
BAR CODE

Learn without limits. university
of south africa

Tutorial Letter 202/1/2014

Applied Linear Algebra

APM1513

Semester 1

Department of Mathematical Sciences

This tutorial letter contains solutions
for assignment 02.

APM1513/202/1/2014



Assignment 2

QUESTION 2. Here are the Octave/Matlab codes
(a) Solving the systems using the A\b command.
Code: Q2a

A=[2 -1 3;4 2 -5;6 3 1];

b=[8;-9;12];

x=A\b

which give

x = 0.5000

2.0000

3.0000

ii) Solving the system using Gauss−Seidel method. In this instance you
needed to know how to use write codes using the functions as explained
in your tutorial letter. The technique to put the Gauss−Seidel code inside
the iterative−linear−solver code since it does most of the import calcula-
tions with regard to TOL. You could directly amend the Gauss−Seidel code
to accommodate the TOL. Notice also that I have slightly modified the
iterative−linear−solver code. Input A, b and

xinitial= [0;0;0],

TOL=10^{-7},

k=20 (say)

to
Code: iterative−linear−solver.m

2



APM1513/202/1/2014

function xnew=iterative_linear_solve(A,b,xinitial,TOL,max_it)

xold=xinitial;

k=0;

do

xnew=Gauss_Seidel(A,b,xold);

err=max(abs((xnew-xold)./xnew));

xold=xnew;

k=k+1;

until((err<TOL) | (k>max_it));

k

if (k>max_it)

disp("ERROR: METHOD DID NOT CONVERGE");

xnew=[];

endif

endfunction

We now use the the Gauss−Seidel code below as a sub code which is called
by the main iterative−linear−solve code above.
Code: Gauss−Seidel.m

function xnew=Gauss_Seidel(A,b,xold)

n=size(A)(1);

At=A;

xnew=xold;

for k=1:n

At(k,k)=0;

end

for k=1:n

xnew(k)=(b(k)-At(k,:)*xnew)/A(k,k);

end

endfunction

In this case the Gauss−Seidel method did not converge at all. It gave the
answer

ERROR: METHOD DID NOT CONVERGE

To see this much further, take for instance, max−it=10000, the method still
does not converge.

3



APM1513/202/1/2014

(b) Solving the systems using the A\b command.
Code: Q2b

A=[10 1 2;1 10 -1;2 1 10];

b=[3;1.5;-9];

x=A\b

which give

x = 0.5000

0.0000

-1.0000

ii) Solving the system using Gauss−Seidel method. In this instance you
needed to know how to use write codes using the functions as explained
in your tutorial letter. The technique to put the Gauss−Seidel code inside
the iterative−linear−solver code since it does most of the import calcula-
tions with regard to TOL. You could directly amend the Gauss−Seidel code
to accommodate the TOL. Notice also that I have slightly modified the
iterative−linear−solver code. Input A, b and

xinitial= [0;0;0],

TOL=10^{-7},

k=20 (say)

to
Code: iterative−linear−solver.m

function xnew=iterative_linear_solve(A,b,xinitial,TOL,max_it)

xold=xinitial;

k=0;

do

xnew=Gauss_Seidel(A,b,xold);

err=max(abs((xnew-xold)./xnew));

xold=xnew;

k=k+1;

until((err<TOL) | (k>max_it));

k

if (k>max_it)

4



APM1513/202/1/2014

disp("ERROR: METHOD DID NOT CONVERGE");

xnew=[];

endif

endfunction

We now use the the Gauss−Seidel code below as a sub code which is called
by the main iterative−linear−solve code above.
Code: Gauss−Seidel.m

function xnew=Gauss_Seidel(A,b,xold)

n=size(A)(1);

At=A;

xnew=xold;

for k=1:n

At(k,k)=0;

end

for k=1:n

xnew(k)=(b(k)-At(k,:)*xnew)/A(k,k);

end

endfunction

From the above codes we found that the system does indeed converge. It
converges to

ans =

0.50000

0.00000

-1.00000

after k = 15 iterations.
QUESTION 3. octave/matlab codes
Q3.m

function test=matrix(A)

[n,m]=size(A)

if (n==m)

disp(’matrix is a square’)

else

disp(’matrix is not a square’)

5



APM1513/202/1/2014

end

for k=1:n

for l=1:m

if (k==l) & (abs(A(k,l))>sum(abs(A(k,1:1:m)))-abs(A(k,l)))

disp(’diagonaly dominant’)

end

if (k==l) & (abs(A(k,l))<sum(abs(A(k,1:1:m)))-abs(A(k,l)))

disp(’not diagonaly dominant’)

end

end

end

end

a) We use the matrix A = [034; 133; 086] and B = [034; 133] to test if they
are a square matrix or not using the above code
i) for the matrix A the output is

n =

3

m =

3

matrix is a square

ii) and for matrix B output is

n =

2

m =

3

matrix is not a square

6



APM1513/202/1/2014

b) To test the above code for matrix diagonality we use the matrix in question
2 (a) and we indeed see that the matrix is indeed diagonally dominant with
the following output from the above code:

diagonaly dominant

diagonaly dominant

diagonaly dominant

This is the results for each row computation for testing strictly diagonality
condition and we have done it for A11, A22, and A33. The condition on which
strictly diagonality for matrices is discussed in your study guide page 62. The
above code also works for any other matrix that is not diagonally dominant
for example take the following matrix
A = [234; 263; 986] for which the code gives the output

not diagonaly dominant

diagonaly dominant

not diagonaly dominant

which clearly shows that the metrix A is not diagonal as we see for the first
and third rows for A11 and A33 respectively. In this case the strictly diago-
nality condition is not satisfied.
QUESTION 4.LEFT AS EXERCISE!

QUESTION 5. octave/matlab code
Q5.m

format long

n=20

H=ones(n,n);

b=ones(n);

x=ones(n);

for K=1:n

for L=1:n

H(K,L)=(1/(K+L-1))

end

end

x=(H^n\b^n)^(1/n);

7



APM1513/202/1/2014

Note: the Hilbert matrix can also be generated by the single command
H = hilb(8) on the Octave/Matlab command prompt. If you increase the
dimension n you get the following warning: Matrix is close to singular or
badly scaled. This means that the results are not that reliable for n large.
QUESTION 6. octave/matlab code
Q6.m

format long

b=[40000 44000 52000 64000 80000 84000]’;

t=[1:6]’;

A=[t.^2/2 t ones(6,1)];

det(A’*A)

xs=A\b

tt=1:6;

s=xs(1)*t.^2/2 + xs(2)*t + xs(3);

plot(t,b,’r’,tt,s,’b’)

err=A*xs-b

Below is the output graph is

8



APM1513/202/1/2014

1 2 3 4 5 6
3

4

5

6

7

8

9
x 10

4

Figure 1: The sales curve.

The smooth graph is the best quadratic fit to the data while the irregular
graph is the actual once. A similar problem can be found on your tutorial
letter page. 74.
QUESTION 7. octave/matlab codes

format long

x=[-1 0 1 2 3]’;

b=[14 -5 -4 1 22]’;

A=[x x.^2 x.^3]

xs=A\b

xx=-1:0.1:8;

plot(x,b,’*r’,xx,xs(1)*xx+xx.^2*xs(2)+xx.^3*xs(3),’b’)

Below is the output graph

9



APM1513/202/1/2014

−1 0 1 2 3 4 5 6 7 8
−50

0

50

100

150

200

250

300

350

400

450

Figure 2: The sales curve.

QUESTION 8. octave/matlab codes
Let choose the following matrix

B=[-1.54575 -3.47002 -1.70112 -2.58917;

-3.28104 -2.07998 -1.45597 -2.75629;

0.55497 0.94078 2.02863 0.46100;

8.94120 9.67047 4.47796 9.09710]

[P1 L1]=eig(B)

diag=inv(P1)*B*P1

Then we modify the Octave script file as

function [e_vec lam]=power_method(A,TOL,max_it)

k=0;

n=size(A)(1);

A_inv=inv(A);% modified here

e_vec_old=rand(n,1);

do

e_vec_new=A_inv*e_vec_old;

lam=(e_vec_new’*e_vec_old)/(e_vec_old’*e_vec_old);

err=norm(e_vec_new/norm(e_vec_new)-e_vec_old/norm(e_vec_old));

e_vec_old=e_vec_new;

k=k+1;

10



APM1513/202/1/2014

until((err<TOL) | (k>max_it));

k

e_vec=e_vec_new/norm(e_vec_new);

if (k>max_it)

disp("ERROR: METHOD DID NOT CONVERGE");

e_vec=[];

lam=[];

endif

endfunction

which give the following result

k=36

answer = 0.33752

0.45936

-0.25171

-0.78212

This is indeed the smallest eigenvector as it can be confirmed from the above
results obtained by eig2.m code. For the matrix

B=[4.9541 6.6650 8.1445 2.9998;

10.1406 17.3006 14.2773 9.3552;

8.9200 10.6881 8.4619 7.7253;

-25.6960 -40.6289 -38.0172 -21.71666]

we obtain the following results

k=19

answer = 0.564503

-0.738274

0.365124

0.054515

which give a contradictory results, i.e. in question 3. we have eig3.m code
giving complex results while here we have real results. Because of this fact,
we cannot say for sure if this results are for the lowest eigenvector. This
has something to do with the fact that the power−method did not work in
question 3. That also means here that the power−method failed to working.

QUESTION 9. octave/matlab codes
Here is the modified Octave script file

11



APM1513/202/1/2014

function [e_vec lam]=power_method(A,TOL,max_it)

k=0;

n=size(A)(1);

A_inv=inv(A);% modified here

e_vec_old=rand(n,1);

do

e_vec_new=A_inv*e_vec_old;

lam=(e_vec_new’*e_vec_old)/(e_vec_old’*e_vec_old);

err=norm(e_vec_new/norm(e_vec_new)-e_vec_old/norm(e_vec_old));

e_vec_old=e_vec_new;

k=k+1;

until((err<TOL) | (k>max_it));

k

e_vec=e_vec_new/norm(e_vec_new);

if (k>max_it)

disp("ERROR: METHOD DID NOT CONVERGE");

e_vec=[];

lam=[];

endif

endfunction

which give the following result

k=36

answer = 0.33752

0.45936

-0.25171

-0.78212

for the following matrix

B=[-1.54575 -3.47002 -1.70112 -2.58917;

-3.28104 -2.07998 -1.45597 -2.75629;

0.55497 0.94078 2.02863 0.46100;

8.94120 9.67047 4.47796 9.09710]

This is indeed the smallest eigenvector.

12




