, can now be expressed as a problem of finding eigenvalues of a matrix.

(a) With h = 1
2
, the grid points are x0 = 0, x1 = 1

2
and x2 = 1. The boundary values give

y0 = y(x0) = 0, y2 = y(x2) = 0. Applying (2) at the grid point x1 = 1
2

gives

y0(1 +
3

2
h)− 2y1(1− k2h2) + y2(1−

3

2
h) = 0

∴ 0 · (1 +
3

2
· 1

2
) = 2y1(1− k2(

1

2
)2) + 0 · (1− 3

2
· 1

2
) = 0

∴ −2y1(1−
k2

4
) = 0. (3)

9

This is a very simple case, with one unknown variable and one equation. We see immediately
the following: The equation (3) can have a non–zero solution y1 if and only if

1− k2

4
= 0

∴ k = ± 2.

Question 3

We have a plate of 12× 9 cm and the temperatures on the edges are held as shown in the sketch.
Take ∆x = ∆y = 3 cm and use the S.O.R. method (successive overrelaxation method) to find the
temperatures at all the grid–points. First calculate the optimal value of ω and then use this value in
the algorithm.

(Not to scale!)

100

100

40 30 10 0

0

0

0103040

80

80

SOLUTION

According to Section 7.7 [Section 7.2] of Gerald, the steady–state heat flow is modelled by Laplace’s
equation:

∇2u = 0 (1)

The S.O.R. method for the solution of (1) is discussed in Gerald on pp. 556-557 [pp. 559–564].
The iteration formula for S.O.R. can be written as

u
(k+1)
ij = u

(k)
ij +

ω

4
[u

(k)
i+1,j + u

(k+1)
i−1,j + u

(k)
i,j+1 + u

(k+1)
i,j−1 − 4u

(k)
ij] (2)

= (1− ω)u
(k)
ij +

ω

4
[u

(k+1)
i,j−1 + u

(k+1)
i−1,j + u

(k)
i+1,j + u

(k)
i,j+1]

where u(k)ij denotes the k − th approximation of u(xi, yj) and ω is the overrelaxation factor.

Since u
(k+1)
i,j−1 and u

(k+1)
i−1,j must be available for the calculation of u(k+1)

ij , formula (2) must always
be applied at points (xi, yj−1) and (xi−1, yj) before it is applied at (xi, yj). For the conventional
numbering of the coordinates, where i increases from left to right and j increases in the upward
direction, there are two possible orderings of the mesh points that will ensure this: (a) column–wise,

10

APM3711/202

starting at the left most column and moving upwards in every column, or (b) row–wise, starting at
the bottom row and moving to the right in every row – as in the following sketch:

Applying (2) in this order, we obtain the following iteration scheme:

u
(k+1)
1 = (1− ω)u

(k)
1 +

ω

4
[60 + 80 + u

(k)
2 + u

(k)
4]

u
(k+1)
2 = (1− ω)u

(k)
2 +

ω

4
[30 + u

(k+1)
1 + u

(k)
3 + u

(k)
5]

u
(k+1)
3 = (1− ω)u

(k)
3 +

ω

4
[10 + u

(k+1)
2 + 0 + u

(k)
6]

u
(k+1)
4 = (1− ω)u

(k)
4 +

ω

4
[u

(k+1)
1 + 80 + u

(k)
5 + 40]

u
(k+1)
5 = (1− ω)u

(k)
5 +

ω

4
[u

(k+1)
2 + u

(k+1)
4 + u

(k)
6 + 30]

u
(k+1)
6 = (1− ω)u

(k)
6 +

ω

4
[u

(k+1)
3 + u

(k+1)
5 + 0 + 10]

Observe that the boundary values prescribed at the corners of the plate do not appear in any of the
equations; in other words the S.O.R. method does not permit us to prescribe these values. This is
due to the fact that (2) is based on the five–point formula for the Laplace operator.

In the program below the solution is represented as a matrix u[i, j], so that (2) can be applied
directly. Hence it is not really necessary to write down and copy to the program the equations
above. The average of the boundary values at all the points, excluding the corners, is used as the
initial estimate of u.

An estimate of the optimum overrelaxation factor ω is given on p. 557 [p. 561] of Gerald: We get
that

ωopt =
4

2 +
√

4− c2
, c = cos(

π

p
) + cos(

π

q
)

where p and q are the number of mesh divisions on each side of the rectangular domain. Thus
p = 3 and q = 4, so that ωopt ≈ 1.1128. For the sake of interest we verified this by executing the

11

following program with different values of ω :

ω iterations / iterasies

0.9 20
1.0 16
1.1 11
1.1128 10
1.2 11
1.3 14
1.4 18

The program and results follow.

PROGRAM AS02 5 3(output);

CONST

nx = 3; (* number of nodes in x-direction *)

ny = 2; (* " " " " y- " *)

tolerance = 1.0E-5;

itermax = 100;

TYPE

idim = 0..(nx + 1);

jdim = 0..(ny + 1);

solution = array[idim,jdim] of real;

VAR

i : idim; j : jdim;

k : 0..itermax;

omega : real;

old u, u : solution;

f : text;

FUNCTION MaxDif(u,v : solution) : real;

VAR

d : real;

i : idim; j : jdim;

BEGIN

d := 0.0;

FOR i := 1 to nx DO

FOR j := 1 to ny DO

IF abs(u[i,j] - v[i,j]) > d THEN

d := abs(u[i,j] - v[i,j]);

MaxDif := d;

END; {MaxDif}

PROCEDURE Initialize(VAR omega : real;

12

APM3711/202

VAR old u, u : solution);

VAR

c, sum : real;

i : idim; j : jdim;

BEGIN

c := cos(pi/(nx + 1)) + cos(pi/(ny + 1));

omega := 4/(2 + sqrt(4 - c*c));

(* omega := 1.0 *)

FOR i := 0 to nx + 1 DO

FOR j := 0 to ny + 1 DO

u[i,j] := 0.0;

(* Nonzero boundary values: *)

u[0,1] := 80.0; u[0,2] := 80.0;

u[1,3] := 40.0; u[2,3] := 30.0;

u[3,3] := 10.0; u[1,0] := 60.0;

u[2,0] := 30.0; u[3,0] := 10.0;

(* Find the sum of the boundary values: *)

sum := 0.0;

FOR i := 1 to nx DO

sum := sum + u[i,0] + u[i,ny + 1];

FOR j := 1 to ny DO

sum := sum + u[0,j] + u[nx + 1,j];

(* Define u at the interior points: *)

FOR i := 1 to nx DO

FOR j := 1 to ny DO

u[i,j] := sum/(2*nx + 2*ny);

FOR i := 0 to nx + 1 DO

FOR j := 0 to ny + 1 DO

old u[i,j] := u[i,j];

END; {Initialize}

BEGIN {Program}
assign(f, ’work\AS02 5 3.DAT’);

rewrite(f);

Initialize(omega,old u,u);

writeln(f);

writeln(f,’ ******** ASSIGNMENT 2, ’,

’QUESTION 3 ********’);

writeln(f);

writeln(f,’ S.O.R. Method for the Laplace’,

’ equation:’);

writeln(f,’ omega = ’,omega:6:4);

writeln(f,’ tolerance = ’,tolerance:8:6);

writeln(f,’ max. iterations = ’,itermax:3);

13

k := 0;

REPEAT

k := k + 1;

FOR i := 1 to nx DO

FOR j := 1 to ny DO

old u[i,j] := u[i,j];

FOR i := 1 to nx DO

FOR j := 1 to ny DO

u[i,j] := (1 - omega)*old u[i,j]

+ omega*(u[i,j - 1] + u[i - 1,j]

+ old u[i + 1,j] + old u[i,j + 1])/4;

UNTIL (MaxDif(u,old u) < tolerance) OR

(k >= itermax);

writeln(f);

writeln(f,’ Solution and boundary values:’);

writeln(f);

write(f,’ ’);

FOR i := 1 to nx DO

write(f,’ ’,u[i,ny + 1]:9:4);

writeln(f);

FOR j := ny downto 1 DO

BEGIN

write(f,’ ’);

FOR i := 0 to nx + 1 DO

write(f,’ ’,u[i,j]:9:4);

writeln(f);

END; {for j}
write(f,’ ’);

FOR i := 1 to nx DO

write(f,’ ’,u[i,0]:9:4);

writeln(f); writeln(f);

writeln(f,’ iterations = ’,k:3);

writeln(f,’ max |u - old u| = ’,

MaxDif(u,old u):10:6);

close(f);

END.

******** ASSIGNMENT 2, QUESTION 3 ********

S.O.R. Method for the Laplace equation:

omega = 1.1128

tolerance = 0.000010

max. iterations = 100

Solution and boundary values:

14

APM3711/202

40.0000 30.0000 10.0000

80.0000 52.1988 32.4224 14.1988 0.0000

80.0000 56.3727 33.2919 14.3727 0.0000

60.0000 30.0000 10.0000

iterations = 10

max |u - old u| = 0.000006

Question 4

Solve the problem in Question 3 by using the A.D.I. method (alternating–direction–implicit method)
with ∆x = ∆y = 3 cm and ρ = 1.0 .

SOLUTION

The A.D.I. method for solving Laplace’s equation is discussed in Section 7.8 [7.10] of Gerald. The
equations for the horizontal and vertical traverses, respectively, are given by

−u(k+1)
L +

(
1

ρ
+ 2

)
u
(k+1)
0 − u(k+1)

R (1)

= u
(k)
A +

(
1

ρ
− 2

)
u
(k)
0 + u

(k)
B

and

−u(k+2)
A +

(
1

ρ
+ 2

)
u
(k+2)
0 − u(k+2)

B (2)

= u
(k+1)
L +

(
1

ρ
− 2

)
u
(k+1)
0 + u

(k+1)
R ,

where ρ is the acceleration factor.

15

brandonrowe
Highlight

Let u1, ..., u6 be as in the sketch above. Let ρ = 1 and apply equation (1) at each of the interior
mesh points, proceeding row–wise. We get

(r1) −80 + 3u
(k+1)
1 − u(k+1)

2 = 40− u(k)1 + u
(k)
4

(r2) −u(k+1)
1 + 3u

(k+1)
2 − u(k+1)

3 = 30− u(k)2 + u
(k)
5

(r3) −u(k+1)
2 + 3u

(k+1)
3 − 0 = 10− u(k)3 + u

(k)
6

(r4) −80 + 3u
(k+1)
4 − u(k+1)

5 = u
(k)
1 − u

(k)
4 + 60

(r5) −u(k+1)
4 + 3u

(k+1)
5 − u(k+1)

6 = u
(k)
2 − u

(k)
5 + 30

(r6) −u(k+1)
5 + 3u

(k+1)
6 − 0 = u

(k)
3 − u

(k)
6 + 10

It only remains to take all the constants in equations (r1) – (r6) to the right hand side. Similarly,
by applying (2) at every mesh point, proceeding column–wise, we obtain (here we have already
moved the constants to the right):

(c1) 3u
(k+2)
1 − u(k+2)

4 = 80− u(k+1)
1 + u

(k+1)
2 + 40

(c2) −u(k+2)
1 + 3u

(k+2)
4 = 80− u(k+1)

4 + u
(k+1)
5 + 60

(c3) 3u
(k+2)
2 − u(k+2)

5 = u
(k+1)
1 − u(k+1)

2 + u
(k+1)
3 + 30

(c4) −u(k+2)
2 + 3u

(k+2)
5 = u

(k+1)
4 − u(k+1)

5 + u
(k+1)
6 + 30

(c5) 3u
(k+2)
3 − u(k+2)

6 = u
(k+1)
2 − u(k+1)

3 + 0 + 10

(c6) −u(k+2)
3 + 3u

(k+2)
6 = u

(k+1)
5 − u(k+1)

6 + 0 + 10

Observe that, as in the case of the S.O.R. method, the boundary values given at the corners of the
plate do not appear in any of the equations. This is due to the fact that equations (1) and (2) are
based on the five–point formula (1).

We have written out the row and column equations using only one numbering, u1 to u6, for the
nodes. In the program, the two tridiagonal matrices are generated automatically, and the user only
needs to type in the boundary values at the appropriate places.
As explained in Tutorial letter 102, we can also introduce the double notation for the nodes (ui for
rowwise numbering, and vi for columnwise numbering), write down the two sets of equations as
matrix equations Au = c, Bv = d and then provide these matrices A, B and vectors c, d as input to
the program. The downside is that the user has to set up the equations, whereas in the program
that follows, that is done automatically!
The algorithm is as follows:

1. Define ε and max k.

2. Let k = 0 and define the initial estimate u(0)i , i = 1, 2, ..., 12.

Repeat 3 – 6 until 7 is satisfied:

3. Use u(k)1 , ..., u
(k)
6 to define the right hand sides of equations (r1),...,(r6), then solve for u(k+1)

1 , ..., u
(k+1)
6 .

4. Use u
(k+1)
1 , ..., u

(k+1)
6 to define the right hand sides of equations (c1),...,(c6), then solve for

u
(k+2)
1 , ..., u

(k+2)
6 .

5. Print u(k+2)
1 , ..., u

(k+2)
6 .

16

APM3711/202

6. Let k := k + 2.

7. max
i

∣∣∣u(k)i − u(k−2)i

∣∣∣ < ε OR k = max k

The program and results follow. The program is based on the program on pages 585–589 of Gerald
[program ADIELL, pp. 606–609]. The following table shows the effect of varying ρ :

ρ iterations

0.3 24
0.4 18
0.5 16
0.6 14
0.7 16
0.8 16
0.9 18
1.0 20
1.1 22

PROGRAM AS02 5 4(output);

CONST

rho = 1.0;

rows = 2;

cols = 3;

size = rows*cols;

tol = 1.0E-5;

itermax = 100;

c = 1.0/rho - 2.0;

TYPE

vector = array[1..size] of real;

matrix = array[1..size,1..3] of real;

rowvector = array[1..cols] of real;

colvector = array[1..rows] of real;

VAR

u coef, v coef : matrix;

u, v, old u, u bcnd, v bcnd : vector;

top, bottom : rowvector;

left, right : colvector;

i, j, k, l : integer;

sum : real;

f : text;

FUNCTION MaxDif(x, y : vector) : real;

VAR

i : integer;

d : real;

17

BEGIN

d := 0.0;

FOR i := 1 to size DO

IF abs(x[i] - y[i]) > d THEN

d := abs(x[i] - y[i]);

MaxDif := d;

END; {MaxDif}

PROCEDURE Solve(coef : matrix;

bcnd, y : vector;

m, n : integer;

VAR x : vector);

(* Solves (coef)x = b with the LU form of coef

given in coef, b determined by bcnd and y. *)

VAR

i, j, k : integer;

BEGIN

(* Compute r.h.s. vector b, store it in x: *)

FOR i := 1 to n DO BEGIN

j := (i - 1)*m + 1;

x[i] := c*y[j] + y[j + 1] + bcnd[i];

k := size - n + i;

j := i*m;

x[k] := y[j - 1] + c*y[j] + bcnd[k];

END; {for i}
FOR i := 2 to (m - 1) DO

FOR j := 1 to n DO BEGIN

k := (i - 1)*n + j;

l := i + (j - 1)*m;

x[k] := y[l - 1] + c*y[l] + y[l + 1]

+ bcnd[k];

END; {for j}

(* Forward substitution to get z = L(-1)b: *)

x[1] := x[1]/coef[1,2];

FOR i := 2 to size DO

x[i] := (x[i] - coef[i,1]*x[i-1])/coef[i,2];

(* Backward substitution to get x = U(-1)z: *)

FOR j := (size - 1) downto 1 DO

x[j] := x[j] - coef[j,3]*x[j + 1];

END; {Solve}

BEGIN

(* Define the boundary values: *)

top[1] := 40.0; top[2] := 30.0;

top[3] := 10.0;

18

APM3711/202

bottom[1] := 60.0; bottom[2] := 30.0;

bottom[3] := 10.0;

left[1] := 80.0; left[2] := 80.0;

FOR j := 1 to rows DO

right[j] := 0.0;

(* Find the average of the boundary values

and define the initial estimate of u: *)

sum := 0.0;

FOR i := 1 to rows DO

sum := sum + left[i] + right[i];

FOR i := 1 to cols DO

sum := sum + top[i] + bottom[i];

FOR i := 1 to size DO

u[i] := sum/(2*rows + 2*cols);

(* Establish the coefficient matrices: *)

FOR i := 1 to size DO BEGIN

u coef[i,1] := -1.0;

u coef[i,2] := 1.0/rho + 2.0;

u coef[i,3] := -1.0;

FOR j := 1 to 3 DO

v coef[i,j] := u coef[i,j];

END; {for i}
FOR i := 1 to (rows - 1) DO BEGIN

u coef[i*cols,3] := 0.0;

u coef[i*cols + 1,1] := 0.0;

END; {for i}
u coef[1,1] := 0.0;

u coef[size,3] := 0.0;

FOR i := 1 to (cols - 1) DO BEGIN

v coef[i*rows,3] := 0.0;

v coef[i*rows + 1,1] := 0.0;

END; {for i}
v coef[1,1] := 0.0;

v coef[size,3] := 0.0;

(* Get boundary values into bcnd vectors: *)

FOR i := 1 to size DO BEGIN

u bcnd[i] := 0.0;

v bcnd[i] := 0.0;

END; {for i}
FOR i := 1 to cols DO BEGIN

u bcnd[i] := top[i];

u bcnd[size - cols + i] := bottom[i];

END; {for i}
FOR i := 1 to rows DO BEGIN

j := (i-1)*cols + 1;

19

u bcnd[j] := u bcnd[j] + left[i];

j := i*cols;

u bcnd[j] := u bcnd[j] + right[i];

END; {for i}
FOR i := 1 to rows DO BEGIN

v bcnd[i] := left[i];

v bcnd[size - rows + i] := right[i];

END; {for i}
FOR i := 1 to cols DO BEGIN

j := (i-1)*rows + 1;

v bcnd[j] := v bcnd[j] + top[i];

j := i*rows;

v bcnd[j] := v bcnd[j] + bottom[i];

END; {for i}

(* Replace the coefficient matrices by their

LU decompositions: *)

FOR i := 2 to size DO BEGIN

u coef[i-1,3] := u coef[i-1,3]/u coef[i-1,2];

u coef[i,2] := u coef[i,2]

- u coef[i,1]*u coef[i-1,3];

v coef[i-1,3] := v coef[i-1,3]/v coef[i-1,2];

v coef[i,2] := v coef[i,2]

- v coef[i,1]*v coef[i-1,3];

END; {for i}

k := 0;

REPEAT

k := k + 2;

FOR i := 1 to size DO

old u[i] := u[i];

Solve(v coef, v bcnd, u, cols, rows, v);

Solve(u coef, u bcnd, v, rows, cols, u);

UNTIL (MaxDif(old u,u) < tol) OR (k >= itermax);

assign(f,’work\AS02 5 4.DAT’);

rewrite(f);

writeln(f); writeln(f);

writeln(f,’ ******** ASSIGNMENT 2, ’,

’QUESTION 4 ********’); writeln(f);

writeln(f,’ A.D.I. Method for the Laplace’,

’ equation:’);

writeln(f,’ rho = ’,rho:4:2);

writeln(f,’ tolerance = ’,tol:10:6);

writeln(f,’ max. iterations = ’,itermax); writeln(f);

writeln(f,’ Solution:’); writeln(f);

(* Print solution, 3 values per line: *)

20

APM3711/202

FOR i := 1 to (size div 3) DO BEGIN

FOR j := 1 to 3 DO BEGIN

l := (i - 1)*3 + j;

write(f,’ u’,l:1,’ = ’,u[l]:8:4);

END; {for j}
writeln(f);

END; {for i}
FOR l := (size div 3)*3 + 1 to size DO

write(f,’ u’,l:1,’ = ’,u[l]:8:4);

writeln(f);

writeln(f,’ iterations = ’,k);

writeln(f,’ max |u - old u| = ’,

MaxDif(old u,u):8:6);

close(f);

END.

******** ASSIGNMENT 2, QUESTION 4 ********

A.D.I. Method for the Laplace equation:

rho = 1.00

tolerance = 0.000010

max. iterations = 100

Solution:

u1 = 52.1988 u2 = 32.4224 u3 = 14.1988

u4 = 56.3727 u5 = 33.2919 u6 = 14.3727

iterations = 20

max |u - old u| = 0.000003

21

