
APM1513/1

DEPARTMENT	
 OF	

MATHEMATICAL	
 SCIENCES	

APPLIED	
 LINEAR	
 ALGEBRA	
 (APM1513)	

	

STUDY	
 GUIDE	

 2

Copyright © Unisa 2009

August 2008 (version 1)
May 2009 (version 2)

TEAM:

Author: Prof N.T. Bishop

ODL Learning Design: Hentie Wilson, Curriculum
Mathematics Instruction Design: Antonia Makina

Editor:

Cover page layout: Unisa Press, Graphic Artist
Title page layout: Unisa Press, Graphic Artists
Document layout: Hentie Wilson, CLD

with MSWord2007, Special styles
Graphics: Nigel Bishops

Printer and Binding: Unisa Printers

APM1513/1

3

Preface

This module is the first on the use of computers and computational methods in
applied mathematics.

The other undergraduate modules are: COS2338 Numerical methods 1, APM2616
Computer algebra, APM3711 Numerical methods 2. This module, with COS2338
and APM3711, are about finding numerical solutions to problems; whereas
APM2616 shows you how to solve problems symbolically.

The use of computers in mathematics has revolutionized the extent to which
mathematical calculations can be applied to real-world problems. The modern
world is full of such examples, such as Weather prediction, Drug design, Aircraft
design, Electronic banking, and Telecommunication systems.

The teaching strategies imbedded include:

• Activity-based self-study.

The outcomes of this module are:

• To solve systems of linear equations with the use of Octave (or
MATLAB)

• To perform basic matrix operations.
• To use iterative methods to find appropriate solutions for systems
• To know what is meant by the eigenvalue equations, to be able to

calculate the eigenvalue of a matrics and its corresponding eigenvector
and to know the Octave (or MATLAB) code to do it.

• To be able to solve linear programming problems by using the
software.

The main sources used in writing this study guide were

• B.D. Hahn Essential MATLAB for Scientists and Engineers (Pearson
Education South Africa, Cape Town, 2002)

• Previous Unisa study guides on (non-computational) applied linear
algebra, originally written by G. Lemmer and revised by J. Hartney and R.
Maritz.

Nigel Bishop

 4

Table	
 of	
 Contents	

Study Unit 1: Getting started with the computer software (Octave)................7
1.1 Installing and running the software (from TL101)......................................7
1.1.1 MATLAB or Octave..7
1.1.2 Installation of Octave...7
1.1.3 Testing simple examples in the program...8
1.1.4 Exit the program...11

1.2 Process to input files to the program, Octave..11
1.2.1 Create a storage folder...11
1.2.2 Using m files..12

1.3 Output from an Octave session..13
1.3.1 Copy and paste...14
1.3.2 Diary...14

1.4 Using the Octave “Help” facility...14
1.5 In conclusion..16

Study Unit 2: Introduction to programming with Octave...............................17
2.1 Introduction..17

2.2 Scalar variables..17
2.2.1 Creating variables...17
2.2.2 Variable names...18

2.3 Matrices and vectors..19
2.3.1 Construction of matrices and vectors...19
2.3.2 General rules for construction of vectors and matrices..............................20
2.3.3 Accessing elements of a vector or matrix..21
2.3.4 Accessing rows and columns of a matrix...22
2.3.5 Scalars as vectors and matrices..22
2.3.6 Special matrices...23

2.4 Manipulation of matrices...24
2.4.1 Calculations with vectors and matrices using matrix algebra....................25
2.4.2 Matrix algebra..25
2.4.3 Element by element calculations with vectors and matrices......................28
2.4.4 Extraction of some commonly-needed properties of matrices & vectors..30

2.5 Miscellaneous features of Octave..30
2.5.1 Suppression of output with the semi-colon; terminator.............................31
2.5.2 Multiple line statements with...31
2.5.3 Several statements on the same line...31
2.5.4 The display command “disp”...31
2.5.5 Input statement...32
2.5.6 Complex numbers..32
2.5.7 Operator precedence rules..33
2.5.8 Comments %..34

APM1513/1

5

2.6 Control commands: Loops and branches...34
2.6.1 “For” loops...34
2.6.2 Matrix or array operations versus “for” loops..35
2.6.3 If statements...36
2.6.4 Evaluation of conditions..37
2.6.5 Conditional loops...38

2.7 Functions..39
2.7.1 Pre-defined functions...39
2.7.2 User-defined functions...40
2.7.3 Function handles..41

2.8 Graphics...43
2.8.1 Plotting functions with fplot..43
2.8.2 Plots in 2 dimensions with plot..44
2.8.3 Plotting lines in 3-dimensions with plot3...48
2.8.4 Other features of graphics..54

2.9 Additional Exercises..55

2.10 In Summary..56

Study Unit 3: Use of Octave to solve linear systems of equations....................57
3.1 Introduction..57
3.2 Gaussian elimination..57
3.3 Iterative methods..58
3.4 Diagonal dominance...61
3.4.1 Stopping criterion...63
3.5 Exceptional cases (where the solution may not be reliable)......................65
3.6 Additional Exercises..68
3.7 In conclusion..69

Study Unit 4: Overdetermined and underdetermined systems of

linear equations..70
4.1 Identification of overdetermined and underdetermined systems...............70
4.1.1 A is square (m=n) and det(A)≠0..70
4.1.2 A is square (m=n) and det(A)=0..70
4.1.3 There are more equations than unknowns (m>n).......................................71
4.1.4 There are more unknowns than equations (n>m).......................................71

4.2 Overdetermined systems..71
4.3 Underdetermined systems..77
4.4 Underdetermined and inconsistent system...79
4.5 Additional Exercises..80
4.6 In conclusion..81

 6

Study Unit 5: Eigenvalues, eigenvectors and matrix diagonalization.............82
5.1 Summary of mathematical results..82
5.1.1 Calculation of eigenvalues and eigenvectors...82
5.1.2 Some useful properties of eigenvalues and eigenvectors...........................83
5.2 The Octave command eig...83
5.3 Matrix diagonalization...85
5.4 The power method..86
5.4.1 Algorithm...86
5.4.2 Justification/why..87
5.5 Additional Exercises..89
5.6 In conclusion..91

Study Unit 6: Linear programming..92
6.1 The basic ideas of linear programming..92
6.2 The simplex method...94
6.3 The Octave glpk “package”...95
6.4 More realistic linear programming examples..98
6.5 Additional Exercises..103
6.6 In conclusion..105

APM1513/1

7

Study	
 Unit	
 1: Getting	
 started	

with	
 the	
 computer	
 software	

TIME PERIOD: 10 hours approximately RESOURCES: MATLAB/Octave programs	

LEARNING OUTCOMES
At the end of this Study Unit, you should be able to:

• Have Octave installed on your computer.
• Use Octave for simple calculations.
• Use Octave to produce simple graphs.
• Execute a simple Octave program by reading from a file.
• Produce Octave results as output, including graphs, to files.
• Use the Octave help facilities.

1.1 Installing	
 and	
 running	
 the	
 program	
 (from	
 TL101)	

This module requires you to use a software programme and we decided to use
Octave which is free of charge. MATLAB is another commercial software
product similar to Octave, but that has to be purchased. (Please refer to your
tutorial letter APM113U, number 101, to find more information on the installation
procedure.)

1.1.1 MATLAB	
 or	
 Octave?	

Although there are occasional differences, the syntax of the two programming
systems is almost identical. In some advanced, specialized applications, we found
MATLAB was able to solve a problem but Octave was unsuccessful. However,
for the introductory purposes of this module, the free Octave version is quite
sufficient. You are welcome to use MATLAB rather than Octave if you wish, or if
the computer that you are using for this module already has MATLAB installed.
Be aware that there will be minor syntactical and layout differences between
MATLAB and Octave; the notes in this study guide will only cover Octave so for
a start we would suggest that you rather work with Octave.

1.1.2 Install	
 the	
 program,	
 Octave	

Before you can start work on this module, you need to install the software
package onto your computer Desktop. (Information about how to do this is given
in Tutorial Letter 101 because the software package is regularly updated and these
details may change).

The installation process should show the Octave icon on your computer’s
Desktop. (If the icon is not there, go to the Start button, then click on Programs,
then on GNU Octave, then on Octave. Otherwise, go back and redo the
installation process).

 8

NOTE: There may be minor differences in the layout in some cases because of
version differences between the programs. The program version shown in this
study guide was developed and tested using Octave version 3.0.0, running under
the Windows operating system, and with gnuplot (as the graphics back-end).

Activity	
 1-­‐1	
 Open	
 the	
 program	

Double	
 click	
 on	
 the	
 program	
 icon	
 to	
 open	
 the	
 program.	
 	

A new window should open that contains installation details. Details on the
Octave Startup window should look like this:

GNU Octave, version 3.0.0
Copyright (C) 2007 John W. Eaton and others.
This is free software; see the source code for copying
conditions.
There is ABSOLUTELY NO WARRANTY; not even for
MERCHANTIBILITY or
FITNESS FOR A PARTICULAR PURPOSE. For details, type
`warranty'.
Octave was configured for "i686-pc-msdosmsvc".
Additional information about Octave is available at
http://www.octave.org.
Please contribute if you find this software useful.
For more information, visit http://www.octave.org/help-
wanted.html
Report bugs to <bug@octave.org> (but first, please read
http://www.octave.org/bugs.html to learn how to write a
helpful report).
For information about changes from previous versions, type
`news'.
 - Use `pkg list' to see a list of installed packages.
 - SciTE editor installed. Use `edit' to start the editor.
 - MSYS shell available (C:\Program Files\Octave\msys).
 - Graphics backend: gnuplot.
 octave-3.0.0.exe:1>

If you have problems to install the program, at first, try again. If you still have a
problem contact the lecturer as this is a key step in starting.

1.1.3 Testing	
 simple	
 examples	
 in	
 the	
 program	

Now you are ready to investigate what Octave can do. In order to show what is
the Octave program’s INPUT and OUTPUT, we will in our directions type the
Octave code in a different font, the Courier font.

Your input is indicated in bold boxed, so look for the input fishbone prompt (>),
then type your input.

For	
 example,	
 	

Type the following calculation to use the program as a calculator.
>3.6+5.7

The programme should return the following OUTPUT:
ans = 9.3000

APM1513/1

9

Activity	
 1-­‐2	
 Test	
 the	
 program	

Type	
 in	
 your	
 own	
 examples	
 of	
 calculations	
 in	
 the	
 program.	
 You	
 are	
 now	

investigating	
 the	
 ability	
 of	
 the	
 program,	
 Octave,	
 	
 to	
 be	
 used	
 as	
 a	
 calculator.	
 	

	

Make	
 a	
 note	
 of	
 your	
 own	
 examples	
 in	
 your	
 workbook/work	
 file	
 (you	
 may	
 make	

Print	
 Screen	
 copies,	
 and	
 paste	
 them	
 into	
 a	
 wordprocessor	
 file,	
 then	
 print	
 it	
 out	

and	
 paste	
 it	
 in	
 your	
 workbook	
 as	
 evidence	
 of	
 your	
 work.)	

FEEDBACK:
Were you able to do your own testing? If so, go to myUnisa Discussion Forums
and share your problems with other students to see whether you get any reply
from them. Your Tutor or Lecturer will monitor the discussions and support your
study efforts.

If you have problems with the installation processor the testing activity, go to the
Internet, with your Internet Explorer, to the Unisa student website,
https://my.unisa.ac.za/portal.
Log in with your student number and password, then go to this module’s website
and its Discussion Forums, and ask for help there.
If you are unable to go online, phone 012 429-6202 for help from the department.

Remember, that in Octave the following symbols have specific meanings:

• * means multiply
• / means divide
• ^ means raise to a power, e.g. 3^2 means 32
• sqrt means the square root, e.g. sqrt(2) leads to 1.4142.

Test some more calculations of your own where you use the multiplication,
division, power, and square root.

Now, let us look at an Example where we will use the program to do something
interesting.

Activity	
 1-­‐3	
 Solve	
 equations	

Use	
 Octave	
 to	
 solve	
 a	
 pair	
 of	
 simultaneous	
 equations,	
 such	
 as:	

	
 1	
 x1	
 +	
 2	
 x2	
 =	
 5,	
 and	
 3	
 x1	
 +	
 4	
 x2	
 =	
 6	

FEEDBACK:
Let’s do it together. In order to use Octave, we must first write the above
equations in its matrix form, namely:
 A x = b
(We will discuss such problems in more detail in Study Unit 3.)

We will now give you the Octave INPUT together with the OUTPUT.
(Remember that the part that you must type as INPUT is after the fishbone input
prompt (>) and indicated in boxed bold.)

 10

So, type the first row values; and separate rows with a colon, with or without a
space after the ; and before the 3.)

> A=[1 2;3 4]

A =
 1 2
 3 4

> b=[5;6]

b =
 5
 6

> x=A\b
x =
 -4.0000
 4.5000

Following this OUTPUT, you need to rewrite the required answer (in
mathematical terms) as:
 x1 = -4, x2 = 4.5

Activity	
 1-­‐4	
 Plot	
 a	
 graph	

Use	
 the	
 program	
 to	
 plot	
 a	
 simple	
 graph:	
 sin(x)	
 in	
 the	
 range	
 0<x<7.5	

At the input prompt, type:
> fplot(@sin,[0,7.5])

The program produces a new window containing a graph of sin(x) in the range
0<x<7.5 (as shown below):

Table	
 1:	
 Program-­‐generated	
 graph	

APM1513/1

11

1.1.4 Exit	
 the	
 program	

Finally, exit your Octave session.

Activity	
 1-­‐5	
 Exit	
 or	
 close	
 the	
 program	
 session	

Enter,	
 at	
 the	
 input	
 prompt,	
 the	
 command	
 “quit”.	

> quit

Now you know the basics about the program. Congratulations for getting this far.

1.2 Process	
 to	
 input	
 files	
 to	
 the	
 program,	
 Octave	

When you again open Octave, it assumes that the Home folder (that is the folder
in which input and output files are located) is C:\Program Files\Octave. While
it is possible to work in the Octave folder, it is better to use your own folder for
your work, either in My Documents, or on the Desktop, or within your own
structure.

1.2.1 Create	
 a	
 storage	
 folder	

The first thing to do is to create the Home folder, and once you have done so
open it and ensure the path is given in the top of the window.

For	
 example,	

Suppose the Home folder is located in your My Documents folder at:

C:\Documents and Settings\User\My Documents\apm113,
Then, to get Octave to use this as the Home folder, enter at the input prompt:
> cd "C:/Documents and Settings/User/My Documents/apm113"

Activity	
 1-­‐6	
 Create	
 storage	
 folders	

Create	
 your	
 own	
 Home	
 folder	
 for	
 your	
 work	
 in	
 this	
 module,	
 “APM113”	
 (upper	
 or	

lower	
 case	
 are	
 both	
 accepted).	
 For	
 the	
 first	
 time,	
 keep	
 the	
 file	
 address	
 as	

suggested	
 above,	
 in	
 “Documents	
 and	
 Settings/User/My	
 Documents”.	

There are two important points to note about the above command that is different
to the normal computer commands:

• The path appears inside quotation marks ("), so that the program will
recognise the command;

• The symbol normally used (\) is replaced by forward slash (/).

Obviously, it can become somewhat tiresome to enter the above long address
command every time you start an Octave session, so we will show you a shortcut.

Short cut:
Quit your Octave session to start a new session.
Confirm where the location of the default Home folder, by entering the command
“pwd” (meaning, Print Working Directory).
Start editing by going to the SciTE-editor with the command “edit”.

 12

Activity	
 1-­‐7	
 Change	
 the	
 Home	
 directory	
 and	
 name	
 files	

Find	
 the	
 working	
 directory	
 you	
 are	
 working	
 in	
 and	
 change	
 it	
 to	
 your	
 own.	

Ensure	
 you	
 work	
 in	
 the	
 newly	
 named	
 Home	
 folder,	
 APM113.	
 	

Choose	
 a	
 file	
 name,	
 xx.m	
 (where	
 xx	
 is	
 Test1,	
 or	
 whatever	
 you	
 like).	
 Enter,	
 at	
 the	

input	
 prompt,	
 Test1.	

	
 	

FEEDBACK:
Type the following:
> quit

Restart the program and type
> pwd

ans = C:\Program Files\Octave

> edit

The result will be that a new window will appear (entitled, SciTE). In this
window, enter just the one line to change to your new Home address directory you
want to use, such as:
cd "C:/Documents and Settings/User/My Documents/apm113"

In this SciTE-editing window, in the Top bar, go to: File, then Save As (to save in
the folder), C:\Program Files\Octave, (or \GNU Octave), (depending on the
program version).

Save the file as Test1.m (or whatever name you choose). Now type in Octave:
> Test1

Test to see where you are:
> pwd

ans = C:\Documents and Settings\User\My Documents\apm113

This illustrates a very important point: namely, that files can be created to execute
a sequence of commands; through making “m-files”. Read further to see the usage
of m-files.

1.2.2 Using	
 m	
 files	

Suppose that a file in what is currently the Home folder has an extension, “.m” (in
other words, the file name is xx.m), and that the file contains Plain Text
comprising a sequence of program commands. Then typing the file name without
the extension (for Example xx) at the input prompt (>) will cause the sequence of
Octave commands to be executed.

Use only Plain Text in the .m-file. So, use a plain text editor such as Notepad, or
SciTE, or Wordpad (where the saved file type is “Text Document” - not as .rtf).
(IMORTANT: Do not use a word processor, such as Word, as the file it produces
keeps the formatting commands even though you cannot see it.)

Now, let us start using the program. Use the problem of two simultaneous
equations in the next section as an example.

APM1513/1

13

Activity	
 1-­‐8	
 Save	
 m-­‐files	

Open	
 a	
 SciTE-­‐window	
 (by	
 entering	
 “edit”	
 at	
 the	
 Octave	
 input	
 prompt).	
 	

Enter	
 the	
 code	
 for	
 the	
 problem	
 to	
 be	
 solved	
 (below).	
 	

Save	
 the	
 resulting	
 file	
 in	
 the	
 current	
 Home	
 folder,	
 as	
 your	
 first	
 example,	
 ex1.m.	
 	

	

The	
 content	
 of	
 the	
 file	
 ex1.m	
 should	
 be:	

A=[1	
 2;3	
 4]	

b=[5;6]	

x=A\b	

FEEDBACK:
Do the following INPUT in the program.

>edit

In the SciTE-window enter:

A=[1 2;3 4]
b=[5;6]
x=A\b

Save the file with the name ex1.m. In Octave, type:
>ex1

When you enter ex1 at the input prompt, you save the file in,

C:\Documents and Settings\User\My Documents\apm113

The file name is called ex1.m.

Ensure your results or OUPUT is the same as below.

> ex1

A =
 1 2
 3 4

b =
 5
 6

ans =
 -4.0000
 4.5000

Congratulations, now you know how to put information into the Octave program,
so let’s look at the next step.

1.3 Output	
 from	
 an	
 Octave	
 session	

Having used a program to do some calculations, you will probably want to keep a
record of the output in a file. There are several ways to do this such as using copy
to Clipboard or diary.

 14

1.3.1 Copy	
 and	
 paste	
 to	
 Clipboard	

Click on the Octave icon in the top left corner of the Octave command window,
for Menu to appear, click on Edit, then on Mark. Once you have done so, you
can then highlight text in the Octave window in the usual way, and you copy it
into the Clipboard by pressing the Enter key. Paste the copied text wherever you
like.

For graphs, once you have produced a graph on the screen, click Clipboard icon
on the far left in the Menu bar at the top of the graph window, and this will copy
the plot to Clipboard. You can then paste the graph somewhere else, such as into
a Word document.

Text in the Octave window is displayed using the Courier font. If you copy
output into a Word document, and want to maintain the look of the original
Octave session, then you should also use the Courier font in the Word document
(as we have done in this guide).

1.3.2 Using	
 a	
 Diary	
 file	

From when you create a diary file, everything that appears in the Octave
command window (both input and output) will be copied to the diary, keeping a
record of your work.

Activity	
 1-­‐9	

At	
 the	
 Octave	
 input	
 prompt,	
 enter	
 the	
 command	
 “diary	
 on”.	

> diary on

This has the effect of creating a file named diary in the Home folder. You can stop
this at any stage by using the command
> diary off

You can then open the file diary with a text editor, such as the SciTE-editor,
Notepad or Wordpad, and copy and paste parts of it to another document; but note
that you must switch diary off, or end your Octave session, before you can edit it.
Note also that, if the file diary already exists, the command “diary on” causes
the new session to be appended to the end of the file, that is, you do not lose what
is already there.

1.4 Using	
 the	
 Octave	
 “Help”	
 facility	

The Octave system has a number of different facilities that you can use to get
help. The simplest way is to use the command “help” but this only works if you
know the exact name of the command about which you need more information,
like “fplot”.

You can get information that is much more detailed by using the command
“doc”. Scroll around in this mode using the arrow keys.

For	
 example,	

> help fplot

APM1513/1

15

-- Function File: fplot (FN, LIMITS)
 -- Function File: fplot (FN, LIMITS, TOL)
 -- Function File: fplot (FN, LIMITS, N)
 -- Function File: fplot (..., FMT)
 Plot a function FN, within the defined limits. FN an
be either a
 string, a function handle or an inline function. The
limits of
 the plot are given by LIMITS of the form `[XLO, XHI]'
or `[XLO,
 XHI, YLO, YHI]'. TOL is the default tolerance to use
for the
 plot, and if TOL is an integer it is assumed that it
defines the
 number points to use in the plot. The FMT argument is
passed to
 the plot command.
 fplot ("cos", [0, 2*pi])
 fplot ("[cos(x), sin(x)]", [0, 2*pi])
 See also: plot.
C:\Program Files\Octave\share\octave\3.0.0\m\plot\fplot.m
Additional help for built-in functions and operators is
available in the on-line version of the manual. Use the
command
`doc <topic>' to search the manual index.
Help and information about Octave is also available on the
WWW
at http://www.octave.org and via the help@octave.org
mailing list.
-- less (100%) (f)orward, (b)ack, (q)uit

You exit the help mode by entering
q

Activity	
 1-­‐10	
 Use	
 Help	

Go	
 into	
 the	
 Help	
 function.	
 Scroll	
 around.	
 Exit	
 it.	

There is a complete user manual available in both html- and pdf-formats, located
at:
C:\Program Files\Octave\doc\HTML\liboctave\index.html
C:\Program Files\Octave\doc\HTML\interpreter\index.html
C:\Program Files\Octave\doc\PDF\octave.pdf

The next activity focusses on getting you to use the Help function of the extensive
program manual more readily, and to transfer knowledge into your everyday use
of the program.

 16

Activity	
 1-­‐11	
 Write	
 .m-­‐file	

Write	
 a	
 .m-­‐file	
 that	
 uses	
 Octave	
 to	
 solve	
 the	
 following	
 problems.	

	

1.	
 Plot	
 a	
 graph	
 of	
 cos(x)	
 in	
 the	
 range	
 -­‐1<x<5	

	

2.	
 	
 Evaluate	
 9.2-­‐0.5	

	

3.	
 Evaluate 	

	

4.	
 Solve	
 the	
 simultaneous	
 equations	

	
 2	
 x1	
 +	
 3	
 x2	
 =	
 10	

	
 4	
 x1	
 +	
 5	
 x2	
 =	
 8	

	

5.	
 Now,	
 produce	
 a	
 Word	
 document	
 that	
 contains	
 the	
 following:	
 	

1)	
 The	
 content	
 of	
 the	
 .m	
 file;	
 	

2)	
 The	
 output	
 obtained	
 from	
 running	
 the	
 .m	
 file;	
 	

3)	
 The	
 graph.	

	

6.	
 	
 Normally	
 Octave	
 outputs	
 numbers	
 with	
 5	
 significant	
 figures.	
 	
 	

Use	
 the	
 Help	
 facility	
 with	
 the	
 keyword	
 format	
 to:	
 	

1)	
 find	
 how	
 to	
 get	
 output	
 with	
 15	
 significant	
 figures.	
 	
 	

2)	
 Then	
 evaluate 	
 to	
 15	
 significant	
 figures.	

This skill is required throughout this module, so feel free to refer to the Help-
function often for guidance. Keep evidence of your work (copy and paste your
efforts to your workbook or make a printout from your diary file).

1.5 In	
 conclusion	

Well done you now have the program, Octave, working. You have used it to
produce graphs and other simple calculations.

Now you are ready to start with the real work of the module. The next time you
use the program you will find it becomes much easier, and easier.

APM1513/1

17

Study	
 Unit	
 2: Introduction	
 to	

programming	

TIME PERIOD: 30 hours approximately RESOURCES: Octave/MATLAB programs	

LEARNING	
 OUTCOMES
At the end of this Study Unit, you should be able to use the computer software
(such as Octave) to:

• Construct scalar, vector and matrix variables
• Manipulate variables to calculate new scalar, vector and matrix variables
• Use loops to repeat calculations
• Uses conditional tests, like “if” statements
• Construct user-defined functions

2.1 Introduction	

This unit is a summary of the features of the Octave program that you will use
throughout the module. If you would like to see more detail, you will find it in the
extensive Octave manual.

If you are experienced in computer programming, you should not be tempted to
skip this Study Unit. While you, as an experienced programmer, could go through
this Study Unit quite quickly, you should not skip it altogether because there are
important syntactical differences between Octave and other programming
languages.

2.2 Scalar	
 variables	

In this section we deal with creating and naming variables.

2.2.1 Creating	
 variables	

A variable is created simply by assigning a value to it at the command line or in a
program.

For	
 example,	

> a=17

a = 17
This has the effect of creating a new variable “a” with value 17.

Alternatively, you can use the variable a also in another formula to test for “b”,
such as:
> b=a^2

b = 289

 18

2.2.2 Variable	
 names	

Names of variables must start with a letter, and may include letters, numbers, as
well as the underscore character (_). Names are case sensitive; therefore, A1 and
a1 will represent different variables. It is important to note that assigning a
variable name supersedes a meaning that may already exist. Thus, although it is
permissible to define log=6.1 it would not be useful to do so because then you
could no longer use the logarithmic function.

For	
 example,	
 a	
 USELESS	
 variable	
 would	
 be,	
 	

> log=6.1

log = 6.1000

The following useful variables are pre-defined in Octave as mathematical
constants:

• e 2.7183
• i
• j
• pi 3.1416

You can see the “currently defined variable” names by entering the command
“who”. Look at the last part in the program OUTPUT, the “local user variables”,
to see the variables you have defined yourself.

Activity	
 2-­‐1	
 Check	
 and	
 remove	
 variables	

Determine	
 the	
 defined	
 variable	
 names	
 in	
 your	
 program,	
 both	
 current	
 and	
 local	

user	
 variables.	
 Remove	
 the	
 definitions	
 thereafter.	

FEEDBACK:
Type in “who”.
> who

*** dynamically linked functions:
__COM__ builtin: find dispatch getpwuid

*** currently compiled functions:
__default_graphics__ index rindex
edit ispc strcat
fileparts isunix strrep
findstr lower
fullfile pkg

*** local user variables:
__nargin__ a b log

You can remove all these definitions, either by quitting and starting a new Octave
session, or, by means of the command “clear”.
> clear

It is a good idea to clear the workspace after finishing one problem and before
starting another one, so as to avoid errors due to a variable having an unintended
value.

APM1513/1

19

2.3 Matrices	
 and	
 vectors	

In this section, we deal with variables with more structure.

2.3.1 Construction	
 of	
 matrices	
 and	
 vectors	

So far, we have defined variables that comprise just a single value, like scalars.
However, the power of a programming language (like Octave or Matlab) is that it
is easy to introduce and manipulate indexed data structures, such as vectors and
matrices.

First, we need to construct vectors and matrices so, work through the following
examples.

Activity	
 2-­‐2	
 Construct	
 matrices	
 and	
 vectors	
 in	
 the	
 program	

Explicitly	
 construct:	
 	

1)	
 a	
 row	
 vector	
 with	
 3.3,	
 1.7,	
 2.1	

2)	
 a	
 column	
 vector	
 with	
 3.3,	
 1.7,	
 2.1	

3)	
 a	
 matrix	
 ,	
 where	
 the	
 entries	
 are	
 known	
 explicitly	
 	

4)	
 a	
 row	
 vector,	
 when	
 the	
 values	
 change	
 by	
 equal	
 increments	

5)	
 a	
 row	
 vector,	
 when	
 the	
 increment	
 is	
 1	

6)	
 a	
 column	
 vector	
 when	
 the	
 values	
 change	
 by	
 equal	
 increments	

7)	
 A	
 matrix,	
 where	
 some	
 entries	
 change	
 by	
 equal	
 increments	

8)	
 A	
 matrix,	
 by	
 combining	
 an	
 existing	
 matrix	
 with	
 a	
 column	
 vector	

9)	
 A	
 matrix	
 by	
 combining	
 an	
 existing	
 matrix	
 with	
 a	
 row	
 vector	

10)	
 Transposition	
 of	
 a	
 matrix	

	

FEEDBACK:
Row vectors:
> v1=[3.3 1.7 2.1]

v1 =
 3.3000 1.7000 2.1000

Column vectors:
> u1=[3.3; 1.7; 2.1]

u1 =
 3.3000
 1.7000
 2.1000

A matrix:
> A1=[1 2 3;4 5 6;7 8 9]

A1 =
 1 2 3
 4 5 6
 7 8 9

A row vector when the increment is 1:
> v3=1:4

v3 =
 1.00000 2.00000 3.00000 4.00000

user4
Highlight
important work

 20

A row vector when the values change by equal increments (that are not 1):
> v2=1:-0.2:0.4

v2 =
 1.00000 0.80000 0.60000 0.40000

A column vector when the values change by equal increments:
> u2=[1:-0.2:0.4]'

u2 =
 1.00000
 0.80000
 0.60000
 0.40000

A matrix, where some entries change by equal increments:
> A2=[1:4;5:8;9.5:2:15.5;1 0 0 0]

A2 =
 1.00000 2.00000 3.00000 4.00000
 5.00000 6.00000 7.00000 8.00000
 9.50000 11.50000 13.50000 15.50000
.00000 0.00000 0.00000

A matrix, by combining an existing matrix with a column vector:
> A3=[A2 u2]

A3 =
 1.00000 2.00000 3.00000 4.00000 1.00000
 5.00000 6.00000 7.00000 8.00000 0.80000
 9.50000 11.50000 13.50000 15.50000 0.60000
 1.00000 0.00000 0.00000 0.00000 0.40000

A matrix, by combining an existing matrix with a row vector:
> A4=[A2;v3]

A4 =
 1.00000 2.00000 3.00000 4.00000
 5.00000 6.00000 7.00000 8.00000
 9.50000 11.50000 13.50000 15.50000
 1.00000 0.00000 0.00000 0.00000
 1.00000 0.80000 0.60000 0.40000

Transposition of a matrix:
> A5=A4'

A5 =
 1.00000 5.00000 9.50000 1.00000 1.00000
 2.00000 6.00000 11.50000 0.00000 0.80000
 3.00000 7.00000 13.50000 0.00000 0.60000
 4.00000 8.00000 15.50000 0.00000 0.40000

2.3.2 General	
 rules	
 for	
 construction	
 of	
 vectors	
 and	
 matrices	

The above illustrates a number of general rules. NOTE: Refer to this when you
are doing examples that are more complicated.

user4
Highlight

APM1513/1

21

We use the following rules for the construction of vectors and matrices:

• Vectors and matrices are indicated by square brackets []
• The elements of a row are separated by spaces
• The rows are separated by semi-colons (;)
• Using the colon (:) notation, the first entry in a row is the number before

the (:), the last entry is the last number in the definition, and the entry
between the two (:) is the increment. If the middle number is omitted, then
the increment is 1.

2.3.3 Accessing	
 elements	
 of	
 a	
 vector	
 or	
 matrix	

We can access the value of an element of a matrix or vector by the notation ---
• A(row index, column index) for a matrix
• v(index) or v(1,index) for a row vector
• u(index) or u(index,1) for a column vector

We illustrate this by some activities, with u2, v3 and A2 (defined as above).

Activity	
 2-­‐3	

Find	
 the	
 values	
 of	
 the	
 following	
 elements	
 of	
 a	
 vector	
 or	
 matrix:	
 	

1)	
 In	
 a	
 row	
 vector,	
 v3(2)	

2)	
 in	
 a	
 row	
 vector,	
 v3(3)	

3)	
 In	
 a	
 column	
 vector,	
 u2(4)	

4)	
 in	
 a	
 column	
 vector,	
 u2(3)	

5)	
 in	
 a	
 matrix,	
 A2(2,3)	

6)	
 in	
 a	
 matrix,	
 A2(3,2)	

FEEDBACK:
For a row vector:
> v3(2)

ans = 2

> v3(1,3)

ans = 3
Note v3(1,3)=v3(3)

For a column vector:
> u2(4)

ans = 0.40000

> u2(3,1)
ans = 0.60000

Note that u2(3,1)=u2(3)

For a matrix:
> A2(2,3)

ans = 7

> A2(3,2)

ans = 11.500

 22

2.3.4 Accessing	
 rows	
 and	
 columns	
 of	
 a	
 matrix	

We can access the rows and columns of a matrix by the notation
• A(row index, :) for a row of a matrix
• A(:,column index) for a column of a matrix

Activity	
 2-­‐4	

Access	
 the	
 rows	
 and	
 columns	
 of	
 a	
 matrix,	
 with	
 A2	
 defined	
 as	
 above,	
 using	
 the	

notation	
 as	
 above.	

FEEDBACK:

> A2(2,:)

ans =
 5 6 7 8

> A2(:,3)

ans =
 3.00000
 7.00000
 13.50000
 0.00000

2.3.5 Scalars	
 as	
 vectors	
 and	
 matrices	

We have already seen that Octave treats a row vector as being a matrix with a
single row, and a column vector as being a matrix with one column (because
v(1,index) and u(index,1) are valid statements).

In the same way, Octave treats a scalar quantity as being a matrix with only the
(1,1) element, and this is equivalent to it being a vector with just one component.
Therefore (in Octave), there is essentially no difference between scalars, vectors
and matrices.

Activity	
 2-­‐5	

Clear	
 your	
 previous	
 work.	
 	

Check	
 that	
 a;	
 a(1);	
 a(1,1)	
 all	
 have	
 the	
 same	
 value	

FEEDBACK:
> clear

> a=7.342

a = 7.3420

> a

ans = 7.3420

> a(1)

ans = 7.3420

> a(1,1)

ans = 7.3420

APM1513/1

23

2.3.6 Special	
 matrices	

A number of special matrices are pre-defined in Octave, and here we give 4 cases
that will be useful to you later.

a) CASE	
 1	

The statement zeros(m,n) defines a matrix with m rows and n columns whose
entries are all 0.

For	
 example,	

> zeros(4,6)

ans =

 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

b) CASE	
 2	

The statement ones(m,n) defines a matrix with m rows and n columns whose
entries are all 1.
For	
 example,	

> ones(3,2)

ans =

 1 1
 1 1
 1 1

c) CASE	
 3	

The statement rand(m,n) defines a matrix with m rows and n columns whose
entries are random numbers in the range 0 to 1.
For	
 example,	

> rand(4,5)

ans =

 0.6785508 0.1797487 0.1222308 0.5802859 0.0345841
 0.9743568 0.2243425 0.1427010 0.3802661 0.5009699
 0.6864207 0.1635793 0.4904312 0.2338945 0.6085457
 0.5685229 0.1613623 0.9038765 0.8830253 0.0088788

d) CASE	
 4	

The statement eye(n) defines the square identity matrix with n rows and n
columns.
For	
 example,	

> eye(5)

 24

ans =

 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

2.4 Manipulation	
 of	
 matrices	

We can produce new vectors and matrices from those that we have already
constructed. We have already previously seen the following:

• The transpose operator ('), for example, in A5=A4'
• Adding a row or a column to a matrix, for example, in [A2 u2],or

[A2;v3].

It is also straightforward to get the inverse and delete a row and column from
matrices.

a) Construct	
 the	
 inverse	
 of	
 a	
 square	
 matrix	
 using	
 the	
 operator	
 inv

For	
 example,	

> A6=rand(5,5)

A6 =
 0.228451 0.744584 0.311120 0.412804 0.415285
 0.752986 0.990980 0.539382 0.236439 0.684900
 0.079324 0.587490 0.386354 0.543607 0.880370
 0.052009 0.885506 0.522269 0.963522 0.262930
 0.392542 0.796100 0.162770 0.461631 0.082264

> A7=inv(A6)
A7 =
 -7.124120 1.774712 1.615726 0.305008 2.922358
 7.035698 -1.304923 -1.866377 -1.131128 -1.064458
 0.157018 2.020572 -2.009178 2.431010 -3.883385
 -6.063413 0.067611 2.244590 1.005264 2.812304
 -0.378068 -0.217589 1.731535 -0.960240 0.414733

b) Delete	
 a	
 row	
 or	
 a	
 column	
 from	
 a	
 matrix:	

For	
 example,	
 where	
 you	
 delete	
 the	
 2nd	
 row	
 of	
 A6	
 and	
 the	
 3rd	
 column	
 of	
 A7.	

> A6(2,:)=[]

A6 =
 0.228451 0.744584 0.311120 0.412804 0.415285
 0.079324 0.587490 0.386354 0.543607 0.880370
 0.052009 0.885506 0.522269 0.963522 0.262930
 0.392542 0.796100 0.162770 0.461631 0.082264

> A7(:,3)=[]
A7 =
 -7.124120 1.774712 0.305008 2.922358
 7.035698 -1.304923 -1.131128 -1.064458
 0.157018 2.020572 2.431010 -3.883385
 -6.063413 0.067611 1.005264 2.812304
 -0.378068 -0.217589 -0.960240 0.414733

APM1513/1

25

This enables you to construct any form of matrix or vector that you want or need.
Now let’s go further to see what else is important.

2.4.1 Calculations	
 with	
 vectors	
 and	
 matrices	
 using	
 matrix	
 algebra	

Octave as program recognizes two different meanings that can be given to
arithmetic operations on vectors and matrices.

2.4.2 Matrix	
 algebra	

In the first case, the operators have the same meaning as used in matrix algebra.

a) Case	
 1	

Addition and subtraction, A + B, and A – B, are defined whenever A and B are
matrices of the same size, namely, they each have the same number of rows and
columns.

Activity	
 2-­‐6	
 Calculate	
 the	
 matrices	
 with	
 +	
 and	
 -­‐	

Calculate	
 the	
 matrices:	
 	
 A8=rand(2,3);	
 	
 	
 B1=ones(2,3);	
 	
 	
 	
 	
 	
 A8+B1	

FEEDBACK:
> A8=rand(2,3)

A8 =
 0.35475 0.95425 0.70169
 0.18010 0.15871 0.60431

> B1=ones(2,3)
B1 =
 1 1 1
 1 1 1

> A8+B1
ans =
 1.3548 1.9542 1.7017
 1.1801 1.1587 1.6043

b) Case	
 2	

Multiplication, A B, is defined whenever A and B are matrices with the number of
columns in A equal to the number of rows in B, or, if either A or B is a scalar.

Activity	
 2-­‐7	
 Calculate	
 the	
 matrices	
 with	
 x	

Calculate	
 the	
 matrices:	
 	
 A9=rand(2,3);	
 	
 	
 B2=rand(3,4);	
 	
 	
 A9*B2	

FEEDBACK:
> A9=rand(2,3)

A9 =

 0.795470 0.401763 0.840127
 0.918606 0.521561 0.087270

> B2=rand(3,4)

 26

B2 =

 0.59073 0.14314 0.74667 0.34705
 0.75876 0.39622 0.19848 0.20565
 0.57285 0.47794 0.56639 0.50184

> A9*B2
ans =

 1.25602 0.67458 1.14954 0.78030
 0.98839 0.37985 0.83885 0.46986

> 2.3*A9
ans =

 1.82958 0.92406 1.93229
 2.11279 1.19959 0.20072

c) Case	
 3	

Raising to a power, An, is defined whenever A is a square matrix, and it means
A x A x A ... (n times).

Activity	
 2-­‐8	
 Calculate	
 the	
 matrices	
 with	
 a	
 An	

Calculate	
 the	
 matrices:	
 	
 A10=rand(3,3);	
 	
 A10^2;	
 	
 A10^5	

> A10=rand(3,3)

A10 =

 0.85898 0.12942 0.92354
 0.73955 0.88709 0.30950
 0.16907 0.29217 0.70776

> A10^2
ans =

 0.98971 0.49582 1.48702
 1.34363 0.97307 1.17662
 0.48096 0.48785 0.74750

> A10^5
ans =

 3.8196 2.7376 4.9474
 5.0490 3.5300 6.4821
 2.3903 1.6891 3.0186

d) Case	
 4	

Division is not straightforward in matrix algebra. Here we will introduce the
Octave operators \ and / within the context of solving a system of simultaneous
equations (In fact, the operators \ and / can be used more generally, but we will
not discuss that).

For	
 example,	

Suppose that we have n by n square matrix A, and column vectors x and b both of
length n, and that we want to solve for x in

A x = b.

APM1513/1

27

Then,
x = A-1 b.

The Octave notation for the above is
x=A\b.

Of course, we could also write in Octave x=inv(A)*b, but this is less efficient so
the \ operator is preferred.

For	
 example,	

Suppose instead that we want to solve
y A = c

with y and c now row vectors of length n. Then
y = c A-1.

The Octave notation for the above is
y=c/A

Of course, we could also write in Octave y=c*inv(A), but again this is less
efficient.

Activity	
 2-­‐9	
 Calculate	
 the	
 matrices	
 with	
 division	

Calculate	
 the	
 matrices:	
 	
 	
 A11=rand(3,3);	
 	
 b=rand(3,1);	
 	
 c=rand(1,3)	

x=A11\b;	
 	
 inv(A11)*b;	
 	
 y=c/A11;	

c*inv(A11)	

> A11=rand(3,3)

A11 =
 0.088404 0.120302 0.727375
 0.940880 0.350956 0.817928
 0.373165 0.451789 0.714572

> b=rand(3,1)
b =
 0.093734
 0.363911
 0.892151

> c=rand(1,3)
c =
 0.87188 0.98920 0.42356

> x=A11\b
x =
 -0.39420
 2.73657
 -0.27583

> inv(A11)*b
ans =
 -0.39420
 2.73657
 -0.27583

> y=c/A11

 28

y =
 -2.147898 0.048056 2.724118

> c*inv(A11)
ans =
 -2.147898 0.048056 2.724118

2.4.3 Element-­by-­element	
 calculations	
 with	
 arrays	
 (vectors	
 and	
 matrices)	
 	

The second meaning that Octave recognizes for arithmetic operations on vectors
and matrices is to do the calculations on an element-by-element basis. Actually, in
this case, the objects with which we work are not vectors or matrices (because
they do not satisfy the required rules), so it is better to call them arrays, and talk
about element-by-element operations on the arrays.

For	
 example,	

Suppose that we have a 1 x n array v and we want to construct a new array u, each
element of which is the square of the corresponding element in v. In mathematical
notation, what we want is

uk = vk
2, for each value of the index k.

In Octave, if we write u=v^2 we will get an error message, so instead we use the
operator (.^) to indicate that we are doing a calculation element-by-element, by
writing u=v.^2.

Activity	
 2-­‐10	
 Calculate	
 the	
 matrices	
 of	
 arrays	

Calculate	
 the	
 matrices:	
 	
 v=rand(1,4);	
 u=v^2;	
 u=v.^2	

> v=rand(1,4)

v =
 0.295962 0.194619 0.078277 0.839960

> u=v^2
error: for A^b, A must be square
error: evaluating binary operator `^' near line 53, column 4
error: evaluating assignment expression near line 53, column
2

> u=v.^2
u =
 0.0875937 0.0378766 0.0061273 0.7055324

NOTE: If you are doing matrix calculations there will be NO .^, but in element-
by-element arrays calculations you will need the full stop (.).

Here are some more examples of valid element-by-element calculations on arrays.

Activity	
 2-­‐11	
 Calculate	
 more	
 arrays	

Calculate	
 the	
 arrays:	
 	
 A12=rand(4,3);	
 B3=rand(4,3);	
 A12.*B3.*1.8;	
 A12.^B3	

> A12=rand(4,3)

APM1513/1

29

A12 =
 0.95540 0.56061 0.65058
 0.54163 0.53082 0.11537
 0.14583 0.27776 0.53204
 0.22211 0.63209 0.37170

> B3=rand(4,3)
B3 =
 0.787186 0.138921 0.080241
 0.390426 0.846420 0.913880
 0.561953 0.374361 0.883199
 0.039100 0.810616 0.554635

> A12.*B3.*1.8
ans =
 1.353745 0.140185 0.093965
 0.380638 0.808729 0.189779
 0.147506 0.187165 0.845815
 0.015632 0.922290 0.371081

> A12.^B3
ans =
 0.96472 0.92275 0.96609
 0.78710 0.58504 0.13895
 0.33893 0.61906 0.57274
 0.94287 0.68946 0.57758

> A12./B3./3
ans =
 0.404565 1.345152 2.702612
 0.462424 0.209044 0.042080
 0.086500 0.247316 0.200800
 1.893515 0.259922 0.223388

From the above, we see that element-by-element calculations obey the following
rules:

• The operators are “.+”, “.-“, “.*”, “./”, “.^”.
• Each array in the expression must have the same size, i.e. all arrays must

have the same number of rows m as well as the same number of columns n
• One of the operands for .* ./ .^ may be a scalar.

Activity	
 2-­‐12	
 Construct	
 vectors	

Set	
 up	
 a	
 row	
 vector	
 b	
 with	
 elements	
 1,	
 2,	
 3,	
 4,	
 5.	
 Use	
 array	
 operations	
 on	
 b	
 to	
 set	

up	
 the	
 following	
 vectors,	
 each	
 with	
 5	
 elements:	

a)	
 2,	
 4,	
 6,	
 8,	
 10	

b)	
 ½,	
 1,	
 3/2,	
 2,	
 5/2	

c)	
 1,	
 ½,	
 1/3,	
 ¼,	
 1/5	

d)	
 1,	
 4,	
 9,	
 16,	
 25	

FEEDBACK
Were you able to construct all the above vectors?
Here is a solution to c):
> 1./b

 30

2.4.4 Extraction	
 of	
 some	
 commonly-­needed	
 properties	
 of	
 matrices	
 and	
 vectors	

The operators size, length and sum, give useful information about matrices
and vectors.

• Use size(matrix_name)
This gives the number of rows, followed by the number of columns, in the matrix.

For	
 example	

> A13=ones(4,3)

A13 =
 1 1 1
 1 1 1
 1 1 1
 1 1 1

> size(A13)
ans =
 4 3

• Use length(vector_name)
This is used to find the number of elements in a vector. Formally, it returns the
greater of the number of rows or the number of columns in an array, but it is
better practice to apply it only to vectors.

For	
 example	

> v=1:5
v =
 1 2 3 4 5

> length(v)
ans = 5

• Use sum(matrix_name)
This adds up the elements in each column of a matrix - with the exception of a
row vector in which case it adds up the elements in the row.

For	
 example	

> sum(v)
ans = 15

> sum(A13)
ans =
 4 4 4

2.5 Miscellaneous	
 features	
 of	
 Octave	

If you look at the Octave manual, you will see that there are many features and
commands available. Here we describe just a few of them that you should find
particularly useful.

APM1513/1

31

2.5.1 Suppression	
 of	
 output	
 with	
 the	
 semi-­colon	
 (;)	
 terminator	

The normal result of executing a statement in Octave – both in a .m file and in the
command window – is that the answer is displayed in the command window. Of
course, you always want to see the final answer of a calculation, but sometimes it
is neater to suppress the output of intermediate steps. This is done using the
semicolon statement terminator.

For	
 example	

> A14=ones(2,3);
> A14

A14 =
 1 1 1
 1 1 1

2.5.2 Multiple	
 line	
 statements	
 with”	
 ...”	

Sometimes an Octave statement can be quite long, and it would be convenient to
split it over several lines. This is achieved by means of ... (as shown in the
following example). The “...” construct can be used in both the command window
as well as in a .m file.

For	
 example	

> A15=[1 2 3 4 5 6 7 8 9;12 1 3 14 15 16 17 18 19;...
> 21 22 23 24 25 26 27 28 29]

A15 =
 1 2 3 4 5 6 7 8 9
 12 1 3 14 15 16 17 18 19
 21 22 23 24 25 26 27 28 29

2.5.3 Several	
 statements	
 on	
 the	
 same	
 line	

It is permissible to write several statements on the same line, separating the
statements with either a semi-colon (in which case the output is suppressed), or
with a comma (in which case the output is shown).

For	
 example,	

> c1=2,c2=c1^2;c3=c2^2

c1 = 2
c3 = 16

2.5.4 The	
 display	
 command	
 “disp”	

When Octave outputs the value of a variable, it appears in the form variable (=)
value.

 32

For	
 example	

> c1=2
c1 = 2

Sometimes, you want to suppress the "variable =" part, for example when
producing a Table. You can also use the disp command to place text into the
Octave output.

For	
 example	

> disp(c1)
 2

> disp("Place text here ...")

Place text here ...

2.5.5 Input	
 	
 statement	

The input statement causes something to be displayed on the screen in the Octave
window, and then the system waits for the user to type in a statement in that
window. Usually, this facility is used within a .m-file and asks the user to specify
a parameter needed in the calculation.

Activity	
 2-­‐13	

Write	
 a	
 program	
 that	
 asks	
 the	
 user	
 to	
 enter	
 a	
 square	
 matrix	
 A,	
 and	
 then	
 to	
 enter	

a	
 column	
 vector	
 b,	
 and	
 then	
 to	
 request	
 a	
 result	
 using	
 Return,	
 to	
 find	
 or	
 solve	
 the	

system	
 of	
 equations	
 Ax=b.	

FEEDBACK:
File ex2.m
input("Enter a square matrix A ");
input("Enter a column vector b ");
input("Press Enter to find the result of solving Ax=b");
x=A\b

Octave window
> ex2

Enter a square matrix A, A=[1 2;3 4]
Enter a column vector b, b=[5;6]

Press Enter to find the result of solving Ax=b
x =
 -4.0000
 4.5000

2.5.6 Complex	
 numbers	

Handling complex numbers in Octave is easy! As was said earlier as part of the
built-in functions, is represented by i or j.

APM1513/1

33

Find	
 the	
 	

The variable z with real part 2 and imaginary part 3 is created by the statement,
> z=2+3*i.

All the arithmetic operators and most functions work with complex numbers, for
example,
> sqrt(z)

ans = 1.67415 + 0.89598i

There are some functions that are specific to complex numbers, and if applied to a
real number, they simply treat it as a complex number with zero imaginary part.

For	
 example	

> real(3+2*i)
ans = 3
> imag(3+2*i)
ans = 2
> abs(3+2*i)
ans = 3.6056
> conj(3+2*i)
ans = 3 - 2i

If you are working with complex numbers, be careful about the following:
• DO NOT USE by i or j as variables anywhere in your program – the

effect would be to change the default meaning from
• For a matrix with complex elements, the transpose operator (') means to

take the complex conjugate transpose, that means, rows and columns are
interchanged and also the signs of the imaginary parts are changed.

2.5.7 Operator	
 precedence	
 rules	

The issue here is how the program assigns meaning to something like x=a*b+c

Activity	
 2-­‐14	

Will	
 Octave	
 treat	
 this	
 as	
 x=(a*b)+c	
 	
 or	
 as	
 x=a*(b+c)?	
 	

FEEDBACK:
The answer is x=(a*b)+c, because the operator * has precedence over the
operator +.

The operator precedence rules in Octave, in order of increasing precedence, are:

+ - * / \ .\ .* ./ ^ .^
(For more full details, go to the Octave manual, under Expressions, Arithmetic
Operators, Section 8.8 Operator Precedence.)

However, having said this, it is much better practice to write code that makes
extensive use of parentheses () so as to avoid errors due to Octave interpreting
your code differently to what you intended. Thus, for example, the entries in the

 34

left and right columns below are equivalent, but it is better to write code with
parentheses as in the right column.

For	
 example,	

x=a^b*c x=(a^b)*c
x=a*b+c x=(a*b)+c
x=a/b/c x=a/(b*c)

2.5.8 Comments	
 (%)	

Comments can be included in Octave code using the % symbol, so everything to
the right of the % is ignored by the Octave interpreter. Comments are usually made
in .m files, and you can comment out a whole line or just part of a line. Below we
show how we might include comments in the file ex1.m (from Study Unit 1).

For	
 example,	

%Octave script to solve the matrix equation Ax=b
A=[1 2;3 4] %The matrix A
b=[5;6] %The column vector b
x=A\b %The answer x

2.6 Control	
 commands:	
 Loops	
 and	
 branches	

2.6.1 “For”	
 loops	

Often in programming, you want to repeat an action a fixed number of times. In
Octave this is achieved by means of a “for” loop. We start with an example, and
then give the general syntax.

Activity	
 2-­‐15	

In	
 the	
 following	
 Octave	
 code,	
 find	
 n!	
 (n-­‐factorial),	
 with	
 n	
 between	
 1	
 and	
 10,	

where	

n!	
 =	
 1	
 x	
 2	
 x	
 3	
 ...	
 x	
 (n-­‐1)	
 x	
 n.	

FEEDBACK:
In this case, you need to write the Octave code as a .m file.

File fac.m
n=10;
fact=1;s
for k=1:n
 fact=k*fact;
 factorials(k,:)=[k fact];
end
factorials

Ocatave window
> fac

factorials =
 1 1
 2 2

APM1513/1

35

 3 6
 4 24
 5 120
 6 720
 7 5040
 8 40320
 9 362880
 10 3628800

The general form of the loop is:

for index=start_value:increment:end_value
 statements
end

(If the increment is omitted, it is assumed to be 1.)

Activity	
 2-­‐16	

Evaluate	
 the	
 following	
 series:	

12	
 +	
 22	
 +	
 32	
 +	
 ...	
 +	
 1002	

FEEDBACK
Did you get the right answer? It is 338350.

2.6.2 Matrix	
 or	
 array	
 operations	
 versus	
 “for”	
 loops	

Often, the same effect can be achieved by using array or matrix arithmetic as by
using a “for” loop.

Activity	
 2-­‐17	

Let	
 us	
 look	
 again	
 at	
 the	
 problem	
 of	
 constructing	
 a	
 vector,	
 each	
 element	
 of	
 which	

is	
 the	
 square	
 of	
 the	
 corresponding	
 element	
 in	
 a	
 given	
 vector.	
 	

FEEDBACK:
We saw that the following code solves the problem.

> v=rand(1,4)

v =
 0.295962 0.194619 0.078277 0.839960

> u=v.^2

u =
 0.0875937 0.0378766 0.0061273 0.7055324

Alternatively, using for loops, we could instead write the last statement as
> for k=1:4,u(k)=v(k)^2;end
> u

u =
 0.0875937 0.0378766 0.0061273 0.7055324

Activity	
 2-­‐18	

Which	
 should	
 you	
 rather	
 use,	
 array	
 and	
 matrix	
 operations,	
 or	
 for	
 loops?	
 	

 36

This is a matter of programming style, and there is no definite answer. However,
we can say that an important factor is that code should be written in a way that is
easy for someone else to understand, which usually means that the simpler the
code is the better. So, in the above example, we would prefer the array arithmetic
option (u=v.^2), and that is usually the case (provided this can be done in a
straightforward way). We suggest that the calculation of factorials is best done
using a “for” loop.

2.6.3 If	
 statements	

The general form of an “if” statement is:

if (CONDITION)
 statements
elseif (CONDITION)
 statements
elseif (CONDITION)
 statements
...
else (CONDITION)
 statements
endif

Here	
 is	
 an	
 example	
 (as	
 given	
 in	
 the	
 online	
 Help)	

> x = 1;
> if (x == 1)
> disp ("one");
> elseif (x == 2)
> disp ("two");
> else
> disp ("not one or two");
> endif

one

Let us look at another example.

Activity	
 2-­‐19	

A	
 bank	
 wants	
 to	
 calculate	
 the	
 interest	
 due	
 to	
 its	
 customers	
 and	
 add	
 this	
 to	
 their	

accounts.	
 This	
 is	
 complicated	
 since	
 the	
 interest	
 rate	
 applicable	
 depends	
 on	
 the	

initial	
 balance,	
 as	
 follows:	

	
 Initial	
 balance	
 	
 Interest	
 rate	

	
 Less	
 than	
 R1	
 000	
 0%	

	
 R1	
 000	
 to	
 R5	
 000	
 5%	

	
 R5	
 000	
 to	
 R10	
 000	
 8%	

	
 R10	
 000	
 to	
 R20	
 000	
 9%	

	
 Above	
 R20	
 000	
 10%	

The Octave code is placed in the file bank.m, and the code is:

File bank.m

APM1513/1

37

if (oldbalance < 1000)
 rate =0;
 elseif (oldbalance <5000)
 rate=0.05;
 elseif (oldbalance <10000)
 rate=0.08;
 elseif (oldbalance <20000)
 rate=0.09;
 else
 rate=0.1;
endif

newbalance=oldbalance*(1+rate)

Ocatave window
> oldbalance=30000

oldbalance = 30000
> bank

newbalance = 33000
> oldbalance=3000

oldbalance = 3000
> bank

newbalance = 3150
> oldbalance=300

oldbalance = 300
> bank

newbalance = 300

The coding of complicated conditions may best be done using a “switch”
statement (you can find out more about this command from the online Help
facility).

2.6.4 Evaluation	
 of	
 conditions	

“If” statements (and other constructs that we will come across later), take a
specified action provided that a condition is true.

A condition is something that can be either true or false, and is of the form
 a operation b
where a, b are scalars and where operation is one of the following:

Octave code Mathematical meaning
 < <
 <= ≤
 > >
 >= ≥
 == =

If you want to test for equality, use == rather than =, for example

> if(a==b)

However, you should test for equality with caution, using it only with integers and
not with real numbers. The reason is because of round-off error. The exact result
of a calculation may be a=1 but it could well be that what is stored in the
computer is a=1+10-15, and a test if(a==1)would produce the result false. So

 38

instead use if(abs(a-1)<10^(-10)) where abs is the absolute magnitude
function.

In mathematical language you may write something like, if (a<x<b), but you
should not write the equivalent in Octave, since there should be only one
operation in each condition expression. In Octave, you achieve the desired effect
by using the additional operators:

 Octave code Mathematical meaning
 & and
 | or

So the Octave equivalent of if (a<x<b) is
 if((a<x) & (x<b))

2.6.5 Conditional	
 loops	

In a “for” loop, the loop is executed a predetermined number of times. Often, you
would want to exit the loop when some condition that is a result of the calculation
being done is satisfied.

In Octave you achieve this by using while or do until loops. The general form
of the these constructs is

 while(CONDITION)
 statements
 endwhile
and
 do
 statements
 until(CONDITION)

The difference between the two constructs is that in the “do until” version the
loop is executed at least once.

Activity	
 2-­‐20	

Suppose	
 that	
 you	
 go	
 to	
 the	
 bank	
 with	
 the	
 variable	
 interest	
 rate	
 described	
 above.	

You	
 have	
 an	
 amount	
 of	
 money	
 to	
 invest,	
 and	
 want	
 to	
 see	
 how	
 long	
 you	
 will	
 have	

to	
 wait	
 until	
 the	
 investment	
 grows	
 to	
 a	
 target	
 amount.	
 The	
 program	
 is	
 in	
 the	
 file	

ex3.m.	
 Note,	
 it	
 makes	
 use	
 of	
 the	
 file	
 bank.m	
 .	

FEEDBACK:
File ex3.m
startbalance
oldbalance=startbalance;
years=0;
while(oldbalance<targetbalance)
 bank;
 years=years+1
 oldbalance=newbalance;
endwhile

Ocatave window
> startbalance=4100

startbalance = 4100

APM1513/1

39

> targetbalance=6000
targetbalance = 6000

> ex3
startbalance = 4100
newbalance = 4305
years = 1
newbalance = 4520.3
years = 2
newbalance = 4746.3
years = 3
newbalance = 4983.6
years = 4
newbalance = 5232.8
years = 5
newbalance = 5651.4
years = 6
newbalance = 6103.5
years = 7

Activity	
 2-­‐21	

Evaluate	
 the	
 following	
 series	
 	
 in	
 which	
 un	
 is	
 not	
 known	
 explicitly	
 but	
 is	

given	
 in	
 terms	
 of	
 a	
 recurrence	
 relation.	
 You	
 should	
 stop	
 the	
 summation	
 when	

|un|	
 <	
 10

-­‐8	
 .	

	
 with	
 u1	
 =	
 0.5	

FEEDBACK
Did you get the right answer? It is 0.81642. If you have problems with this
activity, go online and discuss it with your fellow students.

2.7 Functions	

The general idea of a function is that it is a piece of code that reads in some form
of data, manipulates it in some way, and produces some other form of data.
Octave has many pre-defined functions, but more importantly it allows the user to
create new functions, and proper use of this feature is essential in the development
of well-structured programs in Octave.

2.7.1 Pre-­defined	
 functions	

We have already come across a number of examples of functions.

Here is a list of some common mathematical functions that are implemented in
Octave:

cos sin tan sec cosec cot log exp sinh cosh tanh abs sqrt

There are many, many predefined functions (see the Octave manual, Function
Index, pages 591-602). These functions can be applied to a scalar or to an array,
and when applied to an array the function operates on every element of the array.

For example, look at the next activity.

 40

Activity	
 2-­‐22	

Find	
 a	
 matrix	
 B	
 whose	
 elements	
 are	
 the	
 exponential	
 function	
 (exp)	
 applied	
 to	

each	
 element	
 of	
 a	
 matrix	
 A	

FEEDBACK:
> A=rand(2,2)

A =
 0.596494 0.308671
 0.073614 0.176858

> B=exp(A)

B =

 1.8157 1.3616
 1.0764 1.1935

2.7.2 User-­defined	
 functions	

You can define your own functions also. Some important points to note about
function definitions include:

• You must choose actual names for the return_name, function_name
and inputs, and the Octave statements in the function must calculate the
return_name from the inputs.

• The code defining the function must be placed in a separate .m file called
function_name.m.

• Once a function has been defined, you can call it from the Octave
command window, from an Octave script (ordinary .m file), or from
another function.

• A function can have several input slots, and the return_name can be a
scalar or an array.

• From a technical point of view, data is passed to an Octave function by
value rather than by reference, and variables used inside a function are
hidden from the calling program. This means that, even if you have
statement input1=1 the value of the variable equivalent to input1 in the
calling statement will not be reassigned to 1.

Activity	
 2-­‐23	

Define	
 your	
 own	
 functions,	
 using	
 the	
 syntax	
 below.	

SYNTAX:

function return_name=function_name(input1,input2,
...,inputn)
 Octave statements that use the inputs to calculate
return_name
endfunction

Here is an example.

APM1513/1

41

Activity	
 2-­‐24	

Find	
 a	
 function	
 that	
 computes	
 the	
 roots	
 of	
 the	
 quadratic	
 equation	

	

using	
 the	
 formula	

.
	

FEEDBACK:
We create a function file quadratic.m and then call it from the Octave command
window.

File quadratic.m
function x = quadratic(a,b,c)
 disc=sqrt(b^2-4*a*c);
 x(1)=(-b+disc)/(2*a);
 x(2)=(-b-disc)/(2*a);
endfunction

Ocatave window
> z=quadratic(1,-5,6)

z =
 3 2

> disc

error: `disc' undefined near line 21 column 1

The last statement demonstrates that, although disc must have been computed to
have value 1 during the execution of quadratic, this value is hidden from the main
Octave window.

2.7.3 Function	
 handles	

A function “handle” is a means of passing the name of a function, rather than a
value (i.e. a real or complex number), to another function. It is really quite simple,
and is often required when using one of Octave's pre-defined functions.

For	
 example,	
 	

Suppose that we want to evaluate numerically the area under the curve f(x) in the
range a < x <b, like,

In Octave, this is achieved using the predefined function “quad”. The “calling”
syntax is

quad(@f,a,b)

So, the “@” symbol indicates the created “handle” of the function. Let’s look at
the following activity where the code illustrates this in another example.

 42

Activity	
 2-­‐25	

Using	
 a	
 program,	
 calculate,	
 	
 	

FEEDBACK:
> quad(@sin,0,pi/6)

ans = 0.13397

Activity	
 2-­‐26	

Using	
 a	
 program,	
 evaluate	

	

FEEDBACK:
The first step is to write a function file, say fv.m, that defines the integrand, and
then use quad from the command window. Note that we use array arithmetic
operators (./ and .^) in fv.m because (for certain later applications) it is convenient
that the function be able to operate on an array.

So, write an m-file and calculate y=fv(x).

File fv.m

function y=fv(x)
 y=1./(1+x.^1.8);
endfunction

Ocatave window
> quad(@fv,1,3)

ans = 0.50214

Finally, we look at how a function handle that is passed to another function can be
used in that function. In other words, we look at how a function like quad would
deal with the function passed to it. Actually, the internal workings of quad are
fairly complicated, so instead let us look at the problem of calculating the average
slope of a function f(x) over an interval 0< x <b.

Activity	
 2-­‐27	

Calculate	
 the	
 average	
 slope	
 of	
 a	
 function	
 f(x)	
 over	
 an	
 interval	
 0<	
 x	
 <b,	
 defined	
 as	

.
	

FEEDBACK:
We write a function file, “average_slope.m”, and use it to find the average slope
of the function fv defined above in the interval (1,3), as well as the average slope
of the sine function in the interval (0,π).

APM1513/1

43

NOTE: In the function file, average_slope.m, the program does not permit us to
write, say, f(b); instead, we use feval(f,b).

File, average_slope.m

function x=average_slope(f,a,b)
 fb=feval(f,b);
 fa=feval(f,a);
 x=(fb-fa)/(b-a);
endfunction

Ocatave window
> average_slope(@fv,1,3)

ans = -0.18921
> average_slope(@sin,0,pi)

ans = 3.8982e-017

2.8 Graphics	

2.8.1 Plotting	
 functions	
 with	
 “fplot”	

You have already, in Study Unit 1, been introduced to this command. The usual
syntax for this command is:

fplot(@function_name,[lower_limit,upper_limit])

The example given in Study Unit 1 was:
> fplot(@sin,[0,7.5])

You can also use fplot with a user-defined function, provided that the
arithmetic operators used in defining the function are array operators, i.e. .* ./ .^
etc. Do the next example, together with the graph, for the function fv, defined
above.

Activity	
 2-­‐28	

Plot	
 the	
 function	
 fv	
 in	
 the	
 range	
 -­‐1	
 <x	
 <	
 1.	

> fplot(@fv,[-1,1])

 44

2.8.2 Plots	
 in	
 2-­dimensions	
 with	
 “plot”	

The basic syntax is
plot(x,y)

where x,y are row-vectors of the same length.

Activity	
 2-­‐29	

Plot	
 a	
 function	
 in	
 2-­‐dimenstions.	

> x=0:0.5:3

x =
 0.00000 0.50000 1.00000 1.50000 2.00000 2.50000
3.00000

> plot(x,sin(x))

(See the plotted graphic, next.)

APM1513/1

45

You can see that the effect of plot is to plot the points
(x(1),sin(x(1))=(0,sin(0))=(0,0) up to (x(7),sin(x(7)) and then join these points by
straight lines. The above graph is not smooth, but if you use a lot of points, the
graph appears to be everywhere smooth.

For example,
> x=0:0.01:3;
> plot(x,sin(x))

 46

There are many options available for controlling the appearance of a graph. Here
are some of them:

• Change the default colour of the graph Give the desired colour of the
graph as a third argument to either plot or fplot. The recognized colours
are

o "b" blue
o "c" cyan
o "g" green
o "k" black
o "m" magenta
o "r" red
o "y" yellow

• Draw graphs of several functions in the same plot You can do this very
easily with both plot and fplot. All that you do is include additional
arguments specifying the extra graphs in the argument list of plot or
fplot.

• Give the graph a title Once the graph has been created, enter in the
Octave window

title("Name of graph");
• Label the axes Once the graph has been created, enter in the Octave

window
xlabel("Name of horizontal axis");
ylabel("Name of vertical axis");

• Give a legend to an curve Once the graph has been created, enter in the
Octave window

legend("Name of curve");

In the case that there are several functions on the same graph, the syntax is
legend("Name of curve1","Name of curve2");

where curve1 and curve2 refer to the order in which the curves were
defined in the plot or fplot command

The following examples use all the above features.

Activity	
 2-­‐30	

Plot	
 the	
 graph,	
 give	
 it	
 a	
 title,	
 labels	
 and	
 add	
 a	
 legend.	

FEEDBACK:
Type:

APM1513/1

47

> plot(x,cos(x),"g",xx,sin(xx),"m")
> title("cos(x) and sin(x)");
> xlabel("x");
> ylabel("cos,sin");
> legend("cos(x)","sin(x)");

 48

2.8.3 Plotting	
 lines	
 in	
 3-­dimensions	
 with”	
 plot3”	

The usage of plot3 is very similar to that of plot in 2 dimensions. The basic
syntax is

plot3(x,y,z)
where x,y,z are row-vectors of the same length. As with plot you can give a title
to the graph, label the axes, have multiple plots on the same axes, assign colours
to each plot, and give a legend to each plot. Here are some examples.

Activity	
 2-­‐31	

Plot	
 a	
 3-­‐dimensional	
 graph	
 of	
 the	
 helix	
 (x	
 =	
 sin(2πz),	
 y	
 =	
 cos(2πz),	
 z),	
 with	
 title,	

labels,	
 colours	
 and	
 a	
 legend.	

FEEDBACK:
Type:
> z=0:0.01:5;
> plot3(sin(2*pi*z),cos(2*pi*z),z)
> xlabel("x");
> ylabel("y");
> zlabel("z");
> title("helix")

APM1513/1

49

Activity	
 2-­‐32	

Plot	
 a	
 3-­‐dimensional	
 graph	
 for	
 the	
 helix	
 (x	
 =	
 sin(2πz),	
 y	
 =	
 cos(2πz),	
 z),	
 together	

with	
 the	
 straight	
 line	
 (x	
 =	
 z/2	
 –	
 1,	
 y	
 =	
 1	
 –	
 z/3,	
 z),	
 with	
 title,	
 labels,	
 colours	
 and	
 a	

legend.	

FEEDBACK:
Type in the following:
> z=0:0.01:5;
> plot3(sin(pi*z),cos(pi*z),z,"r",z./2-1,1-z./3,z,"g")
> legend("helix","straight line");

NOTE: you can always rotate the view of a 3-dimensional graph; just place the
mouse over the graph, hold down the left mouse button, and move the mouse.

 50

e) Plotting	
 surfaces	
 3-­dimensions	
 with	
 “mesh”	

The simplest way to use mesh is to apply it to a matrix, and in this case, the
coordinates on the horizontal axes are the indices of the matrix.

Activity	
 2-­‐33	

Use	
 mesh	
 to	
 produce	
 a	
 3-­‐D	
 graph	
 for	
 ...	

Type:
> for a=1:20 for b=1:20
> A(a,b)=sin(0.3*a)*cos(0.3*b);
> end end
> mesh(A)

However, we would normally use 3 arguments as, mesh(xx,yy,zz), with
xx,yy,zz being matrices of the same size. We use meshgrid to generate xx,yy
representing an evenly spaced grid in the (x,y) plane, and then use array operators
to generate a surface z=f(x,y).

APM1513/1

51

Activity	
 2-­‐34	

Plot	
 the	
 graph,	
 with	
 a	
 mesh,	

	

in	
 the	
 range	
 -­‐7	
 ≤	
 x	
 ≤	
 7,	
 -­‐11	
 ≤	
 y	
 ≤	
 11.	

FEEDBACK:
Type:
> [xx,yy]=meshgrid(-7:0.3:7,-11:0.3:11);
> zz=sin(sqrt(xx.^2+yy.^2))./sqrt(xx.^2+yy.^2);
> mesh(xx,yy,zz)

You can also obtain a contour map, or combine a surface plot with a contour map,
using the commands contour and meshc respectively. The syntax is similar to
that of mesh. As with other plotting routines, it is simple to give the plot a title and
to label the axes. In the following examples we use xx,yy,zz (as defined above).

 52

Activity	
 2-­‐35	

Plot	
 the	
 graph	

	

in	
 the	
 range	
 -­‐7	
 ≤	
 x	
 ≤	
 7,	
 -­‐11	
 ≤	
 y	
 ≤	
 11,	
 with	
 a	
 countour	
 map.	

Type:
> contour(xx,yy,zz)

APM1513/1

53

Activity	
 2-­‐36	

Plot	
 the	
 graph,	
 with	
 a	
 mesh,	

	

in	
 the	
 range	
 -­‐7	
 ≤	
 x	
 ≤	
 7,	
 -­‐11	
 ≤	
 y	
 ≤	
 11	

Type:
> meshc(xx,yy,zz)
> xlabel("x")
> ylabel("y")
> title("example of a surface and contour plot")

 54

2.8.4 Other	
 features	
 of	
 graphics	

The above notes have given just a very brief introduction to the many graphical
facilities available in Octave. The description includes everything that will be
needed in this module, but you should be aware that it is easy to use Octave to
construct other types of graph. (If you would like to find out more, read the
manual, Section 15, pages 177 to 211.)

One feature that will be needed later is the plotting of discrete points that are not
joined by lines. The discrete points plotted can be any of:

^ * + . o x
and the syntax is just to add the point style to the parameter list when calling plot
or fplot.

Activity	
 2-­‐37	

Plot	
 discrete	
 points	
 in	
 a	
 graph	
 that	
 are	
 not	
 joined	
 by	
 lines.	

FEEDBACK:

Type:
> fplot(@sin,[0,7.5],"*")

or
> plot(x,sin(x),"o")

APM1513/1

55

2.9 Additional	
 Exercises	

Activity	
 2-­‐38	

Do	
 the	
 exercises	
 below.	
 Keep	
 evidence	
 of	
 your	
 work	
 (copy	
 and	
 paste	
 your	
 efforts	

to	
 your	
 workbook	
 or	
 make	
 a	
 printout	
 from	
 your	
 diary	
 file).	

1. Evaluate the following series

a.

b.

2. Evaluate the following series in which un is not known explicitly

but is given in terms of a recurrence relation. You should stop the
summation when |un| < 10-8

 with u1 = 0.5, u2 = 0.6

3. Modify quadratic.m that solves the quadratic equation a x2 + b x + c = 0
using the formula

The function file should have (a, b, c) as input and should return the two
solutions for x. The amendment required is that the function should check
whether a = 0 and if so it should give the solution x = -c / b; if also b = 0, it
should report an error message and exit the function without trying to
divide by zero. Show that your code is correct by testing it on the cases

a. x2 + 5 x + 6 = 0
b. 2 x + 4 = 0
c. x2 + 4 = 0
d. 0 = 0

4. Formulas to find a numerical approximation to the first and second

derivatives of a function f(x) are

with the approximation being better and better as . Write function
files deriv1.m (for the first derivative) and deriv2.m (for the second
derivative) that implement these formulas. The inputs to each formula
should be the function to be differentiated (remember the function handle
construct @), the value of x, and the value of h. Use your code to estimate

a. The first derivative of sin(x) at x = π/4 with h = 10-5
b. The second derivative of tan(x) at x = π/6 with h = 10-3

5. Use the functions deriv1 and deriv2 constructed in question 5 to find the

first and second derivatives of

 56

f (x) = x exp(x2)
at x = 0.5. Evaluate both derivatives for h = 10-2, 10-3, 10-4, ... , 10-12, and
then for each value of h evaluate the error. The exact answers are

f '(x) = (2 x2 + 1) exp(x2), f ''(x) = (4 x3 + 6 x) exp(x2).
Then plot log10 (error) against log10 (h) (In Octave, the function log10 is
log10). At what value of h is the error minimized?

6. Use Octave to draw the following graphs

a. f(x) = x sin(x), -3 ≤ x ≤ 8
b. f(x) = x cos(x2), 0 ≤ x ≤ 5

7. A formula for the population of the USA, using the logistic model, is

where t is the date in years. Some actual data is as follows
Date Population
1800 5308000
1820 9638000
1840 17069000
1870 38558000
1900 75995000
1930 122775000
1950 150697000

Plot the graph of P(t) against t as a continuous line, and the given data as
discrete circles, i.e. do not join them with lines (Discrete circles are
obtained by adding "o" to the plot parameter list).

8. A rather beautiful fractal picture can be obtained by plotting the points (xi,

yi) generated by the following difference equations
xi+1 = yi (1 + sin (0.7 xi)) – 1.2
yi+1 = 0.21 - xi

starting with (x1, y1) = (0, 0).
Write a program to draw the picture (plot individual points and do not join
them).

2.10 	
 	
 	
 In	
 Summary	

Now that you have completed this study unit, you can write your own code in
Octave, and use it to for numerical calculations. You now have sufficient
programming knowledge to be able to tackle interesting problems in linear
algebra, and you will start to do so in the next study unit.

APM1513/1

57

Study	
 Unit	
 3: Use	
 of	
 Octave	
 to	

solve	
 linear	
 systems	
 of	
 equations	

Time period: 15 hours approximately	

LEARNING OUTCOMES
At the end of this Study Unit, you should be able to write computer programs that:

• Solve linear systems of equations using the direct method of Gaussian
elimination

• Solve linear systems of equations using the Jacobi iterative method
• Solve linear systems of equations using the Gauss-Seidel iterative method
• Identify systems of linear equations that are problematic for the above

methods

3.1 Introduction	

This Study Unit is concerned with systems of linear equations that have a unique
solution.

The more general case of over-determined or under-determined systems will be
discussed in Study Unit 4.

3.2 Gaussian	
 elimination	

There is no need for you to write a Gaussian elimination code, as this process is
pre-defined in Octave using the construct x=A\b already introduced in Study Units
1 and 2 (Actually, Octave does not implement pure Gaussian elimination, but
rather uses matrix factorization whose details are beyond the scope of a first level
module).

Activity	
 3-­‐1	

Suppose	
 that	
 we	
 want	
 to	
 solve	

	
 1	
 x1	
 +	
 2	
 x2	
 =	
 5	

	
 3	
 x1	
 +	
 4	
 x2	
 =	
 6	

FEEDBACK:
The Octave code is

> A=[1 2;3 4];
> b=[5;6];
> x=A\b
x =

 -4.0000
 4.5000

Thus the required answer is
 x1 = -4, x2 = 4.5

 58

The above constructs can be used for any number of equations and unknowns
(provided, of course, that the number of equations is the same as the number of
unknowns).

3.3 Iterative	
 methods	

Here we discuss the Jacobi and Gauss-Seidel methods. However, first we should
point out that, for a real problem, these methods perform better than x=A\b only
for diagonally dominant, sparse matrices. We will define diagonally dominant
later; in a sparse matrix, most of the entries are zero. Also, the speed of modern
computers is such that it is, in practice, worthwhile to use an iterative method
rather than x=A\b only for large matrices, which means matrices that are bigger
than about 1000 x 1000. In practice, iterative methods should be used only for
large, diagonally dominant, sparse matrices.

Iteration techniques are usually very easy to apply and can best be illustrated by
examples.

Activity	
 3-­‐2	

Solve	
 the	
 following	
 system	
 of	
 equations:	

	

	
 	
 (3.2.1)	

FEEDBACK:
Before solving the system let us make two obvious observations:
(i) The system (3.2.1) can be solved very easily by Gaussian elimination to

yield the unique solution but the purpose of the
examples is to illustrate a technique.

(ii) You will notice that, from a numerical point of view, the coefficient matrix
of (3.2.1) viz

is dominated by the diagonal entries in that their absolute values are much larger
than the absolute values of the other entries.

Solution
We shall use two different iterative techniques and we begin with the Jacobi
method. The first step is to ‘solve’ the first equation in (3.2.1) for , the second
for and the third for . In fact, we don't really solve the equations, we merely
re-write them in the form

APM1513/1

59

 (3.2.2)

The second step is to assume that an approximate solution to the system is

Note that it is not essential to choose (0, 0, 0) as the initial approximation. If we
happen to know that, say, (1, 1, 1) is an approximate solution, then we could
equally well begin with this approximation. In most cases, however, we do not
know an approximate solution and it is customary to begin with (0, 0, 0).

The next step is to substitute the initial approximation (0, 0, 0) in (3.2.2) and we
obtain the first approximate solution

 (3.2.3)

The first approximation is better than (0, 0, 0) and it is
obvious that to obtain an even better approximation, we simply repeat the
procedure with the solution (3.2.3) i.e. we iterate. If we substitute (3.2.3) in (3.2.2)
we obtain the second approximation

The iterations are obtained from an Octave program and are

ans =

 0.85000 1.00500 1.00250 1.00010 0.99997 1.00000 1.00000
 -1.30000 -1.03500 -0.99800 -0.99935 -0.99999 -1.00001 -1.00000
 1.80000 2.01500 2.00400 2.00005 1.99994 2.00000 2.00000

After seven iterations we therefore obtain a solution which, to six significant
figures, coincides with the exact solution.

A slight variation of the Jacobi method is the so-called Gauss-Seidel method. The
Gauss-Seidel method is usually (but not always) better than the Jacobi method and
the only difference is that as better approximations become available, so we make
immediate use of them in the next equation. (It's actually much easier than it
sounds.)

 60

As before, our initial approximation is and if we
substitute this in (3.2.2) then the first equation yields

For , however, we do not put

but instead we use the value which we have just obtained from the
first equation. In other words,

and we note that we have to use the value in this equation because at this

stage, this is all that we know about . We now go ahead and compute from

(3.2.2) using the values and as given by immediately above, i.e.

We now do a second iteration in precisely the same way to obtain

The second and third equations of (3.2.2) yield respectively

and

Further iterations are obtained from an Octave program and are

ans =

 0.85000 1.01107 0.99996 0.99999 1.00000
 -1.21500 -0.99824 -0.99991 -1.00000 -1.00000
 2.00650 2.00093 1.99999 2.00000 2.00000

After five iterations we therefore obtain a solution which, to six significant
figures, coincides with the exact solution. In this particular example, therefore, the
Gauss-Seidel method beats the Jacobi method by two iterations.

Octave program
We give here the Octave code for the Gauss-Seidel method. It is easy to modify
this code so that it implements the Jacobi method instead, and that is left as an
exercise for the student. The code is written as a function file. The user gives to
the function the matrix A, the right hand side b, and the current estimate for the
solution xold. The function performs one iteration of the Gauss-Seidel method
returning the new estimate for the solution. Note the use of the temporary matrix
At which has zeros in its diagonal; this can be avoided, but then the main loop
defining xnew(k) would be rather more complicated. In the Octave window, we
define A, b, and the initial estimate of the solution for the problem stated above,

APM1513/1

61

and then use a for loop to make a fixed number (in this case, five) of iterations of
the Gauss-Seidel method.

Activity	
 3-­‐3	

Create	
 the	
 m-­‐file	
 (below)	
 and	
 run	
 it	
 in	
 Octave.	

FEEDBACK:

File gauss_seidel.m
function xnew=gauss_seidel(A,b,xold)
 n=size(A)(1);
 At=A;
 xnew=xold;
 for k=1:n
 At(k,k)=0;
 end
 for k=1:n
 xnew(k)=(b(k)-At(k,:)*xnew)/A(k,k);
 end
endfunction

Ocatave window
> A=[20 1 -1;1 -10 1;-1 1 10];
> b=[17 13 18]';
> x(:,1)=[0 0 0]';
> for k=1:5 x(:,k+1)=gauss_seidel(A,b,x(:,k)); end;
> x

ans =

 0.85000 1.00500 1.00250 1.00010 0.99997 1.00000
1.00000
 -1.30000 -1.03500 -0.99800 -0.99935 -0.99999 -1.00001 -
1.00000
 1.80000 2.01500 2.00400 2.00005 1.99994 2.00000
2.00000

3.4 Diagonal	
 dominance	

Now let us consider the system of equations

The solution is .

Suppose we try to solve this system by the Gauss-Seidel method. We put

 and we obtain

x =

 0 3 1 3 1 3 1
 0 2 -0 2 -0 2 -0

Thus the result of iteration is that we go around in circles. In other words, this
system cannot be solved by an iteration process and the question automatically

 62

arises: when does a system admit a convergent iterative solution? Incidentally,
note that a solution converges if, after sufficiently many iterations, the exact and
approximate solutions differ by as small an amount as we wish.

In this case it is easy to state the answer but the proof is beyond the scope of this
course. Let us write the coefficient matrix of a system of equations in the usual
notation (as referred to in MAT103N), that is:

Note that since we are assuming unique solutions throughout this Study Unit, the
coefficient matrix must be square and of rank n. The matrix A is said to be strictly
diagonally dominant if the absolute value of each diagonal entry is greater than
the sum of the absolute values of the remaining entries in the same row, for
example:

Clearly the coefficient matrix of (3.2.1) is strictly diagonally dominant since

Now it can be shown that if a coefficient matrix A is strictly diagonally dominant
then both the Jacobi and Gauss-Seidel iterative solutions to the system of
equations Ax = b are convergent. Note that the condition on A is a sufficient
condition - not a necessary condition. In other words, there may be coefficient
matrices which are NOT strictly diagonally dominant but the corresponding
equations may nonetheless admit convergent Jacobi or Gauss-Seidel solutions.

However, the conditions on these matrices are too technical for this course and for
our purposes we shall regard the condition as necessary as well as sufficient.
There is one trivial exception to this which we discuss in the next example.

Activity	
 3-­‐4	

Consider	
 the	
 system	
 	

	

FEEDBACK:
Can one use iterative techniques to solve this system? Clearly, the coefficient
matrix is NOT strictly diagonally dominant since the first two equations do not

APM1513/1

63

satisfy the required condition. However, we know that we can interchange the first
two equations without affecting the solution to the system and if we do this, we
obtain a coefficient matrix which IS strictly diagonally dominant, that is:

.

The system of equations is therefore

and if we solve by Gauss elimination we obtain the solution
 (x1, x, x3) = (1.3409, 2.1477, 1.7841)

Using the Gauss-Seidel method beginning with (0, 0, 0), we get

ans =

 0.00000 1.25000 1.22321 1.34683 1.33916 1.34108 1.34088
 0.00000 1.58333 2.15575 2.14053 2.14825 2.14761 2.14774
 0.00000 1.69048 1.76842 1.78391 1.78392 1.78410 1.78409

After six iterations we therefore obtain a solution which, to five significant
figures, coincides with the exact solution. (An iteration is indicated here as a
column of figures.)

3.4.1 Stopping	
 criterion	

The question which you are probably asking yourself at this point is: When does
one stop? One way would be to simply limit the number of iterations to 5 or 10 or
whatever. The problem here is that one doesn't know how fast the approximations
are converging and after a considerable number of iterations one might still be
quite a long way from a reasonable solution. A better way would be to place a
restriction on the relative error. The difficulty here is that one doesn't know the
exact solution - if one did, there wouldn't be much point in finding an approximate
solution.

For iteration schemes, therefore, we define the relative error by

.

Find the relative errors in the activity above.

By definition, we have to compute

.

for i = 1, 2, 3. We have

 64

.

If we were required to iterate until all relative errors were less than, say 0.005,
then we see that we would have to do at least one more iteration, and find .

Octave code with a stopping condition that depends upon the relative error uses
the until construct. We write the code as a function file with inputs A, b (as
usual); the initial estimate of the solution xinitial; the maximum permitted
value for the relative error TOL; the maximum number of permitted iterations
max_it; and the method to be used for obtaining an iterative solution method,
which will be either gauss_seidel or jacobi. As we saw earlier, the iterative
method may not converge, so one needs to specify a maximum number of
iterations otherwise the program will never exit the conditional loop; recall that
when evaluating a conditional statement | means or. The function returns the
solution, and reports the number of iterations used, giving an error message if this
number exceeds max_it. In the Octave window, we set A, b, xinitial; and
then call iterative_linear_solve using the function handle construct @ to
specify the method. We run the program for two cases discussed earlier, one in
which convergence occurs and the other in which it does not.

Activity	
 3-­‐5	

Create	
 the	
 m-­‐file	
 (below)	
 and	
 run	
 it	
 in	
 Octave.	

File iterative_linear_solve.m
function
xnew=iterative_linear_solve(A,b,xinitial,TOL,max_it,method)
 xold=xinitial;
 k=0;
 do
 xnew=feval(method,A,b,xold);
 err=max(abs((xnew-xold)./xnew));
 xold=xnew;
 k=k+1;
 until((err<TOL) | (k>max_it));
 k
 if (k>max_it)
 disp("ERROR: METHOD DID NOT CONVERGE");
 xnew=[];
 endif
endfunction

Ocatave window

APM1513/1

65

> A=[20 1 -1;1 -10 1;-1 1 10];
> b=[17 13 18]';
> x0=[0 0 0]';
> y=iterative_linear_solve(A,b,x0,1/10^5,5,@gauss_seidel)

k = 5
y =

 1.0000
 -1.0000
 2.0000

> A=[1 1;1 -1];
> b=[3 1]';
> x0=[0 0]';
> y=iterative_linear_solve(A,b,x0,1/10^4,5,@gauss_seidel)

k = 6
ERROR: METHOD DID NOT CONVERGE
y = [](0x0)

Activity	
 3-­‐6	

Solve	
 the	
 following	
 systems	
 of	
 equations,	
 using	
 the	
 A\b	
 construct,	
 as	
 well	
 as	
 the	

Gauss-­‐Seidel	
 method	
 with	
 a	
 tolerance	
 of	
 10-­‐7	
 	

20	
 x1	
 -­‐	
 x2	
 +	
 x3	
 =	
 20	

2	
 x1	
 +	
 10	
 x2	
 -­‐	
 x3	
 =	
 11	

x1	
 +	
 x2	
 -­‐	
 20	
 x3	
 =	
 -­‐18	

Did you get the correct answer? It is x1 = x2 = x3 = 1.

3.5 Exceptional	
 cases	
 (where	
 the	
 solution	
 may	
 not	
 be	

reliable)	

In this Study Unit we are solving linear systems of the form A x = b where A is a n
x n matrix. As shown (in MAT103N), we know that a unique solution exists
provided the determinant of A is non-zero, or equivalently, provided that the rank
of A is equal to n; such a matrix is called non-singular.

In Octave, it is very easy to check these conditions using the pre-defined functions
det and rank.

Activity	
 3-­‐7	

Check	
 these	
 conditions	
 in	
 Octave	
 using	
 the	
 pre-­‐defined	
 functions	
 det	
 and	
 rank.	
 	

> A=[2 3;6 9]

A =
 2 3
 6 9

> det(A)

ans = 0
> rank(A)

ans = 1

 66

Even though the matrix is singular and a unique solution does not exist, Octave
nevertheless will construct a solution (with a warning message). For example,
with A defined as above,
> b=[2 2]';
> A\b

warning: matrix singular to machine precision, rcond = 0
warning: attempting to find minimum norm solution
ans =

 1.9725e+015
 -1.3150e+015

If you see such a warning message, you should check the rank or determinant of
A, and note that the solution given by Octave is not unique and may not be a
solution at all.

From a mathematical viewpoint, the determinant is either zero or not, and if it is
nonzero the system has a unique solution. However, from the viewpoint of
computing the solution, the situation is not so simple. Loosely expressed,
problems can arise if we are in a situation in which the matrix is nearly singular
(but identifying this situation is more involved than just looking at the numerical
value of the determinant).

Activity	
 3-­‐8	

Consider	
 the	
 following	
 examples	
 	

1)	
 	
 1000	
 x1	
 +	
 2000	
 x2	
 =	
 5000	
 	

2)	
 	
 1000	
 x1	
 +	
 2000.001	
 x2	
 =	
 6000	

The determinant of the coefficient matrix is 1, but if we interpret the problem
geometrically we see that we are trying to find the point of inter of two almost
parallel lines, so that we are in a situation in which the matrix is nearly singular.
We call such a matrix ill-conditioned, and measure how close it is to being
singular by its condition number. In Octave, the condition number is a pre-
defined function denoted by cond and defined for a square matrix A by

cond(A) = norm(A) * norm(inv(A)),
where norm(A) is a measure of the average magnitude of the elements of A, and in
this module we will not define it more precisely. The condition number is always
at least one, and a singular matrix has an infinite condition number: the larger the
condition number, the more ill-conditioned is the matrix. Do the examples below.

ACTIVITY

> A1=eye(6)/10^5

A1 =

 1.0000e-005 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000
 0.0000e+000 1.0000e-005 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000
 0.0000e+000 0.0000e+000 1.0000e-005 0.0000e+000 0.0000e+000 0.0000e+000
 0.0000e+000 0.0000e+000 0.0000e+000 1.0000e-005 0.0000e+000 0.0000e+000
 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 1.0000e-005 0.0000e+000
 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 1.0000e-005

APM1513/1

67

> cond(A1)
ans = 1

> A2=ones(6,6)

A2 =

 1 1 1 1 1 1
 1 1 1 1 1 1
 1 1 1 1 1 1
 1 1 1 1 1 1
 1 1 1 1 1 1
 1 1 1 1 1 1

> cond(A2)
ans = Inf

> A3=A2+rand(6,6)/10^5;
> cond(A3)

ans = 5.9902e+006

> format long
> A4=[1000 2000;1000 2000.001]

A4 =

 1000.00000000000 2000.00000000000
 1000.00000000000 2000.00100000000

> det(A4)

ans = 0.999999999976464
> cond(A4)

ans = 10000004.0000005

You can use the condition number to estimate the accuracy at which Octave
solves for x in A x = b. First, we define the residual which is A x - b. Normally,
when we are using a direct method with the A\b construct, the residual is of the
order of machine precision (which in Octave is the variable eps, and is usually
about 2×10-16), but for an iterative method it depends on the tolerance chosen and
can be much larger. Then the accuracy at which we determine x will be no better
than the residual multiplied by the condition number.

3.6 Additional	
 Exercises	

1. Solve the following systems of equations, using the A\b construct, as well as

the Gauss-Seidel method with a tolerance of 10-7 (in some cases convergence
may not occur)

a. 2 x1 - x2 + 3 x3 = 8
4 x1 + 2 x2 - 5 x3 = -9
6 x1 + 3 x2 + x3 = 12

b. 0.1 x1 + 0.05 x2 + 0.1 x3 = 1.3
12 x1 + 25 x2 - 3 x3 = 10
-7 x1 + 8 x2 + 15 x3 = 2

c. 10 x1 + x2 + 2 x3 = 3
x1 + 10 x2 - x3 = 1.5
2 x1 + x2 + 10 x3 = -9

 68

d. 12 x1 - 3 x2 + 4 x3 - 2 x4 = 12

2 x1 + 10 x2 - x3 - 20 x4 = 15
x1 - x2 + 20 x3 + 4 x4 = -7
x1 + x2 - 20 x3 - 3 x4 = -5

e. 10 x1 - x2 + 7 x3 - 18 x4 = 2
2 x1 + 10 x2 – 4 x3 - 20 x4 = 1
-1.5 x1 + 6 x2 - 20 x3 - 2 x4 = 9
2 x1 + 5 x2 - 2 x3 + 30 x4 = -18

2. Modify the function file gauss_seidel.m to produce a new function file

jacobi.m that implements the Jacobi method. Now use the Jacobi method to
solve example 3.2.1, i.e.

3. Write a function file that takes as input a matrix A, and tests whether or not the

matrix is (a) square, and (b) diagonally dominant, reporting the answers on the
screen. Show that your code is correct by testing it for the matrix in question
2, as well as for cases where the matrix is not diagonally dominant, and not
square.

4. Modify the function file iterative_linear_solve.m to produce a new function

file iterative_linear_solve 2.m, in which the stopping condition is that
magnitude of the residual (A x – b) should be less than a given tolerance.
Show that your code works by applying it to the problem in question 2, using
the Gauss-Seidel method.

In practice, this alternative stopping method is not often used. Why not?

5. The Hilbert matrix is a square n × n matrix defined by

Define b(n) to be a column vector of dimension n, and with each element 1.
Construct b(n) and , and then solve for x(n), x(n) = b(n), in the cases n
= 4,7,10 and 13. Comment on the results.

6. Define the 100 × 100 square matrix A and the column vector b by

APM1513/1

69

where Iij is the 100 × 100 identity matrix (i.e. 1 on the main diagonal and 0
everywhere else). Solve A x = b for x using both the Gauss-Seidel method and the
A\b construct. Do not give the whole vector x in your output, but only x2, x50 and
x99.

3.7 In	
 conclusion	

You have now used Octave to solve linear systems of equations, including large
systems that are impossible to solve by hand. In these systems, the number of
equations was equal to the number of unknowns, but what can be done if that is
not the case? We will look at this question in the next study unit.

 70

Study	
 Unit	
 4: Overdetermined	

and	
 underdetermined	
 systems	
 of	

linear	
 equations	

Time period: 15 hours approximately	

LEARNING OUTCOMES
At the end of this Study Unit, you should be able to write Octave programs that

• Determine whether a system of equations has a unique solution, or
whether it is overdetermined or underdetermined

• Use Octave to find the best "least squares" approximation to an
overdetermined system

• Use Octave to find parameters that give the best "least squares" fit of a
given form of curve to given data

• Use Octave to find the general solution of an underdetermined system

4.1 Identification	
 of	
 overdetermined	
 and	
 underdetermined	

systems	

Suppose that we have m equations involving n unknowns. Writing the system in
matrix form

A x = b

the matrix A has m rows and n columns, x is a column vector with n rows, and b is
a column vector with m rows. The following situations can arise.

4.1.1 A	
 is	
 square	
 (m	
 =	
 n)	
 and	
 det(A)	
 ≠	
 0	

As discussed in Study Unit 3, such systems are neither overdetermined nor
underdetermined and have a unique solution.

4.1.2 A	
 is	
 square	
 (m	
 =	
 n)	
 and	
 det(A)	
 =	
 0	

Such systems are either underdetermined, as in

which has infinitely many solutions, x1 = 1 + α, x2 = 1 - α, for any value of α; or
inconsistent, as in

APM1513/1

71

which has no solutions.

4.1.3 There	
 are	
 more	
 equations	
 than	
 unknowns	
 (m	
 >	
 n)	

Usually such systems are overdetermined and a solution satisfying all the
equations does not exist. However, it is possible that some of the equations are
linear combinations of the others and that there are only n independent equations,
as in

which has the unique solution, x1 = 1, x2 = 1; or even that there are fewer than n
independent equations so that there are infinitely many solutions, as in

which has solutions, x1 = 1 + α, x2 = 1 - α, for any value of α.

4.1.4 There	
 are	
 more	
 unknowns	
 than	
 equations	
 (n	
 >	
 m)	

Such systems are underdetermined, and usually have infinitely many solutions, as
in

which has solutions, x1 = 1 + α, x2 = 1 - α, x3 = 1 + α for any value of α. However,
it is also possible for such systems to be inconsistent, as in

which has no solutions.

4.2 Overdetermined	
 systems	

Here we are concerned with situations in which there are more (independent)
equations than unknowns, so that a solution to the problem A x = b does not exist.
So what more can be said? The answer comes down to what type of situation the
system of equations is modeling. While it may be that non-existence of an exact
solution is a sufficient answer, there are circumstances in which we would like to
find an approximate solution. Consider the following example

 72

Activity	
 4-­‐1	

A	
 car	
 is	
 undergoing	
 uniform	
 acceleration.	
 Measurements	
 have	
 been	
 made	
 of	
 the	

car's	
 displacement	
 (s)	
 from	
 the	
 origin	
 against	
 time	
 (t)	
 as	
 follows:	

	

t	
 	
 s	
 	

1	
 6.7118	
 	

2	
 10.3049	
 	
 	

3	
 16.1415	

4	
 23.9482	

5	
 33.8839	

6	
 45.9405	

7	
 60.1468	

8	
 76.3638	

9	
 94.6527	

10	
 115.1413	

	

Since	
 the	
 car	
 is	
 undergoing	
 uniform	
 acceleration,	
 s	
 and	
 t	
 are	
 related	
 by	

	
 s	
 =	
 s0	
 +	
 u0	
 t	
 +	
 ½	
 a	
 t

2	
 .	

	

Use	
 the	
 above	
 data	
 to	
 find	
 the	
 best	
 estimate	
 of	
 the	
 constants	
 s0,	
 u0	
 and	
 a.	

We will solve the example later, but for now, we are interested in issues that are
more general. Because of measurement inaccuracies, it makes sense that that there
will not be values of s0, u0 and a, that exactly fit all the data points, and that a
good approximate solution is all that can be expected. However, that still leaves
the question as to what, precisely, is meant by a good approximate solution? We
are no longer trying to solve A x = b but instead we are seeking a column vector x*
such that the error in the approximation (also called the residual) ε is as small as
possible, where
 ε = (A x* – b)

Now, ε is not a scalar quantity but is a column vector, so what do we mean by
saying that we want ε to be as small as possible? There is not a clear answer to
this question, and in subsequent courses you will learn about a number of different
ways of defining the magnitude of a vector. Here, we use the definition
(technically, the L2 norm)

 | ε | =

which can also be interpreted as the length of the vector.

In Octave, the norm of x is found by the call norm(x). So, we want to find a
vector x* such that the value of | ε | is minimized. Minimization is a simple
problem in calculus, and also in this case is easy to work out. However, it requires
applying calculus to vectors and matrices, which is a second level topic so here
we just state the result. The condition that | ε | is minimized leads to the normal
equations

A' A x* = A' b

APM1513/1

73

where A' is the transpose of A (which was defined both mathematically and in
Octave in Study Unit 2). The matrix (A' A) is a square n × n matrix and (A' b) is a
n-vector, so (provided det(A' A) ≠ 0) there is a unique solution for x*.

Here is a simple example on the use of the normal equations in Octave for you to
work through.

Activity	
 4-­‐2	

Solve	
 the	
 system	
 of	
 equations	

	
 	
 x1	
 +	
 2	
 x2	
 =	
 0	

	
 3	
 x1	
 -­‐	
 x2	
 =	
 4	

	
 2	
 x1	
 +	
 x2	
 =	
 1	

Octave window
> A=[1 2;3 -1;2 1]

A =

 1 2
 3 -1
 2 1

> b=[0;4;1]

b =

 0
 4
 1

> At=A'
At =

 1 3 2
 2 -1 1

> An=At*A
An =

 14 1
 1 6

> det(An)

ans = 83.000
> bn=At*b

bn =

 14
 -3

> xn=An\bn

 74

xn =

 1.04819
 -0.67470

It is also important to note that, if a system is overdetermined, Octave will
automatically find the solution to the normal equations, as shown in the following
addition to the above Octave session

> xs=A\b

xs =

 1.04819
 -0.67470

> err=A*xs-b

err =

 -0.30120
 -0.18072
 0.42169

So, here we have also used Octave to work out the residual (as err).

It is important to note that, in the above example, Octave just gave the answer to
A\b as the solution of the normal equations without any error or warning message.
So, if you use Octave to solve a system of equations, do not assume that the
answer you get is the exact solution until you check that the residual (A*xs-b) is
zero, or at least very small.

Also, note that it is important to check, as we did in the above example, whether
or not the determinant of the normal matrix (A' A) is zero. While the procedure of
transforming to normal form ensures that the normal equations are consistent, if
the determinant is zero the solution found by Octave is not unique and there will
be infinitely many solutions, as described in the next .

We are now ready to return to the first Activity

Activity	
 4-­‐3	

Find	
 the	
 solution	
 to	
 Activity	
 4-­‐1	

FEEDBACK:
We take the data that we are given and substitute it in to the assumed equation.
We get:
 t = 1: s0 + u0 1 + a 0.5 = 6.7118
 t = 2: s0 + u0 2 + a 2 = 10.3049

 t = 10: s0 + u0 10 + a 50 = 115.1413

This we can write in matrix form as

APM1513/1

75

The Octave code to solve the problem is quite straightforward. First, we type in
the given data as a column vector b; and then generate the matrix A. Look
carefully at how A is constructed, because you do something similar in all
problems in which you try to estimate parameters by matching a given formula to
given data. Then we check that the determinant of A'A is non-zero, and solve the
problem using the A\b construct. We find:
 xs(1) = s0 = 5.13361
 xs(2) = u0 = 0.50944
 xs(3) = a = 2.09808

We plot the given data points (as *), as well as the function s = s0 + u0 t + ½ a t2
with the parameters having the values just determined, as a continuous blue line.
Finally, we work out the residual, as err. We see in the graph that, in this case,
we have been able to construct a curve that fits the given data very well.

> b=[6.7118 10.3049 16.1415 23.9482 33.8839 45.9405 60.1468 ...
 76.3638 94.6527 115.1413]';
> t=[1:10]';
> A=[ones(10,1) t t.^2/2]; end;
> det(A'*A)

ans = 1.0890e+005
> xs=A\b

xs =

 5.13361
 0.50944
 2.09808

> tt=1:0.1:10;
> s=xs(1)+t*xs(2)+xs(3)*t.^2/2;
> plot(t,b,"*r",tt,s,"b")
> err=A*xs-b

err =

 -0.0197373
 0.0437355
 -0.0382168
 0.0078059
 0.0229036
 0.0151764
 -0.0441759
 -0.0161532
 0.0380445
 -0.0093827

The graph output is:

 76

In this case, the given curve fit the data quite well. Following below is another
example of curve fitting, where the curve does not provide a particularly good fit.

Activity	
 4-­‐4	

Fit	
 a	
 curve	
 of	
 the	
 form	

y	
 =	
 a	
 sin(x)	
 +	
 c	

to	
 the	
 data:	

	
 x	
 	
 y	

	
 1.23	
 	
 1.8934	

	
 1.98	
 	
 1.9721	

	
 2.47	
 	
 1.4022	

	
 5.64	
 	
 0.2967	

FEEDBACK:
Octave code
> x=[1.23 1.98 2.27 5.64]';
> b=[1.8934 1.9721 1.4022 0.2967]';
> A=[sin(x) ones(4,1)];
> xs=A\b

xs =

 1.01307
 0.87810

> det(A'*A)

ans = 6.5990
> err=A*xs-b

err =

 -0.060496
 -0.164574
 0.251255
 -0.026185

APM1513/1

77

> xx=1.2:0.1:5.7;
> plot(x,b,"*r",xx,xs(1)*sin(xx)+xs(2),"b")

We see here that the curve produced does not fit the given data points particularly
well.

4.3 Underdetermined	
 systems	

A typical example of an underdetermined system is one in which there are more
unknowns to find than there are equations given. In such situations, use of the
simple A\b construct causes Octave to find a solution. Here is an example with 3
equations and 6 unknowns.

Activity	
 4-­‐5	

Find	
 the	
 unknowns	
 in	
 the	
 following	
 underdetermined	
 system.	

FEEDBACK:
> A=rand(3,6)

A =
 0.890721 0.161542 0.413566 0.822816 0.132409 0.051145
 0.596242 0.327903 0.573553 0.478045 0.095813 0.322198
 0.566379 0.054946 0.522928 0.824055 0.903582 0.407719

> b=rand(3,1)

b =
 0.266035
 0.134006
 0.067834

> x0=A\b

x0 =
 0.1970789
 0.0050822
 -0.0092682
 0.1400378
 -0.1219441
 -0.1089772

 78

> err=A*x0-b
err =
 -2.2204e-016
 -1.1102e-016
 -2.7756e-016

The last statement evaluates the residual, as err, confirming that we have indeed
found a solution of the problem. But is it the only solution? Theory tells us that if
there are m equations in n unknowns with m < n, then in the general case we
would expect a general solution to involve n – m arbitrary parameters; so in this
example we would expect three arbitrary parameters. We look for the additional
solutions using a technique that is quite common in many areas of applied
mathematics. We write the general solutions as

where x0 is the particular solution already found, αi are the arbitrary parameters,
and pi are n-vectors that we wish to find. Applying the equation A x = b, we
immediately see that for each i the pi satisfy
 A pi = 0.

This means that, in the language of linear algebra, we are looking for the null
space of A. In this module, we will not say any more about the determination of
the null space. In Octave, finding the null space is trivial: we just use the pre-
defined function null, as shown below. The answer is returned as a matrix, the
columns of which are the vectors pi that we are seeking.

> N=null(A)

N =
 -0.582073 0.271316 0.200055
 0.347654 0.687301 -0.360124
 -0.170757 -0.584404 -0.441237
 0.676688 -0.181640 0.069560
 -0.213805 0.280840 -0.251502
 0.086892 0.024746 0.753331

> A*N(:,1)

ans =
 1.1102e-016
 0.0000e+000
 1.1102e-016

> A*N(:,2)

ans =
 -5.5511e-017
 1.5266e-016
 2.7756e-016

> A*N(:,3)

ans =
 1.3878e-017
 -6.9389e-018
 1.5266e-016

In the above code, we applied the matrix A to each column of N, and confirmed
that it is indeed in the null space of A.

APM1513/1

79

Here is another example of an underdetermined system of equations.

Activity	
 4-­‐6	

Solve,	

	
 	
 x1	
 +	
 2	
 x2	
 +	
 3	
 x3	
 =	
 1	

	
 4	
 x1	
 +	
 5	
 x2	
 +	
 6	
 x3	
 =	
 2.	

Octave code
> A=[1 2 3;4 5 6]
> b=[1 2]'
> A\b

ans =

 -0.055556
 0.111111
 0.277778

> null(A)

ans =

 0.40825
 -0.81650
 0.40825

Thus the general solution to the problem is

.

But, what happens if we try to solve an underdetermined and inconsistent system?

4.4 Underdetermined	
 and	
 inconsistent	
 system	

Sometimes we need to solve a more complex system where it is both
underdetermined and inconsistent.

Activity	
 4-­‐7	

Solve:	

	

Octave code
> A=[1 2 1;2 4 2];
> b=[4;2];
> x=A\b

 80

warning: dgelsd: rank deficient 2x3 matrix, rank = 1
x =
 0.26667
 0.53333
 0.26667

> null(A)

ans =
 0.91287 0.00000
 -0.36515 -0.44721
 -0.18257 0.89443

Octave gives a warning that there may be a problem, and reports the rank of the
matrix A. Here the rank is 1 which is less than the number of rows (2). In general,
if the rank is less than the number of rows, the system may be inconsistent. What
Octave does in such a case is to construct and solve the normal equations; in other
words, the particular solution found is not an exact solution to the problem but is
the best approximate solution. In such cases, we should check the residual, to see
by how much the solution fails to satisfy the given system of equations.

Here we find:
> err=A*x-b

err =
 -2.4000
 1.2000

4.5 Additional	
 Exercises	

1. Find the best straight line (y = m x + c) fit to the data points

(x, y) = (0, 1), (2, 0), (3, 1), (3, 2), (3, 1).
Produce a graph showing the line, together with the given data points as
discrete points.

2. Find the cubic polynomial that best fits the data points

(x, y) = (-1, 14), (0, -5), (1, -4), (2, 1), (3, 22).
Produce a graph showing the polynomial, together with the given data points
as discrete points.

3. The sales figures for a business are as follows for the first six months of the
year:

R40 000, R44 000, R52 000, R64 000, R80 000, R84 000.
The owner believes that the sales curve can be approximated by a quadratic
function. Find the best quadratic fit to the data, and use it to estimate the
projected sales for the rest of the year.

4. A formula for the population of the USA is

where t is the date in years. Some actual data is as follows
Date Population

 1800 5308000
 1820 9638000

1840 17069000
1870 38558000

APM1513/1

81

1900 75995000
1930 122775000
1950 150697000

Find values of P0 and a that give a best fit of the formula to the data. Produce
a graph showing the function P(t) against time as a continuous line, together
with the given data points as discrete points

5. Write a function file that generates a random solution to an underdetermined

system of equations. The function should take a matrix A and a column vector
b as inputs. It should check that the number of rows in A and b are the same,
and that the number of rows in A is strictly less than the number of columns; if
not, generate an error message and exit the function. The function should
construct a solution x0 to the problem, and also find the null space; and then
generate a random solution by generating random numbers for the coefficients
αi of the null space vectors pi. Finally, the function should check that the rank
of A is equal to the number of rows; if not, generate a warning message (that
the system may be inconsistent), and calculate and print out the residual. Test
the function with different matrices to check that all the features work
correctly.

6. Consider the system of equations

x1 + x2 + x3 = 3
x1 + 2 x2 + x3 = 3
x1 - x2 + x3 = 1

Use Octave to show that the system is inconsistent. Construct and solve the
normal equations, find the null space, and then construct the best approximate
general solution.

4.6 In	
 conclusion	

You have now used Octave to solve linear systems in which the numbers of
unknowns and equations are not the same, and you have applied this to the
problem (which is found in many areas of science) of fitting a given curve to
given data.

 82

Study	
 Unit	
 5:	
 Eigenvalues,	

eigenvectors	
 and	
 matrix	

diagonalization	

Time period: 15 hours approximately	

Learning outcomes
At the end of this Study Unit, you should be able to write programs that:

• Find the eigenvalues and eigenvectors of a square matrix A using the
program function eig.

• Find, when it exists, a matrix P that diagonalizes A.
• Use the power method to find the dominant eigenvalue and corresponding

eigenvector of A.

Some of this knowledge you might have already encountered in MAT103N. More
detail will also follow in MAT211R. In this module the focus is a statement
(without proof), for mathematical background.

5.1 Summary	
 of	
 mathematical	
 results	

Here we state (without any proof) the key definitions and results about
eigenvalues and eigenvectors. (Further details are given in other modules such as
MAT103N and MAT211R.)

Definition	

Given an n × n matrix A, λ and v (≠ 0) are said to be an eigenvalue and
associated eigenvector if

A v = λ v

5.1.1 Calculation	
 of	
 eigenvalues	
 and	
 eigenvectors	

The eigenvalues are found by rewriting the above definition as

(A - λ In) v = 0 (1)
where In is the n × n unit matrix, and observe that a non-zero solution for v can
exist only if

det (A - λ In) = 0
which is called the characteristic equation. It is a polynomial equation in λ of
degree n. By the fundamental theorem of algebra, the equation has n roots. In
general, some of the roots may be complex, and it may happen that some roots are
repeated. Given an eigenvalue, Eqn. (1) can be solved to find the associated
eigenvector (and if the eigenvalue is complex, then in general so is the
eigenvector). The result found for an eigenvector is not unique, because you can
always multiply an eigenvector by a non-zero scalar and get another eigenvector

APM1513/1

83

with the same eigenvalue. Thus often, the solution found for an eigenvector is
given in normalized form, which means that the vector v is rescaled so that it is a
unit vector. Explicitly, the construction is

v → u = v |v|-1 with |v| =

(In Octave, for a vector v, |v| is coded as norm(v)). Note however that even a
normalized eigenvector is not uniquely defined: if it is real, it is not unique up to
multiplication by -1, and if it is complex up to multiplication by any complex
number c with |c|=1.

5.1.2 Some	
 useful	
 properties	
 of	
 eigenvalues	
 and	
 eigenvectors	

• In the general case, there are no repeated roots and there are n distinct

eigenvalues. It can then be shown that the corresponding eigenvectors
form a complete set of linearly independent vectors. This means that any
n-vector x can be expressed uniquely as a linear sum of eigenvectors,

x = αi vi

for some (unique) scalar coefficients αi.

• Now suppose that the characteristic equation has repeated roots, and that
there are r distinct eigenvalues with r < n. Suppose that there are m
linearly independent eigenvectors, then m will be somewhere in the range
r ≤ m ≤ n. If m = n then the set of eigenvectors is complete, and if m < n
we say that the set of eigenvectors is degenerate.

• If the matrix A is real, and if (λ, v) are a complex eigenvalue-eigenvector

pair, then their complex conjugates (λ*, v*) are also an eigenvalue-
eigenvector pair.

5.2 The	
 Octave	
 command	
 eig	

It is very easy in Octave to find the eigenvalues and eigenvectors of a matrix A,
using the command eig. The syntax is illustrated in the following code
> A1=[3 -1 0;-1 2 -1;0 -1 3]

A1 =
 3 -1 0
 -1 2 -1
 0 -1 3

> [P1 L1]=eig(A1)

P1 =
 4.0825e-001 -7.0711e-001 -5.7735e-001
 8.1650e-001 -1.4076e-017 5.7735e-001
 4.0825e-001 7.0711e-001 -5.7735e-001

L1 =
 1 0 0
 0 3 0
 0 0 4

 84

We see that the diagonal entries of L are the eigenvalues, and the columns of P are
the corresponding normalized eigenvectors. Here are some more examples

• Complex eigenvalues and eigenvectors
> A2=rand(3,3)

A2 =

 0.618515 0.539806 0.305781
 0.774175 0.111187 0.676873
 0.686104 0.076203 0.474557

> [P2 L2]=eig(A2)
P2 =

 0.60969 + 0.00000i 0.55806 - 0.17883i 0.55806 + 0.17883i
 0.61906 + 0.00000i -0.35045 + 0.39556i -0.35045 - 0.39556i
 0.49502 + 0.00000i -0.61425 + 0.00000i -0.61425 - 0.00000i

L2 =

 1.41489 + 0.00000i 0.00000 + 0.00000i 0.00000 + 0.00000i
 0.00000 + 0.00000i -0.10532 + 0.15067i 0.00000 + 0.00000i
 0.00000 + 0.00000i 0.00000 + 0.00000i -0.10532 - 0.15067i

• Repeated eigenvalues with a degenerate set of eigenvectors
> A3=[-3 2;-2 1]

A3 =

 -3 2
 -2 1

> format long
> [P3 L3]=eig(A3)
P3 =

 0.707106781186548+0.000000000000000i 0.707106781186548-0.000000000000000i
 0.707106781186547+0.000000002257377i 0.707106781186547-0.000000002257377i

L3 =

 -1.000000000000000+0.000000006384826i 0.000000000000000+0.000000000000000i
 0.000000000000000+0.000000000000000i -1.000000000000000-0.000000006384826i

> rank(P3)

ans = 2
> cond(P3)

ans = 6.2649e+008

Analytically, it is easy to work out the characteristic equation,

which clearly has a repeated eigenvalue λ = 1. Then working out the
eigenvectors, we find that there is only one, namely (in normalized form)

APM1513/1

85

Octave finds the eigenvalues correctly to 10 significant figures, giving an
erroneous small imaginary part to each eigenvalue. As a consequence of this
error, Octave incorrectly finds that there are two linearly independent
eigenvectors (although the difference between the two eigenvectors is very
small). Thus it shows that the rank of the eigenvector matrix is 2 when the
correct value is 1. However, the large condition number found for the matrix
of eigenvectors indicates that the value found for the rank may not be reliable.

This is an important point: In cases in which equal, or nearly equal,
eigenvalues are found, you should check the condition number of the
eigenvector matrix, and a large condition number indicates that the
eigenvectors found are not all linearly independent.

• Repeated eigenvalues with a complete set of eigenvectors

> A4=[1 -3 3;3 -5 3;6 -6 4]
A4 =

 1 -3 3
 3 -5 3
 6 -6 4

> [P4 L4]=eig(A4)

P4 =

 -0.40825 -0.40825 -0.43794
 -0.40825 0.40825 -0.81576
 -0.81650 0.81650 -0.37781

L4 =

 4.00000 0.00000 0.00000
 0.00000 -2.00000 0.00000
 0.00000 0.00000 -2.00000

> cond(P4)

ans = 4.1103

5.3 Matrix	
 diagonalization	

Matrix diagonalization is trivial in Octave, because the eigenvector matrix P
returned by Octave is also the diagonalization matrix as we can check by
evaluating P-1AP. For example, using the matrices defined in the previous section,
> inv(P1)*A1*P1

ans =

 1.0000e+000 -1.2035e-017 -9.3493e-016
 -5.3668e-017 3.0000e+000 -1.0221e-015
 -1.2821e-016 -3.4044e-017 4.0000e+000

> inv(P4)*A4*P4

ans =

 4.0000e+000 -6.3448e-016 -6.6104e-016
 3.9926e-016 -2.0000e+000 -5.3424e-017
 6.2439e-016 -8.4134e-017 -2.0000e+000

 86

5.4 The	
 power	
 method	

In certain real-world problems we may have to deal with large diagonalizable
matrices whose characteristic equation is time-consuming to solve. In Octave, the
function eig takes only a few seconds to find the eigenvalues and eigenvectors of
a matrix of size 500 × 500, so in practice, in this context, large means larger than
about 500 × 500. Moreover, the main feature of interest in many real-world
problems is the so-called dominant eigenvalue i.e. the eigenvalue whose absolute
value is larger than the absolute values of all the other eigenvalues. The dominant
eigenvalue is particularly important in circumstances where we are interested in
the behaviour of xp = Ap x0 for large p.

We now describe an iterative process to determine an approximation to the
dominant eigenvector (the eigenvector corresponding to the dominant
eigenvalue). From the approximation to the dominant eigenvector, it is a trivial
matter to compute an approximation to the dominant eigenvalue. The procedure
which we follow is known as the power method and is quite straightforward.

Now, we describe the algorithm for the power method, and then explain why it
works.

5.4.1 Algorithm	

Algorithm is defined as a logical step-by-step procedure for solving a
mathematical problem in a finite number of steps, often involving repetition of the
same basic operation.

Given an n × n matrix A, we choose an arbitrary non-zero n-dimensional column
vector x0 and proceed to construct

x1 = A x0, x2 = A x1, ... , xi = A xi-1, ... , xp = A xp-1,

Then each xi is an estimate of the (non-normalized) dominant eigenvector, with
the estimate becoming better and better as i increases. At each value of i we can
construct an estimate µi of the dominant eigenvalue using the Rayleigh quotient
formula

µi = (xi-1 . xi) / (xi-1 . xi-1)

We estimate the relative error εi in xi using a definition similar to that given in
Study Unit 3, section 2,

.

Our estimate of the relative error is the norm of the difference between successive
estimates of xi normalized. We continue the computation until εi is less than a
given tolerance, at, say, i = p. Then we estimate the dominant eigenvalue as λ =
µp, and the normalized dominant eigenvector as v = xp / | xp |.

APM1513/1

87

5.4.2 Justification/why	

We suppose that A has a complete set of eigenvectors, so that the initial estimate
x0 can be written as

x0 = α1 v1 + α2 v2 + ... + αn vn

where v1 ... vn are the eigenvectors, and suppose that λ1 ... λn are the corresponding
eigenvalues.

Suppose also that λ1 is the dominant eigenvalue, so that

.

We now multiply x0 by A, and do this p times, getting

Ap x0 = α1 λ1
p v1 + α2 λ2

p v2 + ... + αn λn
p vn

= α1 λ1
p (v1 + v2 + v3 + ... +

 vn).

Now as p → ∞, , , ... , → 0, so that

Ap x0 → α1 λ1

p v1,

as required.

Usually the power method converges quite rapidly, although there are exceptions

• If x0 is chosen such that α1 = 0, then the method cannot converge to v1. In
order to avoid this possibility, we usually set x0 randomly, i.e. using
Octave's random function, and run the power method for two different
initial vectors x0.

• If the largest eigenvalue of A is complex, then its complex conjugate is
also an eigenvalue. In this case, although λ1 ≠ λ2, |λ1| = |λ2| and the power
method will probably fail.

• If the largest eigenvalue of A is a multiple root of the characteristic
equation, with or without degenerate eigenvectors, then the power method
will probably fail.

• Note, however, that although the theorem guarantees convergence only if
there is a complete set of eigenvectors, in practice convergence usually
does occur in the case that there are degenerate eigenvectors provided the
associated eigenvalue has an absolute value strictly less than that of the
largest eigenvalue.

 88

We now give a function file power_method.m that implements the power method,
using a conditional loop that exits once the relative error is below a given
tolerance, or the maximum number of iterations has been exceeded. The inputs to
the function are the matrix A, the tolerance TOL, and the maximum number of
iterations max_it.

File power_method.m

function [e_vec lam]=power_method(A,TOL,max_it)
 k=0;
 n=size(A)(1);
 e_vec_old=rand(n,1);
 do
 e_vec_new=A*e_vec_old;
 lam=(e_vec_new'*e_vec_old)/(e_vec_old'*e_vec_old);
 err=norm(e_vec_new/norm(e_vec_new)-
e_vec_old/norm(e_vec_old));
 e_vec_old=e_vec_new;
 k=k+1;
 until((err<TOL) | (k>max_it));
 k
 e_vec=e_vec_new/norm(e_vec_new);
 if (k>max_it)
 disp("ERROR: METHOD DID NOT CONVERGE");
 e_vec=[];
 lam=[];
 endif
endfunction

The following extract from the Octave command window shows some examples
of the use, and failure, of the power method. First, we apply the method to the
various matrices A1 to A4 specified in Section 2.

APM1513/1

89

Feedback: Octave window output
> [P L]=power_method(A1,1/10^6,100)

k = 38
P =

 0.57735
 -0.57735
 0.57735

L = 4.0000

> [P L]=power_method(A2,1/10^6,100)

k = 8
P =

 0.60969
 0.61906
 0.49502

L = 1.4149

> [P L]=power_method(A3,1/10^6,100)

k = 101
ERROR: METHOD DID NOT CONVERGE
P = [](0x0)
L = [](0x0)

> [P L]=power_method(A4,1/10^6,100)
k = 20
P =

 0.40825
 0.40825
 0.81650

L = 4.0000

> A5=rand(1000,1000);
> [P L]=power_method(A5,1/10^6,100);

k = 5
> L

L = 499.93
> [P L]=eig(A5);
> L(1,1)

ans = 499.93

In the last example we generated a large (1000 × 1000) random matrix, and we
see that both eig and power_method give the same result for the largest
eigenvalue. Also, if you run the program, you will see that eig takes much more
time than power_method. Note that, because we used a random generator, if you
run the program you would get different numerical values.

5.5 Additional	
 Exercises	

1. Find the eigenvalues and eigenvectors of the following matrices, using both

eig and power_method (for the dominant eigenvalue and eigenvector). If the
power method fails, discuss why. For those matrices that are diagonalizable,
give the diagonalization matrix

a. 2.781344 -1.921334 0.493612 1.367198 -1.014289

 90

 0.015050 -0.205731 0.903377 1.780261 -0.824057
 -0.087144 0.606003 2.977860 -0.140473 -0.750938
 0.212440 -2.477599 0.980236 4.233562 -1.207581
 -0.136646 -1.168924 0.453692 0.915245 1.712964

b. -1.54575 -3.47002 -1.70112 -2.58917
 -3.28104 -2.07998 -1.45597 -2.75629
 0.55497 0.94078 2.02863 0.46100
 8.94120 9.67047 4.47796 9.09710

c. -1.6731385 -3.6381454 -1.8272855 -2.7022868
 -1.7080530 -0.0039461 0.1019678 -1.3595453
 2.4426950 3.4321965 3.8982919 2.1372124
 5.7672696 5.4815125 1.3344020 6.2787928

d. 4.9541 6.6650 8.1445 2.9998
10.1406 17.3006 14.2773 9.3552
8.9200 10.6881 8.4619 7.7253
-25.6960 -40.6289 -38.0172 -21.7166

2. Modify the power method so that the stopping condition is changed to

tolerance

where xn, µn are the current estimates of the eigenvector and eigenvalue.
Demonstrate the validity of your code by running it on the matrices in
question 1.

3. Modify the power method so that it finds the smallest eigenvalue and

corresponding eigenvector. You do this by evaluating
xn+1 = A-1 xn

rather than xn+1 = A xn. When convergence occurs, it is to the eigenvector
corresponding to the smallest eigenvalue, and to the inverse of the smallest
eigenvalue. Demonstrate the validity of your code by running it on a number
of test cases.

4. Consider a fictional species, and suppose that the population can be divided

into three different age groups: babies, juveniles and adults. Let the population
in year n in each of these groups be

x(n) =

The population changes from one year to the next according to x(n+1) = A x(n),
where the matrix A is

APM1513/1

91

In the long term, what will be the relative distribution of the population
amongst the age groups?

5. spread of an infectious disease in a town can be modeled (when the number of
infected people is much less than the total population) as x(n+1) = A x(n) , where
n refers to the month, and

x(n) =

The disease is spread by mosquito bites, and xm(n) refers to the number of
mosquitoes that carry the disease; xs(n) is the number of sick people; xr(n) is the
number of people who recover; and xd(n) is the number of people who die. The
matrix A is

In the long term, at what rate will the incidence of the disease increase every
month? Consequently as a public health initiative, the mosquito breeding areas
are being sprayed with insecticide, and the matrix A changes to B where

Show that the effect will be that the disease will be eradicated

5.6 In	
 conclusion	

You have now successfully used Octave to find the eigenvalues and eigenvectors
of a matrix, and applied this to some real-world problems.

 92

Study	
 Unit	
 6:	
 Linear	
 programming	

Time period: 15 hours approximately	

LEARNING	
 OUTCOMES
At the end of this Study Unit, you should be able to:

• Understand the basic concepts of linear programming.
• Use the Octave package glpk to solve problems in linear programming
• Express realistic problems in mathematical terms, and then use the Octave

package glpk to solve them

The focus here is the solving of the linear programming problems with some
touching on realistic problems.

6.1 The	
 basic	
 ideas	
 of	
 linear	
 programming	

You will recall that in MAT111N we briefly discussed linear programming, which
is the problem of trying to maximize or minimize a certain linear function, called
the objective function, in which the variables were subject to constraints in the
form of inequalities. We restricted our attention to problems involving two
variables only and this enabled us to use geometric methods in solving them. In
essence, the constraint inequalities enabled us to determine a region of the xy-
plane in which all the inequalities were satisfied. We called this the feasible
region of the problem. The objective function could be represented as a plane
sitting above the xy -plane and clearly we were only interested in that part of the
plane above the feasible region. It was a fairly simple matter to show that the
maximum or minimum of the objective function occurred at one of the so-called
extreme points (i.e. corners) of the feasible region. We therefore simply evaluated
the objective function at the various extreme points and this gave us the height of
the plane above these points. The largest or smallest height gave us the maximum
or minimum value of the objective function subject to the various constraints.

Example 6.1.1
Maximize the function

L = 40 x1 + 60 x2

subject to the constraints

2 x1 + x2 ≤ 70
x1 + x2 ≤ 40
x1 + 3 x2 ≤ 90
x1, x2 ≥ 0

This is a 2D problem so it can easily be solved using the geometric method, as
shown in Fig. 6.1.1. The maximum of the function L is found by evaluating it at
the various extreme points and we find that the maximum occurs at C = (15, 25)
and that the maximum value is L = 2100.

APM1513/1

93

Fig 6.1.1

In practice, linear programming is a widely applied field of mathematics, because
it can be used to guide business decisions to maximize profits. For example, the
variables represent the different products made by a business, the objective
function is a linear sum of the profits made on the different products, and the
constraints represent a variety of factors such as factory capacity, market
limitations, supply limitations, etc. In practice, the number of variables and
constraints can be large, and it is impossible to use a geometric method (which
can only be used when there are two, or perhaps three, variables). Thus we have to
resort to algebraic methods to solve the problem.

However, there are geometric results that will be useful. The following are easy to
show when there are two variables, and in fact hold whatever the number of
variables (but we will not prove this)

• The maximum or minimum of the objective function occurs at one of the
extreme points (i.e. corners or vertices) of the feasible region

• The feasible region is convex (which means that any straight line between
two points in the region lies entirely within the region)

The consequence of convexity is that we do not have to worry about local minima
or maxima: if an extreme point is maximum (or minimum) relative to
neighbouring extreme points, then it is the solution to the problem. For example,
suppose we want to maximize L = x2 over the shaded region in Fig. 6.1.2. In both
cases (a) and (b), this occurs at the point D; however, in case (a) the region is non-
convex and there is another local maximum at the point B, whereas in case (b) the
region is convex and there are no other local maxima.

 94

Fig. 6.1.2

In addition, we will assume (as in Example 6.1.1) that all variables are non-
negative, i.e.

The reasons for doing so are that, in practice, the variables usually represent
quantities like production runs which cannot be negative, and also making the
assumption does simplify matters.

You might think that the simplest way to tackle a linear programming problem,
given the power of modern computers, is just to find all the extreme points (which
are just solutions of linear systems of equations), and then evaluate the objective
function at these points. However, for a large system, that problem is far too
complex. For example, if there are 50 variables and 100 constraints, the number of
points that must be examined is

Modern computers run at about 109 operations per second, so the above
computation would take much longer than the age of the Universe. So instead, an
iterative approach is used.

6.2 The	
 simplex	
 method	

Although implemented algebraically, the method has a straightforward geometric
interpretation. The idea is that we start with a simple, known, extreme point
usually the origin. Then we identify neighbouring extreme points and evaluate the
objective function there. We choose as our next iterate that extreme point with the
largest (or smallest) value of the objective function. The process is continued until
moving to another extreme point does not increase (or decrease) the objective
function. The method is guaranteed to work because the feasible set is convex,
and will converge to a solution after a number of steps of the order of the number
of variables plus the number of constraints. The solution found could, in principle,

(a)

C

2x

1x
F

E

A

B

D

C

E

F
x1

x2

(b)

D

B

A

APM1513/1

95

be infinite, but in practice that would mean that the constraints have not been
completely specified.

The justification of the algebraic implementation of the simplex method is beyond
the scope of this first level module, and instead we simply describe the use of the
Octave package glpk that implements the simplex algorithm.

After this summary/background, lets see how we can use a program to solve such
problems.

6.3 The	
 Octave	
 glpk	
 “package”	

Octave has a “package” glpk to solve problems in linear programming. We
illustrate its use by means of applying it to example 6.1.1, and then discuss more
generally how the package is used.

The Octave code to solve the problem is
> C=[40;60]

C =

 40
 60

> A=[2 1;1 1;1 3]

A =

 2 1
 1 1
 1 3

> b=[70;40;90]

b =

 70
 40
 90

> lb=[]

lb = [](0x0)
> ub=[]

ub = [](0x0)
> ctype="UUU"

ctype = UUU
> vartype="CC"

vartype = CC
> s=-1

s = -1
> [xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s)

xmax =

 15.000
 25.000

Lmax = 2100

We now examine the above code and describe how it relates to the mathematical
specification of the problem.

 96

• C is a column vector such that L=Cx' (with x a column vector, x' a row
vector) is the function to be minimized or maximized

• A is a matrix such that Ax expresses the left hand side of the constraints
• b is a column vector that specifies the right hand side of the constraints
• lb is a column vector that specifies the lower bound of each element in x.

If this lower bound is always 0, then, according to the Octave manual, we
do not need to specify lb and simply define it as the empty matrix.
However, in some cases we have found that Octave is unstable when lb is
not set explicitly to 0

• ub is a column vector that specifies the upper bound of each element in x.
If this upper bound is always infinity, then we do not need to specify ub
and simply define it as the empty matrix

• ctype is a string of characters containing the sense of each constraint in
the constraint matrix. Each element of the string may be one of the
following values

o U An inequality constraint with an upper bound (≤bi).
o S An equality constraint (= bi).
o L An inequality constraint with a lower bound (≥ bi).

Here, there are 3 constraints each of which is an upper bound
• vartype is a string of characters with length equal to the size of x. For our

purposes, each entry will always be C
• s is either -1 meaning that L must be maximized, or +1 meaning that L

must be minimized
• xmax is the solution found for x that maximizes (or minimizes) L
• Lmax is the maximum (or minimum) value found for L that satisfies all the

constraints

Here are some more examples

ACTIVITY 6.2.1
Maximize the function

L = 2 x1 + 5 x2 + 4 x3

subject to the constraints

x1 + 2 x2 + x3 ≤ 4
x1 + 2 x2 + 2 x3 ≤ 6
x1, x2, x3 ≥ 0.

The Octave code is
> C=[2;5;4]

C =

 2
 5
 4

> A=[1 2 1;1 2 2]

A =

 1 2 1
 1 2 2

APM1513/1

97

> b=[4;6]
b =

 4
 6

> lb=[]
lb = [](0x0)

> ub=[]
ub = [](0x0)

> ctype="UU"
ctype = UU

> vartype="CCC"
vartype = CCC

> s=-1
s = -1

> [xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s)
xmax =

 1.6934e-316
 1.0000e+000
 2.0000e+000

Lmax = 13

Example 6.2.2
Minimize the function

L = -2 x1 + x2

subject to the constraints

2 x1 + x2 ≤ 20
x1 - x2 ≤ 4
-x1 + x2 ≤ 5
x1, x2 ≥ 0

The Octave code is
> C=[-2;1]

C =

 -2
 1

> A=[2 1;1 -1;-1 1]

A =

 2 1
 1 -1
 -1 1

> b=[20;4;5]

b =

 20
 4
 5

> lb=[]

lb = [](0x0)

 98

> ub=[]
ub = [](0x0)

> ctype="UUU"
ctype = UUU

> vartype="CC"
vartype = CC

> s=1
s = 1

> [xmin,Lmin]=glpk(C,A,b,lb,ub,ctype,vartype,s)
xmin =

 8
 4

Lmin = -12

octave-3.0.0.exe:48> C=[2.5 2 1.5 3]';
octave-3.0.0.exe:49> A=[1 1 1 1;0 1 0 1;1 1 0 0];
octave-3.0.0.exe:50> b=[100000 50000 55000]';
octave-3.0.0.exe:52> lb=[0 10000 0 0]';
octave-3.0.0.exe:53> ub=[50000 100000 40000 100000]';
octave-3.0.0.exe:54> ctype="UUU";
octave-3.0.0.exe:55> vartype="CCCC";
octave-3.0.0.exe:56> s=-1;
octave-3.0.0.exe:57>
[xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s)
xmax =

 45000
 10000
 5000
 40000

Lmax = 260000

6.4 More	
 realistic	
 linear	
 programming	
 examples	

We now give some real-life examples of linear programming problems. In each
case, the first step is to translate the description into a mathematical formulation,
i.e. the specification of the variables, the constraints and the objective function.
We then solve the problems using the glpk package.

Activity	
 6.3.1	

As an example: The Milko Dairy can receive no
more than 100 000 litres of milk per day. Due to a
long-term contract, at least 10 000 litres of each
day's milk must be used for cheese manufacture.
The balance can be used for bottled milk, butter or
yoghurt. At today's market prices, the contribution
to profit and fixed cost of each litre of milk, when
put to these uses, is as follows

Butter R2.50

Cheese R2.00

APM1513/1

99

Bottled milk R1.50

Yoghurt R3.00

The butter equipment can handle up to 50 000 litres
of milk per day, and the milk equipment up to 40
000 litres. Part of the yoghurt and cheese processing
uses the same equipment, and this imposes a limit
on the combined usage of 50 000 litres per day. The
butter and cheese packaging equipment can handle a
combined usage of at most 55 000 litres per day.

What mix of products should the company produce
so as to maximize profit?

Solution/Feedback
We start by defining our variables:

 x1 Number of litres of milk used for butter
 x2 Number of litres of milk used for cheese
 x3 Number of litres of milk used for bottled milk
 x4 Number of litres of milk used for yoghurt

Then the objective function is

 L = 2.5 x1 + 2.0 x2 + 1.5 x3 + 3.0 x4

The constraints are

 x1 + x2 + x3 + x4 ≤ 100 000

x2 ≥ 10 000
 x1 ≤ 50 000
 x3 ≤ 40 000
 x2 + x4 ≤ 50 000
 x1 + x2 ≤ 55 000

Octave code
> C=[2.5 2 1.5 3]';
> A=[1 1 1 1;0 1 0 1;1 1 0 0];
> b=[100000 50000 55000]';
> lb=[0 10000 0 0]';
> ub=[50000 Inf 40000 Inf]';
> ctype="UUU";
> vartype="CCCC";
> s=-1;
> [xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s)

xmax =

 45000
 10000
 5000
 40000

 100

Lmax = 260000

Comments
Thus the Milko Dairy will maximize its trading profit for the day at R260 000 by
using 45 000 litres of milk for butter, 10 000 for cheese, 5 000 for bottled milk
and 40 000 for yoghurt. In the Octave code, we have expressed constraints that
involve only a single variable by setting lower bounds or upper bounds on the
variables by specifying the vectors lb and ub. In the vector ub, we then set the
upper bound as Inf, meaning infinity, for those variables (x2 and x4) that do not
have explicit upper bounds. Then the constraint matrix A and right hand side b
represent only the three constraints comprising two or more variables.

APM1513/1

101

Example	
 6.3.1	

The	
 ABC	
 clothing	
 manufacturing	
 company	
 has	
 a	
 number	
 of	
 different	
 product	

lines,	
 T-­‐shirts,	
 jeans,	
 dresses,	
 jackets,	
 coats,	
 etc.	
 Let	
 us	
 call	
 these	
 products	
 P1,	
 P2,	

P3	
 and	
 P4.	
 The	
 manufacture	
 of	
 the	
 clothing	
 requires	
 raw	
 materials	
 including	

different	
 types	
 and	
 quality	
 of	
 raw	
 cloth,	
 dyes,	
 accessories	
 like	
 buttons,	
 buckles,	

zips,	
 etc.,	
 packaging	
 materials,	
 etc.	
 and	
 we	
 call	
 the	
 raw	
 materials	
 R1,	
 R2,	
 R3	
 ,	
 R4	

and	
 R5.	
 Each	
 product	
 line	
 requires	
 different	
 quantities	
 of	
 raw	
 materials,	
 and	
 the	

following	
 table	
 shows	
 how	
 much	
 of	
 each	
 raw	
 material	
 should	
 be	
 available	
 in	

order	
 to	
 produce	
 one	
 unit	
 of	
 each	
 product	
 line	

	

	
 R1	
 	
 R2	
 R3	
 R4	
 R5	

P1	
 	
 0.1	
 0.09	
 0.095	
 0.03	
 0.02	

P2	
 0.23	
 0.17	
 0.132	
 0.19	
 0.03	

P3	
 0.17	
 0.19	
 0.201	
 0.02	
 0.021	

P4	
 0.11	
 0.08	
 0.123	
 0.04	
 0.07	

	

The	
 manufacturing	
 process	
 involves	
 different	
 departments	
 in	
 the	
 factory,	
 dyeing,	

cutting	
 and	
 sewing,	
 quality	
 inspection,	
 and	
 packaging,	
 and	
 we	
 call	
 these	

departments	
 D1	
 to	
 D4.	
 Each	
 product	
 line	
 requires	
 time	
 (in	
 hours)	
 in	
 the	
 various	

departments	
 as	
 follows	

	

	
 D1	
 	
 D2	
 D3	
 D4	

P1	
 	
 0.7	
 1.1	
 0.8	
 0.2	

P2	
 1.1	
 0.85	
 0.95	
 0.3	

P3	
 0.6	
 0.9	
 0.6	
 0.4	

P4	
 0.9	
 1.2	
 0.4	
 0.2	

	

Management	
 needs	
 to	
 set	
 a	
 production	
 schedule	
 for	
 the	
 next	
 month.	
 The	
 buying	

department	
 has	
 obtained	
 quotations	
 for	
 the	
 various	
 raw	
 materials,	
 although	

some	
 items	
 are	
 in	
 short	
 supply	
 and	
 there	
 are	
 supply	
 limitations	

	

	
 	
 	
 R1	
 	
 R2	
 R3	
 R4	
 R5	

Price	
 (Rands)	
 	
 3050	
 3550	
 4800	
 3970	
 3020	

Supply	
 limitations	
 60	
 	
 70	

	

The	
 sales	
 department	
 advises	
 current	
 market	
 rates	
 for	
 the	
 product	
 lines,	

together	
 with	
 any	
 upper	
 limits	
 that	
 should	
 not	
 be	
 exceeded	
 to	
 avoid	
 market	

over-­‐supply	
 and	
 price	
 depression.	

	

	
 	
 	
 P1	
 	
 P2	
 P3	
 P4	

Price	
 (Rands)	
 	
 6200	
 7000	
 8000	
 7300	

Sales	
 limit	
 	
 100	
 200	
 200	
 200	

	

In	
 addition,	
 due	
 to	
 an	
 outstanding	
 contract,	
 at	
 least	
 10	
 units	
 of	
 P1	
 must	
 be	

produced.	

Each	
 department	
 can	
 provide	
 400	
 hours	
 per	
 month.	
 How	
 much	
 of	
 each	
 product	

line	
 should	
 be	
 produced	
 so	
 as	
 to	
 maximize	
 the	
 company's	
 trading	
 profit?	

 102

Solution
We start by defining our variables:
 x1 = P1, x2 = P2, x3 = P3, x4 = P4, x5 = R1, x6 = R2, x7 = R3, x8 = R4, x9 = R5

The objective function is the income expected from sales of each product line, less
the cost of the raw materials,

 L = 6200 x1 + 7000 x2 + 8000 x3 + 7300 x4 – 3050 x5 – 3550 x6 – 4800 x7 –
3970 x8 – 3020 x9

The constraints due to the time available in each department are

0.7 x1 + 1.1 x2 + 0.6 x3 + 0.9 x4 ≤ 400
1.1 x1 + 0.85 x2 + 0.9 x3 + 1.2 x4 ≤ 400
0.8 x1 + 0.95 x2 + 0.6 x3 + 0.4 x4 ≤ 400
0.2 x1 + 0.3 x2 + 0.4 x3 + 0.2 x4 ≤ 400

The amounts of raw materials required for each product line translate into equality
constraints

- 0.1 x1 - 0.23 x2 - 0.17 x3 - 0.11 x4 + x5 = 0
- 0.09 x1 - 0.17 x2 - 0.19 x3 - 0.08 x4 + x6 = 0
- 0.095 x1 - 0.132 x2 - 0.201 x3 - 0.123 x4 + x7 = 0
- 0.03 x1 - 0.19 x2 - 0.02 x3 - 0.04 x4 + x8 = 0
- 0.02 x1 - 0.03 x2 - 0.021 x3 - 0.07 x4 + x9 = 0

Variables x2 to x9 are subject to a lower bound of 0, and for x1

 x1 ≥ 10

Many of the variables are subject to an upper bound

 x1 ≤ 100, x2 ≤ 200, x3 ≤ 200, x4 ≤ 200, x5 ≤ 60, x7 ≤ 70

The Octave code is written in a .m file

File ex6_3_2.m

ctype="UUUUSSSSS";
lb=[10 0 0 0 0 0 0 0 0];
ub=[100 200 200 200 60 Inf 70 Inf Inf];
s=-1;
b=[400 400 400 400 0 0 0 0 0]';
vartype="CCCCCCCCC";
A=[0.7 1.1 0.6 0.9 0 0 0 0 0;
1.1 0.85 0.9 1.2 0 0 0 0 0;
0.8 0.95 0.6 0.4 0 0 0 0 0;
0.2 0.3 0.4 0.2 0 0 0 0 0;
-0.1 -0.23 -0.17 -0.11 1 0 0 0 0;
-0.09 -0.17 -0.19 -0.08 0 1 0 0 0;
-0.095 -0.132 -0.201 -0.123 0 0 1 0 0;
-0.03 -0.19 -0.02 -0.04 0 0 0 1 0;
-0.02 -0.03 -0.021 -0.07 0 0 0 0 1];
C=[6200 7000 8000 7300 -3050 -3550 -4800 -3970 -3020]';
[xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s)

APM1513/1

103

Feedback: sOctave window
> ex6_3_2

xmax =

 10.000
 38.411
 200.000
 146.959
 60.000
 57.187
 64.296
 17.476
 15.839

Lmax = 2.1918e+006

Comments
Thus the company will maximize its trading profit for the month at R2 191 800 by
producing 10 units of product P1, 38 units of product P2, 200 units of product P3,
and 147 units of product P4. The company will need to order 60 units of raw
material R1, 57 units of raw material R2, 64 units of raw material R3, 17 units of
raw material R4, and 16 units of raw material R5.

6.5 Additional	
 Exercises	

1. Find the maximum value as well as the point at which the maximum occurs of

L= x1 + 2 x2 + 3 x3
subject to the constraints
 x1 + x2 + 2 x3 ≤ 8
 3 x1 + 3 x2 + x3 ≤ 9
 x1, x2, x3 ≥ 0

2. Find the minimum value as well as the point at which the minimum occurs of

L= -3 x1 -4 x2 + x3
subject to the constraints
 -x1 + x2 + 2 x3 ≤ 5
 2 x1 + x2 + x3 ≤ 20
 x1, x2, x3 ≥ 0

3. Find the minimum value as well as the point at which the minimum occurs of

L= -2 x1 -5 x2 + x3
subject to the constraints
 x1 + 2 x2 - x3 ≤ 6
 x2 + 2 x3 ≤ 6
 2 x2 + x3 ≤ 4
 x1, x2, x3 ≥ 0

4. Find the maximum value as well as the point at which the maximum occurs of

L= 2 x1 + 3 x2 + 4 x3 + 3 x4
subject to the constraints
 1.5 x1 + 2 x2 + 1.5 x3 + x4 ≤ 30
 1 x1 + 2 x2 + 1 x3 + 3 x4 ≤ 45
 5 x1 + 4 x2 + 7 x3 + 2 x4 ≤ 65

 104

 6 x1 + 3 x2 + 7 x3 + 4 x4 ≤ 60
 8 x1 + 4 x2 + 8 x3 + 2 x4 ≤ 70
 x1, x2, x3, x4 ≥ 0

5. The Suitcase Manufacturing Company produces a number of different types of

suitcase of varying qualities, which are called S1, S2, S3, S4 and S5. The
manufacturing process involves different departments in the factory, and we
call these departments D1 to D6. Each suitcase requires time (in minutes) in the
various departments as follows

 D1 D2 D3 D4 D5 D6
S1 10 15 10 12 5 5
S2 15 20 16 20 8 5
S3 21 25 20 20 20 8
S4 26 21 28 25 25 10
S5 33 28 30 29 34 15

The contribution to gross profit (i.e., the selling price less the cost of raw
materials) of each type of suitcase is given in the following table, which also
shows the minimum number of each type of suitcase that must be produced
together with the maximum number (in terms of contracts with retail stores)
 S1 S2 S3 S4 S5

Profit (Rands) 120 150 235 300 350
Minimum number 200 100 100 100 100
Maximum number 500 300 300 300 300

In addition, there is, this month, a supply limitation on the locks used on the
higher quality suitcases (S3, S4, and S5), and the total production of these
suitcases cannot exceed 600.

Each department can provide 24000 minutes per month, except Department
D6, which can only offer 15000 minutes. How much of each product line
should be produced so as to maximize the company's trading profit?

6. A company receives orders to deliver its goods to three different cities as

follows
City A B C
Order 22 21 25

where the quantity of the order is in truckloads. The company has sufficient
stock in its warehouses and a truckload of goods can be delivered from any
warehouse to any city. However, there are a limited number of trucks
available at each warehouse
 Warehouse P Q R
 Trucks 17 31 26
The variable costs (in Rands) per truckload to deliver goods from each
warehouse to each destination are
 City A B C
 Warehouse
 P 6000 5000 4000
 Q 5000 5500 6000
 R 9000 8500 8000

What is the cheapest delivery schedule and what is its cost?

APM1513/1

105

[Hint: Choose the variables as x1 to x9 where x1 is the number of truckloads
from P to A, x2 is the number from P to B, ... , , x9 is the number from R to C]

6.6 In	
 conclusion	

You have now successfully used Octave to solve linear programming problems
that cannot be tackled by the simple graphical method. You have also successfully
solved some real-world linear programming problems.

