

# **APM1513**

May/June 2012

### APPLIED LINEAR ALGEBRA

Duration

2 Hours

100 Marks

**EXAMINERS**.

FIRST SECOND MR AS KUBEKA DR S FALEYE

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 4 pages

Answer all questions

# **QUESTION 1**

(a) Write an m-file that uses Octave to solve the following problems

(1) Plot a graph of  $\cos(x)$  in the range -1 < x < 5, (4)

(11) Evaluate 9  $2^{-0.5}$ , (3)

(iii) Evaluate 
$$\frac{\sqrt{7-3}}{2-4^3+3-1}$$
, (3)

(iv) Solve the simultaneous equations

$$2x_1 + 3x_2 = 10$$
,

$$4x_1 + 5x_2 = 8$$

(5)

(b) Explicitly construct

(i) a row vector with 3 3, 1 7, 2 1, (2)

(ii) a column vector with  $3 \ 3, \ 1 \ 7, \ 2 \ 1,$ 

(III) a matrix, where the entries are known explicitly, (2)

(iv) a row vector, when the values change by equal increments, (2)

(v) a row vector, when the increment is 1 (2)

[25]

**TURN OVER** 

## **QUESTION 2**

(a) Given 
$$V3 = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$
,

$$U2 = \left[ \begin{array}{c} 1 \\ 0 & 8 \\ 0 & 6 \\ 0 & 4 \end{array} \right],$$

$$A2 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9.5 & 11.5 & 13.5 & 15.5 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

find the values of the following elements of a vector or matrix

(1) In a row vector, 
$$V3$$
 (2),

(11) In a row vector, 
$$V3$$
 (3),

(III) In a column vector, 
$$U2(4)$$
, (2)

(iv) In a column vector, 
$$U2(3)$$
, (2)

(v) In a matrix, 
$$A2(2,3)$$
, (2)

(vi) In a matrix, 
$$A2(3,2)$$
. (2)

(b) Write an Octave/Matlab code that calculate n! (i.e. n – factorial), with

$$n^{\dagger} = 1 \times 2 \times 3 \times (n-1) \times n$$
  
 $n$  goes from 1 to 10

(5)

(c) Write an Octave/Matlab code that evaluates the following series

(i) 
$$1^2 + 2^2 + 3^2 + \dots + 100^2$$
, (3)

(i) 
$$0 \times 1^2 + 1 \times 2^2 + 2 \quad 3^2 + \dots + 99 \times 100^2$$
 (5)

[25]

### **QUESTION 3**

(a) Write an Octave/Matlab code that evaluates

$$\int_{1}^{3} \frac{dv}{1+v} 1 8$$
, where

v is taken to be the 0 3 after the integration

(5)

(b) Calculate the average Slope of a function in (a) above over an interval a < x < b, defined

as 
$$\frac{f(b) - f(a)}{b - a}$$
, where

$$a = 1$$
 and  $b = 3$ 

(10)

(c) Use Octave to draw the following graphs

(i) 
$$f(x) = x \sin(x), -3 \le x \le 8,$$
 (3)

(11) 
$$f(x) = \cos(x^2)$$
,  $0 \le x \le 5$ , (2)

(d) Write an Octave/Matlab code that plots the following graph

$$Z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}},$$

in the range  $-7 \le x \le 7$ ,  $-11 \le y \le 11$ , with a contour map

[25]

(5)

# **QUESTION 4**

(a) Consider the equation

$$AX = B$$

where  $X^T = (x_1, x_2, \dots, x_n)$  and  $B^T = (b_1, b_2 \dots b_n)$  are  $1 \times n$  vectors, and A an  $n \times n$  matrix

- (i) Write Octave/Matlab commands that can be used to capture A and B into the computer memory, (5)
- (ii) Write Octave/Matlab command(s) that replaces the  $t^{th}$  column of A with B, (5)
- (iii) Express the ratio  $\frac{B}{A}$  in Octave/Matlab using \ and \ \, \ (2)

[TURN OVER]

(b) Consider the system of equations

$$3x_1 + 4x_2 + 5x_3 = 4,$$
  
 $6x_1 + 2x_2 + 3x_3 = 7,$   
 $x_1 + 3x_2 + 3x_3 = 1$ 

- (1) Solve the system by writing an Octave/Matlab code using the Gauss—seidal iterative method (7)
- (ii) Find the exact solution by Gausian elimination
  - ie by Analytic means and by writing using either Octave or Matlab

(6)

[25]

### **END OF PAPER**

**TOTAL: 100 Marks** 

**©** 

**UNISA 2012**