Tutorial Letter 501/3/2014

APPLIED LINEAR ALGEBRA APM1513

Semesters 1 & 2

Department of Mathematical Sciences

IMPORTANT INFORMATION:

This tutorial letter contains important information about your course.

BAR CODE

CONTENTS

1.	First Semester	3
	Online Course Outline	4
	Weekly Outcomes	15
2.	Second Semester	26
	Online Course Outline	27
	Weekly Outcomes	38

FIRST SEMESTER STARTS: 15th JANUARY FOR APM1513

ONLINE COURSE OUTLINE

WEEK 1: 15 Jan - 21 Jan

Study Unit 1:

- 1.1 Installing and running the software (from TL 101)
- 1.1.1 MATLAB or Octave
- 1.1.2 Installation of Octave
- 1.1.3 Testing simple examples in the program
- 1.1.4 Exit
- 1.2 Process to input files to the program, Octave
- 1.2.1 Create a storage folder 1.2.2 Using m files
- 1.3 Output from an Octave session
- 1.3.1 Copy and past
- 1.3.2 Diary
- 1.4 Using the Octave "Help" facility
- 1.5 In conclusion

Study Unit 2:

- 2.1 Introduction
- 2.2 Scalar variables
- 2.2.1 Creating variables
- 2.2.2 Variable names
 - 2.3 Matrices and vectors
- 2.3.1 Construction of matrices and vectors
- 2.3.2 General rules for construction of vectors and matrices
- 2.3.3 Accessing elements of a vector or matrix
- 2.3.4 Accessing rows and columns of a matrix

- 2.3.5 Scalars as vectors and matrices
- 2.3.6 Special matrices

WEEK 2: 22 Jan - 28 Jan

- 2.4 Manipulation of matrices
- 2.4.1 Calculations with vectors and matrices using matrix algebra
- 2.4.2 Matrix algebra
- 2.4.3 Element by element calculations with vectors and matrices
- 2.4.4 Extraction of some commonly needed properties of matrices & vectors
- 2.5 Miscellaneous features of Octave
- 2.5.1 Suppression of output with the semi-colon; terminator
- 2.5.2 Multiple line statements with
- 2.5.3 Several statements on the same line
- 2.5.4 The display command "disp"
- 2.5.5 Input statement
- 2.5.6 Complex numbers
- 2.5.7 Operator precedence rules
- 2.5.8 Comments %

WEEK 3: 29 Jan - 04 Feb

- 2.6 Control commands: Loops and branches
- 2.6.1 "For" loops
- 2.6.2 Matrix or array operations versus "for" loops
- 2.6.3 If statements
- 2.6.4 Evaluation of conditions
- 2.6.5 Conditional loops
- 2.7 Functions
- 2.7.1 Pre-defined functions
- 2.7.2 User-defined functions
- 2.7.3 Function handles

WEEK 4: 05 Feb - 12 Feb

- 2.8 Graphics
- 2.8.1 Plotting functions with fplot
- 2.8.2 Plots in 2-dimensions with plot
- 2.8.3 Plotting lines in 3-dimensions with plot3
- 2.8.4 Other features of graphics
- 2.9 Additional exercises
- 2.10 In Summary

Study Unit 3:

- 3.1 Introduction
- 3.2 Gaussian elimination
- 3.3 Iterative methods

WEEK 5: 13 Feb - 18 Feb

- 3.4 Diagonal dominance
- 3.4.1 Stopping criterion
- 3.5 Exceptional cases (where the solution may not be reliable)
- 3.6 Additional exercises
- 3.7 In conclusion

Study Unit 4:

- 4.1 Identification of overdertermined and underdertermined systems
- 4.1.1 A is square (m=n) and $det(A) \neq 0$
- 4.1.2 A is square (m = n) and det(A) = 0
- 4.1.3 There are more equations than unknowns (m > n)
- 4.1.4 There are more unknown than equations (n > m)

WEEK 6: 19 Feb - 25 Feb

- 4.2 Overdertermined systems
- 4.3 Underdertermined systems
- 4.4 Underdertermined and inconsistent system
- 4.5 Additional exercises
- 4.6 In conclusion

ASSIGNMENT 1 IS DUE ON THE 14th FEBRU-ARY

WEEK 7: 26 Feb - 01 March

Study Unit 5:

- 5.1 Summary of mathematical results
- 5.1.1 Calculation of eigenvalues and eigenvectors
- 5.1.2 Some useful properties of eigenvalues and eigenvectors
- 5.2 The Octave command eig.
- 5.3 Matrix diagonalization

WEEK 8: 02 March - 08 March

Study Unit 5:

- 5.4 The power method
- 5.4.1 Algorithm
- 5.4.2 Justification/why
- 5.5 Additional exercises
- 5.6 In conclusion

WEEK 9: 09 March - 15 March

Study Unit 6:

- 6.1 The basic ideas of linear programing
- 6.2 The simplex method
- 6.3 The Octave glpk "package" 6.4 More realistic linear programming examples
- 6.5 Additional exercises
- 6.6 In conclusion

WEEKLY OUTCOMES

WEEK 1: 15 JAN - 21 JAN

Students should know how:

- to instal MATLAB or Octave program,
- to copy and past to the clipboard,
- to use the help menu function and all other toolbars on MATLAB and Octave,
- to use a Diary file,
- to do basic symbolic and numerical computation with MATLAB or Octave,
- to define and create the m-file,
- to create variables and assigning numerical values to them,
- to create vectors and matrices and how to access rows and columns of a matrix.

WEEK 2: 22 JAN -28 JAN

Students should know how:

- to create vectors and matrices
- to perform the matrix addition, subtraction, multiplication, and division,
- to construct inverse of a matrix,
- to perform the calculations for square matrix for a given power of n i.e. how to raise a matrix to a power n,
- to do computations on matrix arrays,
- to use the 'disp' command.

WEEK 3: 29 JAN - 04 FEB

Students should know how:

- to use the "for loops" to compile a working code/program,
- to use the matrix or array operations versus "for loops",
- to use the "if statements" to compile a working code/program,
- to use conditional statements to evaluate conditions by using "conditional loops" and the following operations,

Octave code	Mathematical meaning
<	<
<=	<u>≤</u>
>	>
>=	<u>></u>
==	=
&	and
	or

- for example, if you want to test for equality, use == rather than =, i.e.

$$> if (a == b)$$

- Also, the Octave equivalent of, if (a < x < b) is

if
$$((a < x) \& (x < b))$$
.

• to define a function or functions

WEEK 4: 05 FEB - 11 FEB

Students should know how:

- to plot functions using "fplot" command,
- to plot functions using the "plot" command, in 2-dimensions,
- to change the default colour of the graph,
- to draw graphs of several functions in the same plot,
- to give the graph a title,
- to label the axes,
- to give a legend to a curve,
- to plot in 3-dimensions using the "plot3" command,
- to plot surfaces in 3-dimensions using the "mesh" command,
- to plot contours in 2, 3-dimensions using the "contour" command,
- to plot a surface and its contour plot on the same plot using "meshc(xx,yy,zz)"
- to use the construct $x = A \setminus b$ to solve a system of equations,

ASSIGNMENT 1 IS DUE ON 15th AUGUST

WEEK 5: 12 FEB- 18 FEB

Students should know how:

- to use the Gauss Seidel code to solve a system of equations for iterative methods,
- to determine if a matrix A is strictly diagonally dominant,
- to use the iterative linear solver code to solve a system of equations,
- to implement the stopping criteria condition in a code,
- to identify overdetermined and underdetermined systems,

WEEK 6: 19 FEB - 25 FEB

Students should know how:

- ullet to identify overdetermined systems,
- to fine the best fitting curve for a given data,
- ullet to identify underdetermined systems,
- \bullet to identify under dertermined and inconsistent system.

WEEK 7: 26 FEB - 01 MARCH

Students should know how:

- to calculate eigenvalues and eigenvectors using the Octave command "eig",
- to diagonalize a matrix using the "inv" command,

ASSIGNMENT 2 IS DUE ON 15th SEPTEMBER

WEEK 8: 02 March - 08 March

Students should know how:

• to use the power code and know the outlined power method theory

WEEK 9: 09 March - 15 March

- Understand the basic concepts of linear programming,
- Use the Octave package "glpk" to solve problems in linear programming,
- Ex-press realistic problems in mathematical terms, and then use the Octave package "glpk" to solve them

ASSIGNMENT 2 IS DUE ON 14th MARCH ASSIGNMENT 3 IS DUE ON 09th APRIL REVISION STARTS ON 10th April

END OF THE COURSE FOR FIRST SEMESTER

SECOND SEMESTER STARTS: 8th JULY FOR APM1513

ONLINE COURSE OUTLINE

WEEK 1: 8 July - 14 July

Study Unit 1:

- 1.1 Installing and running the software (from TL 101)
- 1.1.1 MATLAB or Octave
- 1.1.2 Installation of Octave
- 1.1.3 Testing simple examples in the program
- 1.1.4 Exit
- 1.2 Process to input files to the program, Octave
- 1.2.1 Create a storage folder 1.2.2 Using m files
- 1.3 Output from an Octave session
- 1.3.1 Copy and past
- 1.3.2 Diary
- 1.4 Using the Octave "Help" facility
- 1.5 In conclusion

Study Unit 2:

- 2.1 Introduction
- 2.2 Scalar variables
- 2.2.1 Creating variables
- 2.2.2 Variable names
 - 2.3 Matrices and vectors
- 2.3.1 Construction of matrices and vectors
- 2.3.2 General rules for construction of vectors and matrices
- 2.3.3 Accessing elements of a vector or matrix
- 2.3.4 Accessing rows and columns of a matrix

- 2.3.5 Scalars as vectors and matrices
- 2.3.6 Special matrices

WEEK 2: 15 - 21 July

- 2.4 Manipulation of matrices
- 2.4.1 Calculations with vectors and matrices using matrix algebra
- 2.4.2 Matrix algebra
- 2.4.3 Element by element calculations with vectors and matrices
- 2.4.4 Extraction of some commonly needed properties of matrices & vectors
- 2.5 Miscellaneous features of Octave
- 2.5.1 Suppression of output with the semi-colon; terminator
- 2.5.2 Multiple line statements with
- 2.5.3 Several statements on the same line
- 2.5.4 The display command "disp"
- 2.5.5 Input statement
- 2.5.6 Complex numbers
- 2.5.7 Operator precedence rules
- 2.5.8 Comments %

WEEK 3: 22 July - 28 July

- 2.6 Control commands: Loops and branches
- 2.6.1 "For" loops
- 2.6.2 Matrix or array operations versus "for" loops
- 2.6.3 If statements
- 2.6.4 Evaluation of conditions
- 2.6.5 Conditional loops
- 2.7 Functions
- 2.7.1 Pre-defined functions
- 2.7.2 User-defined functions
- 2.7.3 Function handles

WEEK 4: 29 July - 4 August

- 2.8 Graphics
- 2.8.1 Plotting functions with fplot
- 2.8.2 Plots in 2-dimensions with plot
- 2.8.3 Plotting lines in 3-dimensions with plot3
- 2.8.4 Other features of graphics
- 2.9 Additional exercises
- 2.10 In Summary

Study Unit 3:

- 3.1 Introduction
- 3.2 Gaussian elimination
- 3.3 Iterative methods

WEEK 5: 5 August- 11 August

- 3.4 Diagonal dominance
- 3.4.1 Stopping criterion
- 3.5 Exceptional cases (where the solution may not be reliable)
- 3.6 Additional exercises
- 3.7 In conclusion

Study Unit 4:

- 4.1 Identification of overdertermined and underdertermined systems
- 4.1.1 A is square (m = n) and $det(A) \neq 0$
- 4.1.2 A is square (m = n) and det(A) = 0
- 4.1.3 There are more equations than unknowns (m > n)
- 4.1.4 There are more unknown than equations (n > m)

WEEK 6: 12 August - 18 August

- 4.2 Overdertermined systems
- 4.3 Underdertermined systems
- 4.4 Underdertermined and inconsistent system
- 4.5 Additional exercises
- 4.6 In conclusion

ASSIGNMENT 1 IS DUE ON 15th AUGUST

WEEK 7: 19 August - 25 August

Study Unit 5:

- 5.1 Summary of mathematical results
- 5.1.1 Calculation of eigenvalues and eigenvectors
- 5.1.2 Some useful properties of eigenvalues and eigenvectors
- 5.2 The Octave command eig.
- 5.3 Matrix diagonalization

WEEK 8: 26 August - 1 September

Study Unit 5:

- 5.4 The power method
- 5.4.1 Algorithm
- 5.4.2 Justification/why
- 5.5 Additional exercises
- 5.6 In conclusion

WEEK 9: 2 September - 8 September

Study Unit 6:

- 6.1 The basic ideas of linear programing
- 6.2 The simplex method
- $6.3~{\rm The~Octave~glpk}$ "package" $6.4~{\rm More~realistic~linear~programming~examples}$
- 6.5 Additional exercises
- 6.6 In conclusion

WEEKLY OUTCOMES

WEEK 1: 8 July - 14 July

- to instal MATLAB or Octave program,
- to copy and past to the clipboard,
- to use the help menu function and all other toolbars on MATLAB and Octave,
- to use a Diary file,
- to do basic symbolic and numerical computation with MATLAB or Octave,
- to define and create the m-file,
- to create variables and assigning numerical values to them,
- to create vectors and matrices and how to access rows and columns of a matrix.

WEEK 2: 15 - 21 July

- to create vectors and matrices
- to perform the matrix addition, subtraction, multiplication, and division,
- to construct inverse of a matrix,
- to perform the calculations for square matrix for a given power of n i.e. how to raise a matrix to a power n,
- to do computations on matrix arrays,
- to use the 'disp' command.

WEEK 3: 22 July - 28 July

Students should know how:

- to use the "for loops" to compile a working code/program,
- to use the matrix or array operations versus "for loops",
- to use the "if statements" to compile a working code/program,
- to use conditional statements to evaluate conditions by using "conditional loops" and the following operations,

Octave code	Mathematical meaning
<	<
<=	<u>≤</u>
>	>
>=	<u>></u>
==	=
&	and
	or

- for example, if you want to test for equality, use == rather than =, i.e.

$$> if (a == b)$$

- Also, the Octave equivalent of, if (a < x < b) is

if
$$((a < x) \& (x < b))$$
.

• to define a function or functions

WEEK 4: 29 July - 4 August

Students should know how:

- to plot functions using "fplot" command,
- to plot functions using the "plot" command, in 2-dimensions,
- to change the default colour of the graph,
- to draw graphs of several functions in the same plot,
- to give the graph a title,
- to label the axes,
- to give a legend to a curve,
- to plot in 3-dimensions using the "plot3" command,
- to plot surfaces in 3-dimensions using the "mesh" command,
- to plot contours in 2, 3-dimensions using the "contour" command,
- to plot a surface and its contour plot on the same plot using "meshc(xx,yy,zz)"
- to use the construct $x = A \setminus b$ to solve a system of equations,

ASSIGNMENT 1 IS DUE ON 15th AUGUST

WEEK 5: 5 August- 11 August

- to use the Gauss Seidel code to solve a system of equations for iterative methods,
- to determine if a matrix A is strictly diagonally dominant,
- to use the iterative linear solver code to solve a system of equations,
- to implement the stopping criteria condition in a code,
- to identify overdetermined and underdetermined systems,

WEEK 6: 12 August - 18 August

- to identify overdetermined systems,
- to fine the best fitting curve for a given data,
- to identify underdetermined systems,
- to identify underder termined and inconsistent system.

WEEK 7: 19 August - 25 August

Students should know how:

- to calculate eigenvalues and eigenvectors using the Octave command "eig",
- to diagonalize a matrix using the "inv" command,

ASSIGNMENT 2 IS DUE ON 15th SEPTEMBER

WEEK 8: 26 August - 1 September

Students should know how:

• to use the power code and know the outlined power method theory

WEEK 9: 2 September - 8 September

- Understand the basic concepts of linear programming,
- Use the Octave package "glpk" to solve problems in linear programming,
- Ex-press realistic problems in mathematical terms, and then use the Octave package "glpk" to solve them

ASSIGNMENT 2 IS DUE ON 15th SEPTEMBER

ASSIGNMENT 3 IS DUE ON 25th SEPTEMBER

REVISION STARTS ON 25th SEPTEMBER

END OF THE COURSE FOR SECOND SEMESTER