Tutorial Letter 501/3/2014

APPLIED LINEAR ALGEBRA
 APM1513

Semesters 1 \& 2

Department of Mathematical Sciences

IMPORTANT INFORMATION:
This tutorial letter contains important information about your course.

CONTENTS

1. First Semester 3
Online Course Outline 4
Weekly Outcomes 15
2. Second Semester 26
Online Course Outline 27
Weekly Outcomes 38

FIRST SEMESTER STARTS: 15th JANUARY FOR APM1513

ONLINE COURSE OUTLINE

WEEK 1: 15 Jan - 21 Jan

Study Unit 1:

1.1 Installing and running the software (from TL 101)
1.1.1 MATLAB or Octave
1.1.2 Installation of Octave
1.1.3 Testing simple examples in the program
1.1.4 Exit
1.2 Process to input files to the program, Octave
1.2.1 Create a storage folder 1.2.2 Using m files
1.3 Output from an Octave session
1.3.1 Copy and past
1.3.2 Diary
1.4 Using the Octave "Help" facility
1.5 In conclusion

Study Unit 2:

2.1 Introduction
2.2 Scalar variables
2.2.1 Creating variables
2.2.2 Variable names
2.3 Matrices and vectors
2.3.1 Construction of matrices and vectors
2.3.2 General rules for construction of vectors and matrices
2.3.3 Accessing elements of a vector or matrix
2.3.4 Accessing rows and columns of a matrix
2.3.5 Scalars as vectors and matrices
2.3.6 Special matrices

WEEK 2: 22 Jan - 28 Jan

2.4 Manipulation of matrices
2.4.1 Calculations with vectors and matrices using matrix algebra
2.4.2 Matrix algebra
2.4.3 Element by element calculations with vectors and matrices
2.4.4 Extraction of some commonly needed properties of matrices \& vectors
2.5 Miscellaneous features of Octave
2.5.1 Suppression of output with the semi-colon; terminator
2.5.2 Multiple line statements with
2.5.3 Several statements on the same line
2.5.4 The display command "disp"
2.5.5 Input statement
2.5.6 Complex numbers
2.5.7 Operator precedence rules
2.5.8 Comments \%

WEEK 3: 29 Jan - 04 Feb

2.6 Control commands: Loops and branches
2.6.1 "For" loops
2.6.2 Matrix or array operations versus "for" loops
2.6.3 If statements
2.6.4 Evaluation of conditions
2.6.5 Conditional loops
2.7 Functions
2.7.1 Pre-defined functions
2.7.2 User-defined functions
2.7.3 Function handles

WEEK 4: 05 Feb - 12 Feb

2.8 Graphics

2.8.1 Plotting functions with fplot
2.8.2 Plots in 2-dimensions with plot
2.8.3 Plotting lines in 3-dimensions with plot3
2.8.4 Other features of graphics
2.9 Additional exercises
2.10 In Summary

Study Unit 3:

3.1 Introduction
3.2 Gaussian elimination
3.3 Iterative methods

WEEK 5: 13 Feb - 18 Feb

3.4 Diagonal dominance
3.4.1 Stopping criterion
3.5 Exceptional cases (where the solution may not be reliable)
3.6 Additional exercises
3.7 In conclusion

Study Unit 4:

4.1 Identification of overdertermined and underdertermined systems
4.1.1 A is square $(m=n)$ and $\operatorname{det}(A) \neq 0$
4.1.2 A is square $(m=n)$ and $\operatorname{det}(A)=0$
4.1.3 There are more equations than unknowns $(m>n)$
4.1.4 There are more unknown than equations $(n>m)$

WEEK 6: 19 Feb - 25 Feb

4.2 Overdertermined systems
4.3 Underdertermined systems
4.4 Underdertermined and inconsistent system
4.5 Additional exercises
4.6 In conclusion

ASSIGNMENT 1 IS DUE ON THE 14th FEBRUARY

WEEK 7: 26 Feb - 01 March

Study Unit 5:

5.1 Summary of mathematical results
5.1.1 Calculation of eigenvalues and eigenvectors
5.1.2 Some useful properties of eigenvalues and eigenvectors
5.2 The Octave command eig.
5.3 Matrix diagonalization

WEEK 8: 02 March - 08 March

Study Unit 5:

5.4 The power method
5.4.1 Algorithm
5.4.2 Justification/why
5.5 Additional exercises
5.6 In conclusion

WEEK 9: 09 March - 15 March

Study Unit 6:

6.1 The basic ideas of linear programing
6.2 The simplex method
6.3 The Octave glpk "package" 6.4 More realistic linear programming examples
6.5 Additional exercises
6.6 In conclusion

WEEKLY OUTCOMES

WEEK 1: 15 JAN - 21 JAN

Students should know how:

- to instal MATLAB or Octave program,
- to copy and past to the clipboard,
- to use the help menu function and all other toolbars on MATLAB and Octave,
- to use a Diary file,
- to do basic symbolic and numerical computation with MATLAB or Octave,
- to define and create the m-file,
- to create variables and assigning numerical values to them,
- to create vectors and matrices and how to access rows and columns of a matrix.

WEEK 2: 22 JAN -28 JAN

Students should know how:

- to create vectors and matrices
- to perform the matrix addition, subtraction, multiplication, and division,
- to construct inverse of a matrix,
- to perform the calculations for square matrix for a given power of n i.e. how to raise a matrix to a power n,
- to do computations on matrix arrays,
- to use the 'disp' command.

WEEK 3: 29 JAN - 04 FEB

Students should know how:

- to use the "for loops" to compile a working code/program,
- to use the matrix or array operations versus "for loops",
- to use the "if statements" to compile a working code/program,
- to use conditional statements to evaluate conditions by using "conditional loops" and the following operations,

Octave code	Mathematical meaning
$<$	$<$
$<=$	\leq
$>$	$>$
$>=$	\geq
$==$	$=$
$\&$	and
\mid	or

- for example, if you want to test for equality, use $==$ rather than $=$, i.e.

$$
>\text { if }(a==b)
$$

- Also, the Octave equivalent of, if $(a<x<b)$ is

$$
\text { if }((a<x) \&(x<b)) .
$$

- to define a function or functions

WEEK 4: 05 FEB - 11 FEB

Students should know how:

- to plot functions using "fplot" command,
- to plot functions using the "plot" command, in 2-dimensions,
- to change the default colour of the graph,
- to draw graphs of several functions in the same plot,
- to give the graph a title,
- to label the axes,
- to give a legend to a curve,
- to plot in 3-dimensions using the "plot3" command,
- to plot surfaces in 3-dimensions using the "mesh" command,
- to plot contours in 2, 3-dimensions using the "contour" command,
- to plot a surface and its contour plot on the same plot using "meshc (xx,yy,zz)"
- to use the construct $x=A \backslash b$ to solve a system of equations,

ASSIGNMENT 1 IS DUE ON 15th AUGUST

WEEK 5: 12 FEB- 18 FEB

Students should know how:

- to use the Gauss Seidel code to solve a system of equations for iterative methods,
- to determine if a matrix A is strictly diagonally dominant,
- to use the iterative linear solver code to solve a system of equations,
- to implement the stopping criteria condition in a code,
- to identify overdetermined and underdetermined systems,

WEEK 6: 19 FEB - 25 FEB

Students should know how:

- to identify overdetermined systems,
- to fine the best fitting curve for a given data,
- to identify underdetermined systems,
- to identify underdertermined and inconsistent system.

WEEK 7: 26 FEB - 01 MARCH

Students should know how:

- to calculate eigenvalues and eigenvectors using the Octave command "eig",
- to diagonalize a matrix using the "inv" command,

ASSIGNMENT 2 IS DUE ON 15th SEPTEMBER

WEEK 8: 02 March - 08 March

Students should know how:

- to use the power code and know the outlined power method theory

WEEK 9: 09 March - 15 March

- Understand the basic concepts of linear programming,
- Use the Octave package "glpk" to solve problems in linear programming,
- Ex-press realistic problems in mathematical terms, and then use the Octave package "glpk" to solve them

ASSIGNMENT 2 IS DUE ON 14th MARCH ASSIGNMENT 3 IS DUE ON 09th APRIL REVISION STARTS ON 10th April

END OF THE COURSE FOR FIRST SEMESTER

SECOND SEMESTER STARTS: 8th JULY FOR APM1513

ONLINE COURSE OUTLINE

WEEK 1: 8 July - 14 July

Study Unit 1:

1.1 Installing and running the software (from TL 101)
1.1.1 MATLAB or Octave
1.1.2 Installation of Octave
1.1.3 Testing simple examples in the program
1.1.4 Exit
1.2 Process to input files to the program, Octave
1.2.1 Create a storage folder 1.2.2 Using m files
1.3 Output from an Octave session
1.3.1 Copy and past
1.3.2 Diary
1.4 Using the Octave "Help" facility
1.5 In conclusion

Study Unit 2:

2.1 Introduction
2.2 Scalar variables
2.2.1 Creating variables
2.2.2 Variable names
2.3 Matrices and vectors
2.3.1 Construction of matrices and vectors
2.3.2 General rules for construction of vectors and matrices
2.3.3 Accessing elements of a vector or matrix
2.3.4 Accessing rows and columns of a matrix
2.3.5 Scalars as vectors and matrices
2.3.6 Special matrices

WEEK 2: 15-21 July

2.4 Manipulation of matrices
2.4.1 Calculations with vectors and matrices using matrix algebra
2.4.2 Matrix algebra
2.4.3 Element by element calculations with vectors and matrices
2.4.4 Extraction of some commonly needed properties of matrices \& vectors
2.5 Miscellaneous features of Octave
2.5.1 Suppression of output with the semi-colon; terminator
2.5.2 Multiple line statements with
2.5.3 Several statements on the same line
2.5.4 The display command "disp"
2.5.5 Input statement
2.5.6 Complex numbers
2.5.7 Operator precedence rules
2.5.8 Comments \%

WEEK 3: 22 July - 28 July

2.6 Control commands: Loops and branches
2.6.1 "For" loops
2.6.2 Matrix or array operations versus "for" loops
2.6.3 If statements
2.6.4 Evaluation of conditions
2.6.5 Conditional loops
2.7 Functions
2.7.1 Pre-defined functions
2.7.2 User-defined functions
2.7.3 Function handles

WEEK 4: 29 July - 4 August

2.8 Graphics

2.8.1 Plotting functions with fplot
2.8.2 Plots in 2-dimensions with plot
2.8.3 Plotting lines in 3 -dimensions with plot3
2.8.4 Other features of graphics
2.9 Additional exercises
2.10 In Summary

Study Unit 3:

3.1 Introduction
3.2 Gaussian elimination
3.3 Iterative methods

WEEK 5: 5 August- 11 August

3.4 Diagonal dominance
3.4.1 Stopping criterion
3.5 Exceptional cases (where the solution may not be reliable)
3.6 Additional exercises
3.7 In conclusion

Study Unit 4:

4.1 Identification of overdertermined and underdertermined systems
4.1.1 A is square $(m=n)$ and $\operatorname{det}(A) \neq 0$
4.1.2 A is square $(m=n)$ and $\operatorname{det}(A)=0$
4.1.3 There are more equations than unknowns $(m>n)$
4.1.4 There are more unknown than equations $(n>m)$

WEEK 6: 12 August - 18 August

4.2 Overdertermined systems
4.3 Underdertermined systems
4.4 Underdertermined and inconsistent system
4.5 Additional exercises
4.6 In conclusion

ASSIGNMENT 1 IS DUE ON 15th AUGUST

WEEK 7: 19 August - 25 August

Study Unit 5:

5.1 Summary of mathematical results
5.1.1 Calculation of eigenvalues and eigenvectors
5.1.2 Some useful properties of eigenvalues and eigenvectors
5.2 The Octave command eig.
5.3 Matrix diagonalization

WEEK 8: 26 August - 1 September

Study Unit 5:

5.4 The power method
5.4.1 Algorithm
5.4.2 Justification/why
5.5 Additional exercises
5.6 In conclusion

WEEK 9: 2 September - 8 September

Study Unit 6:

6.1 The basic ideas of linear programing
6.2 The simplex method
6.3 The Octave glpk "package" 6.4 More realistic linear programming examples
6.5 Additional exercises
6.6 In conclusion

WEEKLY OUTCOMES

WEEK 1: 8 July - 14 July

Students should know how:

- to instal MATLAB or Octave program,
- to copy and past to the clipboard,
- to use the help menu function and all other toolbars on MATLAB and Octave,
- to use a Diary file,
- to do basic symbolic and numerical computation with MATLAB or Octave,
- to define and create the m-file,
- to create variables and assigning numerical values to them,
- to create vectors and matrices and how to access rows and columns of a matrix.

WEEK 2: 15-21 July

Students should know how:

- to create vectors and matrices
- to perform the matrix addition, subtraction, multiplication, and division,
- to construct inverse of a matrix,
- to perform the calculations for square matrix for a given power of n i.e. how to raise a matrix to a power n,
- to do computations on matrix arrays,
- to use the 'disp' command.

WEEK 3: 22 July - 28 July

Students should know how:

- to use the "for loops" to compile a working code/program,
- to use the matrix or array operations versus "for loops",
- to use the "if statements" to compile a working code/program,
- to use conditional statements to evaluate conditions by using "conditional loops" and the following operations,

Octave code	Mathematical meaning
$<$	$<$
$<=$	\leq
$>$	$>$
$>=$	\geq
$==$	$=$
$\&$	and
\mid	or

- for example, if you want to test for equality, use $==$ rather than $=$, i.e.

$$
>\text { if }(a==b)
$$

- Also, the Octave equivalent of, if $(a<x<b)$ is

$$
\text { if }((a<x) \&(x<b)) .
$$

- to define a function or functions

WEEK 4: 29 July - 4 August

Students should know how:

- to plot functions using "fplot" command,
- to plot functions using the "plot" command, in 2-dimensions,
- to change the default colour of the graph,
- to draw graphs of several functions in the same plot,
- to give the graph a title,
- to label the axes,
- to give a legend to a curve,
- to plot in 3-dimensions using the "plot3" command,
- to plot surfaces in 3-dimensions using the "mesh" command,
- to plot contours in 2, 3-dimensions using the "contour" command,
- to plot a surface and its contour plot on the same plot using "meshc (xx,yy,zz)"
- to use the construct $x=A \backslash b$ to solve a system of equations,

ASSIGNMENT 1 IS DUE ON 15th AUGUST

WEEK 5: 5 August- 11 August

Students should know how:

- to use the Gauss Seidel code to solve a system of equations for iterative methods,
- to determine if a matrix A is strictly diagonally dominant,
- to use the iterative linear solver code to solve a system of equations,
- to implement the stopping criteria condition in a code,
- to identify overdetermined and underdetermined systems,

WEEK 6: 12 August - 18 August

Students should know how:

- to identify overdetermined systems,
- to fine the best fitting curve for a given data,
- to identify underdetermined systems,
- to identify underdertermined and inconsistent system.

WEEK 7: 19 August - 25
 August

Students should know how:

- to calculate eigenvalues and eigenvectors using the Octave command "eig",
- to diagonalize a matrix using the "inv" command,

ASSIGNMENT 2 IS DUE ON 15th SEPTEMBER

WEEK 8: 26 August - 1 September

Students should know how:

- to use the power code and know the outlined power method theory

WEEK 9: 2 September - 8 September

- Understand the basic concepts of linear programming,
- Use the Octave package "glpk" to solve problems in linear programming,
- Ex-press realistic problems in mathematical terms, and then use the Octave package "glpk" to solve them

ASSIGNMENT 2 IS DUE ON 15th SEPTEMBER

ASSIGNMENT 3 IS DUE ON 25th SEPTEMBER

REVISION STARTS ON 25th SEPTEMBER

END OF THE COURSE FOR SECOND SEMESTER

