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Preface 
 

This module is the first on the use of computers and computational methods in 
applied mathematics.  
 
The other undergraduate modules are: COS2338 Numerical methods 1, APM2616 
Computer algebra, APM3711 Numerical methods 2. This module, with COS2338 
and APM3711, are about finding numerical solutions to problems; whereas 
APM2616 shows you how to solve problems symbolically. 
 
The use of computers in mathematics has revolutionized the extent to which 
mathematical calculations can be applied to real-world problems. The modern 
world is full of such examples, such as Weather prediction, Drug design, Aircraft 
design, Electronic banking, and Telecommunication systems. 
 
The teaching strategies imbedded include: 

• Activity-based self-study. 
 
The outcomes of this module are: 

• To solve systems of linear equations with the use of Octave (or 
MATLAB) 

• To perform basic matrix operations. 
• To use iterative methods to find appropriate solutions for systems 
• To know what is meant by the eigenvalue equations, to be able to 

calculate the eigenvalue of a matrics and its corresponding eigenvector 
and to know the Octave (or MATLAB) code to do it. 

• To be able to solve linear programming problems by using the 
software. 

 
The main sources used in writing this study guide were 

• B.D. Hahn Essential MATLAB for Scientists and Engineers (Pearson 
Education South Africa, Cape Town, 2002) 

• Previous Unisa study guides on (non-computational) applied linear 
algebra, originally written by G. Lemmer and revised by J. Hartney and R. 
Maritz. 

 
 
 
Nigel Bishop 
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Study	
  Unit	
  1: Getting	
  started	
  
with	
  the	
  computer	
  software	
  

TIME PERIOD: 10 hours approximately RESOURCES: MATLAB/Octave programs	
  
 

LEARNING OUTCOMES 
At the end of this Study Unit, you should be able to: 

• Have Octave installed on your computer. 
• Use Octave for simple calculations. 
• Use Octave to produce simple graphs. 
• Execute a simple Octave program by reading from a file. 
• Produce Octave results as output, including graphs, to files. 
• Use the Octave help facilities. 

 
 

1.1 Installing	
  and	
  running	
  the	
  program	
  (from	
  TL101)	
  
 
This module requires you to use a software programme and we decided to use 
Octave which is free of charge. MATLAB is another commercial software 
product similar to Octave, but that has to be purchased. (Please refer to your 
tutorial letter APM113U, number 101, to find more information on the installation 
procedure.) 
 
1.1.1 MATLAB	
  or	
  Octave?	
  

Although there are occasional differences, the syntax of the two programming 
systems is almost identical. In some advanced, specialized applications, we found 
MATLAB was able to solve a problem but Octave was unsuccessful. However, 
for the introductory purposes of this module, the free Octave version is quite 
sufficient. You are welcome to use MATLAB rather than Octave if you wish, or if 
the computer that you are using for this module already has MATLAB installed. 
Be aware that there will be minor syntactical and layout differences between 
MATLAB and Octave; the notes in this study guide will only cover Octave so for 
a start we would suggest that you rather work with Octave. 
 
1.1.2 Install	
  the	
  program,	
  Octave	
  

Before you can start work on this module, you need to install the software 
package onto your computer Desktop. (Information about how to do this is given 
in Tutorial Letter 101 because the software package is regularly updated and these 
details may change). 
 
The installation process should show the Octave icon on your computer’s 
Desktop. (If the icon is not there, go to the Start button, then click on Programs, 
then on GNU Octave, then on Octave. Otherwise, go back and redo the 
installation process). 
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NOTE: There may be minor differences in the layout in some cases because of 
version differences between the programs. The program version shown in this 
study guide was developed and tested using Octave version 3.0.0, running under 
the Windows operating system, and with gnuplot (as the graphics back-end). 
 

Activity	
  1-­‐1	
  Open	
  the	
  program	
  
Double	
  click	
  on	
  the	
  program	
  icon	
  to	
  open	
  the	
  program.	
  	
  
 
A new window should open that contains installation details. Details on the 
Octave Startup window should look like this: 
 

GNU Octave, version 3.0.0 
Copyright (C) 2007 John W. Eaton and others. 
This is free software; see the source code for copying 
conditions. 
There is ABSOLUTELY NO WARRANTY; not even for 
MERCHANTIBILITY or 
FITNESS FOR A PARTICULAR PURPOSE.  For details, type 
`warranty'. 
Octave was configured for "i686-pc-msdosmsvc". 
Additional information about Octave is available at 
http://www.octave.org. 
Please contribute if you find this software useful. 
For more information, visit http://www.octave.org/help-
wanted.html 
Report bugs to <bug@octave.org> (but first, please read 
http://www.octave.org/bugs.html to learn how to write a 
helpful report). 
For information about changes from previous versions, type 
`news'. 
 - Use `pkg list' to see a list of installed packages. 
 - SciTE editor installed. Use `edit' to start the editor. 
 - MSYS shell available (C:\Program Files\Octave\msys). 
 - Graphics backend: gnuplot. 
 octave-3.0.0.exe:1> 

 
If you have problems to install the program, at first, try again. If you still have a 
problem contact the lecturer as this is a key step in starting. 
 
1.1.3 Testing	
  simple	
  examples	
  in	
  the	
  program	
  

Now you are ready to investigate what Octave can do. In order to show what is 
the Octave program’s INPUT and OUTPUT, we will in our directions type the 
Octave code in a different font, the Courier font.  
 
Your input is indicated in bold boxed, so look for the input fishbone prompt (>), 
then type your input. 
 
For	
  example,	
  	
  
Type the following calculation to use the program as a calculator. 
>3.6+5.7 

The programme should return the following OUTPUT:  
ans = 9.3000 
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Activity	
  1-­‐2	
  Test	
  the	
  program	
  
Type	
  in	
  your	
  own	
  examples	
  of	
  calculations	
  in	
  the	
  program.	
  You	
  are	
  now	
  
investigating	
  the	
  ability	
  of	
  the	
  program,	
  Octave,	
  	
  to	
  be	
  used	
  as	
  a	
  calculator.	
  	
  
	
  
Make	
  a	
  note	
  of	
  your	
  own	
  examples	
  in	
  your	
  workbook/work	
  file	
  (you	
  may	
  make	
  
Print	
  Screen	
  copies,	
  and	
  paste	
  them	
  into	
  a	
  wordprocessor	
  file,	
  then	
  print	
  it	
  out	
  
and	
  paste	
  it	
  in	
  your	
  workbook	
  as	
  evidence	
  of	
  your	
  work.)	
  
 
FEEDBACK: 
Were you able to do your own testing? If so, go to myUnisa Discussion Forums 
and share your problems with other students to see whether you get any reply 
from them. Your Tutor or Lecturer will monitor the discussions and support your 
study efforts. 
 
If you have problems with the installation processor the testing activity, go to the 
Internet, with your Internet Explorer, to the Unisa student website, 
https://my.unisa.ac.za/portal. 
Log in with your student number and password, then go to this module’s website 
and its Discussion Forums, and ask for help there.  
If you are unable to go online, phone 012 429-6202 for help from the department.  
 
 
Remember, that in Octave the following symbols have specific meanings: 

• * means multiply 
• / means divide 
• ^ means raise to a power, e.g. 3^2 means 32 
• sqrt means the square root, e.g. sqrt(2) leads to 1.4142. 

 
Test some more calculations of your own where you use the multiplication, 
division, power, and square root. 
 
Now, let us look at an Example where we will use the program to do something 
interesting. 
 

Activity	
  1-­‐3	
  Solve	
  equations	
  
Use	
  Octave	
  to	
  solve	
  a	
  pair	
  of	
  simultaneous	
  equations,	
  such	
  as:	
  
	
   1	
  x1	
  +	
  2	
  x2	
  =	
  5,	
  and	
  3	
  x1	
  +	
  4	
  x2	
  =	
  6	
  
 
FEEDBACK: 
Let’s do it together. In order to use Octave, we must first write the above 
equations in its matrix form, namely: 
 A x = b  
(We will discuss such problems in more detail in Study Unit 3.) 
 
We will now give you the Octave INPUT together with the OUTPUT. 
(Remember that the part that you must type as INPUT is after the fishbone input 
prompt (>) and indicated in boxed bold.)  
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So, type the first row values; and separate rows with a colon, with or without a 
space after the ; and before the 3.) 
 
> A=[1 2;3 4] 

A = 
   1   2 
   3   4 

 
> b=[5;6] 

b = 
   5 
   6 
 

> x=A\b 
x = 
  -4.0000 
   4.5000 

 
Following this OUTPUT, you need to rewrite the required answer (in 
mathematical terms) as: 
 x1 = -4, x2 = 4.5 
 

Activity	
  1-­‐4	
  Plot	
  a	
  graph	
  
Use	
  the	
  program	
  to	
  plot	
  a	
  simple	
  graph:	
  sin(x)	
  in	
  the	
  range	
  0<x<7.5	
  
 
At the input prompt, type: 
> fplot(@sin,[0,7.5]) 

 
The program produces a new window containing a graph of sin(x) in the range 
0<x<7.5 (as shown below): 
 

Table	
  1:	
  Program-­‐generated	
  graph	
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1.1.4 Exit	
  the	
  program	
  

Finally, exit your Octave session. 
 

Activity	
  1-­‐5	
  Exit	
  or	
  close	
  the	
  program	
  session	
  
Enter,	
  at	
  the	
  input	
  prompt,	
  the	
  command	
  “quit”.	
  
 
> quit 

 
Now you know the basics about the program. Congratulations for getting this far. 
 

1.2 Process	
  to	
  input	
  files	
  to	
  the	
  program,	
  Octave	
  
 
When you again open Octave, it assumes that the Home folder (that is the folder 
in which input and output files are located) is C:\Program Files\Octave. While 
it is possible to work in the Octave folder, it is better to use your own folder for 
your work, either in My Documents, or on the Desktop, or within your own 
structure. 
 
1.2.1 Create	
  a	
  storage	
  folder	
  

The first thing to do is to create the Home folder, and once you have done so 
open it and ensure the path is given in the top of the window.  
 
For	
  example,	
  
Suppose the Home folder is located in your My Documents folder at:  

C:\Documents and Settings\User\My Documents\apm113,  
Then, to get Octave to use this as the Home folder, enter at the input prompt: 
> cd "C:/Documents and Settings/User/My Documents/apm113" 

 

Activity	
  1-­‐6	
  Create	
  storage	
  folders	
  
Create	
  your	
  own	
  Home	
  folder	
  for	
  your	
  work	
  in	
  this	
  module,	
  “APM113”	
  (upper	
  or	
  
lower	
  case	
  are	
  both	
  accepted).	
  For	
  the	
  first	
  time,	
  keep	
  the	
  file	
  address	
  as	
  
suggested	
  above,	
  in	
  “Documents	
  and	
  Settings/User/My	
  Documents”.	
  
 
There are two important points to note about the above command that is different 
to the normal computer commands: 

• The path appears inside quotation marks ("), so that the program will 
recognise the command; 

• The symbol normally used (\) is replaced by forward slash (/). 
 
Obviously, it can become somewhat tiresome to enter the above long address 
command every time you start an Octave session, so we will show you a shortcut.  
 
Short cut:  
Quit your Octave session to start a new session.  
Confirm where the location of the default Home folder, by entering the command 
“pwd” (meaning, Print Working Directory).  
Start editing by going to the SciTE-editor with the command “edit”.  
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Activity	
  1-­‐7	
  Change	
  the	
  Home	
  directory	
  and	
  name	
  files	
  
Find	
  the	
  working	
  directory	
  you	
  are	
  working	
  in	
  and	
  change	
  it	
  to	
  your	
  own.	
  
Ensure	
  you	
  work	
  in	
  the	
  newly	
  named	
  Home	
  folder,	
  APM113.	
  	
  
Choose	
  a	
  file	
  name,	
  xx.m	
  (where	
  xx	
  is	
  Test1,	
  or	
  whatever	
  you	
  like).	
  Enter,	
  at	
  the	
  
input	
  prompt,	
  Test1.	
  
	
  	
  
 
FEEDBACK: 
Type the following:  
> quit 

Restart the program and type 
> pwd 

ans = C:\Program Files\Octave 
 

> edit 

The result will be that a new window will appear (entitled, SciTE). In this 
window, enter just the one line to change to your new Home address directory you 
want to use, such as: 
cd "C:/Documents and Settings/User/My Documents/apm113" 

 
In this SciTE-editing window, in the Top bar, go to: File, then Save As (to save in 
the folder), C:\Program Files\Octave, (or \GNU Octave), (depending on the 
program version).  
 
Save the file as Test1.m (or whatever name you choose). Now type in Octave: 
> Test1 

Test to see where you are: 
> pwd 

ans = C:\Documents and Settings\User\My Documents\apm113 
 
 
This illustrates a very important point: namely, that files can be created to execute 
a sequence of commands; through making “m-files”. Read further to see the usage 
of m-files. 
 
1.2.2 Using	
  m	
  files	
  

Suppose that a file in what is currently the Home folder has an extension, “.m” (in 
other words, the file name is xx.m), and that the file contains Plain Text 
comprising a sequence of program commands. Then typing the file name without 
the extension (for Example xx) at the input prompt (>) will cause the sequence of 
Octave commands to be executed. 
 
Use only Plain Text in the .m-file. So, use a plain text editor such as Notepad, or 
SciTE, or Wordpad (where the saved file type  is “Text Document” - not as .rtf). 
(IMORTANT: Do not use a word processor, such as Word, as the file it produces 
keeps the formatting commands even though you cannot see it.) 
 
Now, let us start using the program. Use the problem of two simultaneous 
equations in the next section as an example. 
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Activity	
  1-­‐8	
  Save	
  m-­‐files	
  
Open	
  a	
  SciTE-­‐window	
  (by	
  entering	
  “edit”	
  at	
  the	
  Octave	
  input	
  prompt).	
  	
  
Enter	
  the	
  code	
  for	
  the	
  problem	
  to	
  be	
  solved	
  (below).	
  	
  
Save	
  the	
  resulting	
  file	
  in	
  the	
  current	
  Home	
  folder,	
  as	
  your	
  first	
  example,	
  ex1.m.	
  	
  
	
  
The	
  content	
  of	
  the	
  file	
  ex1.m	
  should	
  be:	
  
A=[1	
  2;3	
  4]	
  
b=[5;6]	
  
x=A\b	
  
 
FEEDBACK: 
Do the following INPUT in the program. 
 
>edit 

 
In the SciTE-window enter: 

A=[1 2;3 4] 
b=[5;6] 
x=A\b 

Save the file with the name ex1.m. In Octave, type: 
>ex1 

 
When you enter ex1 at the input prompt, you save the file in, 

C:\Documents and Settings\User\My Documents\apm113 

The file name is called ex1.m. 
 
Ensure your results or OUPUT is the same as below. 
 
> ex1 

A = 
   1   2 
   3   4 
 
b = 
   5 
   6 
 
ans = 
  -4.0000 
   4.5000 

 
 
Congratulations, now you know how to put information into the Octave program, 
so let’s look at the next step. 
 

1.3 Output	
  from	
  an	
  Octave	
  session	
  
 
Having used a program to do some calculations, you will probably want to keep a 
record of the output in a file. There are several ways to do this such as using copy 
to Clipboard or diary. 
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1.3.1 Copy	
  and	
  paste	
  to	
  Clipboard	
  

Click on the Octave icon in the top left corner of the Octave command window, 
for Menu to appear, click on Edit, then on Mark. Once you have done so, you 
can then highlight text in the Octave window in the usual way, and you copy it 
into the Clipboard by pressing the Enter key. Paste the copied text wherever you 
like.  
 
For graphs, once you have produced a graph on the screen, click Clipboard icon 
on the far left in the Menu bar at the top of the graph window, and this will copy 
the plot to Clipboard. You can then paste the graph somewhere else, such as into 
a Word document. 
 
Text in the Octave window is displayed using the Courier font. If you copy 
output into a Word document, and want to maintain the look of the original 
Octave session, then you should also use the Courier font in the Word document 
(as we have done in this guide). 
 
1.3.2 Using	
  a	
  Diary	
  file	
  

From when you create a diary file, everything that appears in the Octave 
command window (both input and output) will be copied to the diary, keeping a 
record of your work.  
 

Activity	
  1-­‐9	
  
At	
  the	
  Octave	
  input	
  prompt,	
  enter	
  the	
  command	
  “diary	
  on”.	
  
 
> diary on 

This has the effect of creating a file named diary in the Home folder. You can stop 
this at any stage by using the command 
> diary off 

 
You can then open the file diary with a text editor, such as the SciTE-editor, 
Notepad or Wordpad, and copy and paste parts of it to another document; but note 
that you must switch diary off, or end your Octave session, before you can edit it. 
Note also that, if the file diary already exists, the command “diary on” causes 
the new session to be appended to the end of the file, that is, you do not lose what 
is already there. 
 

1.4 Using	
  the	
  Octave	
  “Help”	
  facility	
  
 
The Octave system has a number of different facilities that you can use to get 
help. The simplest way is to use the command “help” but this only works if you 
know the exact name of the command about which you need more information, 
like “fplot”.  
 
You can get information that is much more detailed by using the command 
“doc”. Scroll around in this mode using the arrow keys.  
 
For	
  example,	
  

> help fplot 
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-- Function File:  fplot (FN, LIMITS) 
 -- Function File:  fplot (FN, LIMITS, TOL) 
 -- Function File:  fplot (FN, LIMITS, N) 
 -- Function File:  fplot (..., FMT) 
     Plot a function FN, within the defined limits.  FN an 
be either a 
     string, a function handle or an inline function.  The 
limits of 
     the plot are given by LIMITS of the form `[XLO, XHI]' 
or `[XLO, 
     XHI, YLO, YHI]'. TOL is the default tolerance to use 
for the 
     plot, and if TOL is an integer it is assumed that it 
defines the 
     number points to use in the plot.  The FMT argument is 
passed to 
     the plot command. 
             fplot ("cos", [0, 2*pi]) 
             fplot ("[cos(x), sin(x)]", [0, 2*pi]) 
     See also: plot. 
C:\Program Files\Octave\share\octave\3.0.0\m\plot\fplot.m 
Additional help for built-in functions and operators is 
available in the on-line version of the manual.  Use the 
command 
`doc <topic>' to search the manual index. 
Help and information about Octave is also available on the 
WWW 
at http://www.octave.org and via the help@octave.org 
mailing list. 
-- less (100%) (f)orward, (b)ack, (q)uit 

 
You exit the help mode by entering  
q 

 

Activity	
  1-­‐10	
  Use	
  Help	
  
Go	
  into	
  the	
  Help	
  function.	
  Scroll	
  around.	
  Exit	
  it.	
  
 
There is a complete user manual available in both html- and pdf-formats, located 
at: 
C:\Program Files\Octave\doc\HTML\liboctave\index.html 
C:\Program Files\Octave\doc\HTML\interpreter\index.html 
C:\Program Files\Octave\doc\PDF\octave.pdf 
 
The next activity focusses on getting you to use the Help function of the extensive 
program manual more readily, and to transfer knowledge into your everyday use 
of the program. 
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Activity	
  1-­‐11	
  Write	
  .m-­‐file	
  
Write	
  a	
  .m-­‐file	
  that	
  uses	
  Octave	
  to	
  solve	
  the	
  following	
  problems.	
  
	
  
1.	
   Plot	
  a	
  graph	
  of	
  cos(x)	
  in	
  the	
  range	
  -­‐1<x<5	
  
	
  
2.	
  	
   Evaluate	
  9.2-­‐0.5	
  
	
  

3.	
   Evaluate 	
  

	
  
4.	
   Solve	
  the	
  simultaneous	
  equations	
  
	
   2	
  x1	
  +	
  3	
  x2	
  =	
  10	
  
	
   4	
  x1	
  +	
  5	
  x2	
  =	
  8	
  
	
  
5.	
   Now,	
  produce	
  a	
  Word	
  document	
  that	
  contains	
  the	
  following:	
  	
  

1)	
  The	
  content	
  of	
  the	
  .m	
  file;	
  	
  
2)	
  The	
  output	
  obtained	
  from	
  running	
  the	
  .m	
  file;	
  	
  
3)	
  The	
  graph.	
  

	
  
6.	
  	
   Normally	
  Octave	
  outputs	
  numbers	
  with	
  5	
  significant	
  figures.	
  	
  	
  

Use	
  the	
  Help	
  facility	
  with	
  the	
  keyword	
  format	
  to:	
  	
  
1)	
  find	
  how	
  to	
  get	
  output	
  with	
  15	
  significant	
  figures.	
  	
  	
  

2)	
  Then	
  evaluate 	
  to	
  15	
  significant	
  figures.	
  
 
This skill is required throughout this module, so feel free to refer to the Help-
function often for guidance. Keep evidence of your work (copy and paste your 
efforts to your workbook or make a printout from your diary file). 
 

1.5 In	
  conclusion	
  
 
Well done you now have the program, Octave, working. You have used it to 
produce graphs and other simple calculations.  
 
Now you are ready to start with the real work of the module. The next time you 
use the program you will find it becomes much easier, and easier. 
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Study	
  Unit	
  2: Introduction	
  to	
  
programming	
  

TIME PERIOD: 30 hours approximately RESOURCES: Octave/MATLAB programs	
  
 

LEARNING	
  OUTCOMES 
At the end of this Study Unit, you should be able to use the computer software 
(such as Octave) to: 

• Construct scalar, vector and matrix variables 
• Manipulate variables to calculate new scalar, vector and matrix variables 
• Use loops to repeat calculations 
• Uses conditional tests, like “if” statements 
• Construct user-defined functions 

 
2.1 Introduction	
  

 
This unit is a summary of the features of the Octave program that you will use 
throughout the module. If you would like to see more detail, you will find it in the 
extensive Octave manual. 
 
If you are experienced in computer programming, you should not be tempted to 
skip this Study Unit. While you, as an experienced programmer, could go through 
this Study Unit quite quickly, you should not skip it altogether because there are 
important syntactical differences between Octave and other programming 
languages. 
 

2.2 Scalar	
  variables	
  
 
In this section we deal with creating and naming variables. 
 
2.2.1 Creating	
  variables	
  

A variable is created simply by assigning a value to it at the command line or in a 
program. 
 
For	
  example,	
  
 
> a=17 

a =  17 
This has the effect of creating a new variable “a” with value 17.  
 
Alternatively, you can use the variable a also in another formula to test for “b”, 
such as: 
> b=a^2 

b =  289 
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2.2.2 Variable	
  names	
  

Names of variables must start with a letter, and may include letters, numbers, as 
well as the underscore character ( _ ). Names are case sensitive; therefore, A1 and 
a1 will represent different variables. It is important to note that assigning a 
variable name supersedes a meaning that may already exist. Thus, although it is 
permissible to define log=6.1 it would not be useful to do so because then you 
could no longer use the logarithmic function.  
 
For	
  example,	
  a	
  USELESS	
  variable	
  would	
  be,	
  	
  
 
> log=6.1 

log =  6.1000 
 
 
The following useful variables are pre-defined in Octave as mathematical 
constants: 

• e 2.7183 
• i  
• j  
• pi 3.1416 

 
You can see the “currently defined variable” names by entering the command 
“who”. Look at the last part in the program OUTPUT, the “local user variables”, 
to see the variables you have defined yourself. 
 

Activity	
  2-­‐1	
  Check	
  and	
  remove	
  variables	
  
Determine	
  the	
  defined	
  variable	
  names	
  in	
  your	
  program,	
  both	
  current	
  and	
  local	
  
user	
  variables.	
  Remove	
  the	
  definitions	
  thereafter.	
  
 
FEEDBACK: 
Type in “who”. 
> who 

*** dynamically linked functions: 
__COM__       builtin: find  dispatch      getpwuid 
 
*** currently compiled functions: 
__default_graphics__  index                 rindex 
edit                  ispc                  strcat 
fileparts             isunix                strrep 
findstr               lower 
fullfile              pkg 
 
*** local user variables: 
__nargin__  a           b           log 

 
You can remove all these definitions, either by quitting and starting a new Octave 
session, or, by means of the command “clear”. 
> clear 

It is a good idea to clear the workspace after finishing one problem and before 
starting another one, so as to avoid errors due to a variable having an unintended 
value. 
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2.3 Matrices	
  and	
  vectors	
  

 
In this section, we deal with variables with more structure. 
 
2.3.1 Construction	
  of	
  matrices	
  and	
  vectors	
  

So far, we have defined variables that comprise just a single value, like scalars. 
However, the power of a programming language (like Octave or Matlab) is that it 
is easy to introduce and manipulate indexed data structures, such as vectors and 
matrices.  
 
First, we need to construct vectors and matrices so, work through the following 
examples. 
 

Activity	
  2-­‐2	
  Construct	
  matrices	
  and	
  vectors	
  in	
  the	
  program	
  
Explicitly	
  construct:	
  	
  
1)	
  a	
  row	
  vector	
  with	
  3.3,	
  1.7,	
  2.1	
  
2)	
  a	
  column	
  vector	
  with	
  3.3,	
  1.7,	
  2.1	
  
3)	
  a	
  matrix	
  ,	
  where	
  the	
  entries	
  are	
  known	
  explicitly	
  	
  
4)	
  a	
  row	
  vector,	
  when	
  the	
  values	
  change	
  by	
  equal	
  increments	
  
5)	
  a	
  row	
  vector,	
  when	
  the	
  increment	
  is	
  1	
  
6)	
  a	
  column	
  vector	
  when	
  the	
  values	
  change	
  by	
  equal	
  increments	
  
7)	
  A	
  matrix,	
  where	
  some	
  entries	
  change	
  by	
  equal	
  increments	
  
8)	
  A	
  matrix,	
  by	
  combining	
  an	
  existing	
  matrix	
  with	
  a	
  column	
  vector	
  
9)	
  A	
  matrix	
  by	
  combining	
  an	
  existing	
  matrix	
  with	
  a	
  row	
  vector	
  
10)	
  Transposition	
  of	
  a	
  matrix	
  
	
  
 
FEEDBACK: 
Row vectors: 
> v1=[3.3 1.7 2.1] 

v1 = 
   3.3000   1.7000   2.1000 
 

Column vectors: 
> u1=[3.3; 1.7; 2.1] 

u1 = 
   3.3000 
   1.7000 
   2.1000 

A matrix: 
> A1=[1 2 3;4 5 6;7 8 9] 

A1 = 
   1   2   3 
   4   5   6 
   7   8   9 

 
A row vector when the increment is 1: 
> v3=1:4 

v3 = 
   1.00000   2.00000   3.00000   4.00000 
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A row vector when the values change by equal increments (that are not 1): 
> v2=1:-0.2:0.4 

v2 = 
   1.00000   0.80000   0.60000   0.40000 

 
A column vector when the values change by equal increments: 
> u2=[1:-0.2:0.4]' 

u2 = 
   1.00000 
   0.80000 
   0.60000 
   0.40000 

 
A matrix, where some entries change by equal increments: 
> A2=[1:4;5:8;9.5:2:15.5;1 0 0 0] 

A2 = 
    1.00000    2.00000    3.00000    4.00000 
    5.00000    6.00000    7.00000    8.00000 
    9.50000   11.50000   13.50000   15.50000 
.00000    0.00000    0.00000 

 
A matrix, by combining an existing matrix with a column vector: 
> A3=[A2 u2] 

A3 = 
    1.00000    2.00000    3.00000    4.00000    1.00000 
    5.00000    6.00000    7.00000    8.00000    0.80000 
    9.50000   11.50000   13.50000   15.50000    0.60000 
    1.00000    0.00000    0.00000    0.00000    0.40000 

 
A matrix, by combining an existing matrix with a row vector: 
> A4=[A2;v3] 

A4 = 
    1.00000    2.00000    3.00000    4.00000 
    5.00000    6.00000    7.00000    8.00000 
    9.50000   11.50000   13.50000   15.50000 
    1.00000    0.00000    0.00000    0.00000 
    1.00000    0.80000    0.60000    0.40000 

 
Transposition of a matrix: 
> A5=A4' 

A5 = 
    1.00000    5.00000    9.50000    1.00000    1.00000 
    2.00000    6.00000   11.50000    0.00000    0.80000 
    3.00000    7.00000   13.50000    0.00000    0.60000 
    4.00000    8.00000   15.50000    0.00000    0.40000 
 

 
2.3.2 General	
  rules	
  for	
  construction	
  of	
  vectors	
  and	
  matrices	
  

The above illustrates a number of general rules. NOTE: Refer to this when you 
are doing examples that are more complicated. 
 

user4
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We use the following rules for the construction of vectors and matrices: 
 

• Vectors and matrices are indicated by square brackets [ ] 
• The elements of a row are separated by spaces 
• The rows are separated by semi-colons (;) 
• Using the colon (:) notation, the first entry in a row is the number before 

the (:), the last entry is the last number in the definition, and the entry 
between the two (:) is the increment. If the middle number is omitted, then 
the increment is 1. 

 
2.3.3 Accessing	
  elements	
  of	
  a	
  vector	
  or	
  matrix	
  

We can access the value of an element of a matrix or vector by the notation --- 
• A(row index, column index) for a matrix 
• v(index) or v(1,index) for a row vector 
• u(index) or u(index,1) for a column vector 

 
We illustrate this by some activities, with u2, v3 and A2 (defined as above). 
 

Activity	
  2-­‐3	
  
Find	
  the	
  values	
  of	
  the	
  following	
  elements	
  of	
  a	
  vector	
  or	
  matrix:	
  	
  
1)	
  In	
  a	
  row	
  vector,	
  v3(2)	
  
2)	
  in	
  a	
  row	
  vector,	
  v3(3)	
  
3)	
  In	
  a	
  column	
  vector,	
  u2(4)	
  
4)	
  in	
  a	
  column	
  vector,	
  u2(3)	
  
5)	
  in	
  a	
  matrix,	
  A2(2,3)	
  
6)	
  in	
  a	
  matrix,	
  A2(3,2)	
  
 
FEEDBACK: 
For a row vector: 
> v3(2) 

ans =  2 
 
> v3(1,3) 

ans =  3 
Note v3(1,3)=v3(3) 
 
For a column vector: 
> u2(4) 

ans =  0.40000 
 

> u2(3,1) 
ans =  0.60000 

Note that u2(3,1)=u2(3) 
 
For a matrix: 
> A2(2,3) 

ans =  7 
 
> A2(3,2) 

ans =  11.500 
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2.3.4 Accessing	
  rows	
  and	
  columns	
  of	
  a	
  matrix	
  

We can access the rows and columns of a matrix by the notation 
• A(row index, :) for a row of a matrix 
• A(:,column index) for a column of a matrix 

 

Activity	
  2-­‐4	
  
Access	
  the	
  rows	
  and	
  columns	
  of	
  a	
  matrix,	
  with	
  A2	
  defined	
  as	
  above,	
  using	
  the	
  
notation	
  as	
  above.	
  
 
FEEDBACK: 
 
> A2(2,:) 

ans = 
   5   6   7   8 

 
> A2(:,3) 

ans = 
    3.00000 
    7.00000 
   13.50000 
    0.00000 

 
2.3.5 Scalars	
  as	
  vectors	
  and	
  matrices	
  

We have already seen that Octave treats a row vector as being a matrix with a 
single row, and a column vector as being a matrix with one column (because 
v(1,index) and u(index,1) are valid statements).  
 
In the same way, Octave treats a scalar quantity as being a matrix with only the 
(1,1) element, and this is equivalent to it being a vector with just one component. 
Therefore (in Octave), there is essentially no difference between scalars, vectors 
and matrices. 
 

Activity	
  2-­‐5	
  
Clear	
  your	
  previous	
  work.	
  	
  
Check	
  that	
  a;	
  a(1);	
  a(1,1)	
  all	
  have	
  the	
  same	
  value	
  
 
FEEDBACK: 
> clear 
 
> a=7.342 

a =  7.3420 
 
> a 

ans =  7.3420 
 
> a(1) 

ans =  7.3420 
 
> a(1,1) 

ans =  7.3420 
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2.3.6 Special	
  matrices	
  

A number of special matrices are pre-defined in Octave, and here we give 4 cases 
that will be useful to you later. 
 

a) CASE	
  1	
  
The statement zeros(m,n) defines a matrix with m rows and n columns whose 
entries are all 0. 
 
For	
  example,	
  
> zeros(4,6) 

ans = 
 

   0   0   0   0   0   0 
   0   0   0   0   0   0 
   0   0   0   0   0   0 
   0   0   0   0   0   0 
 

b) CASE	
  2	
  
The statement ones(m,n) defines a matrix with m rows and n columns whose 
entries are all 1. 
For	
  example,	
  
> ones(3,2) 

ans = 
 
   1   1 
   1   1 
   1   1 

 
c) CASE	
  3	
  

The statement rand(m,n) defines a matrix with m rows and n columns whose 
entries are random numbers in the range 0 to 1. 
For	
  example,	
  
> rand(4,5) 

ans = 
 
   0.6785508   0.1797487   0.1222308   0.5802859   0.0345841 
   0.9743568   0.2243425   0.1427010   0.3802661   0.5009699 
   0.6864207   0.1635793   0.4904312   0.2338945   0.6085457 
   0.5685229   0.1613623   0.9038765   0.8830253   0.0088788  
 

d) CASE	
  4	
  
The statement eye(n) defines the square identity matrix with n rows and n 
columns. 
For	
  example,	
  
> eye(5) 
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ans = 
 
   1   0   0   0   0 
   0   1   0   0   0 
   0   0   1   0   0 
   0   0   0   1   0 
   0   0   0   0   1 

 
2.4 Manipulation	
  of	
  matrices	
  

 
We can produce new vectors and matrices from those that we have already 
constructed. We have already previously seen the following: 

• The transpose operator ('), for example, in A5=A4' 
• Adding a row or a column to a matrix, for example, in [A2 u2],or 

[A2;v3].  
 
It is also straightforward to get the inverse and delete a row and column from 
matrices. 
 
a) Construct	
  the	
  inverse	
  of	
  a	
  square	
  matrix	
  using	
  the	
  operator	
  inv 
 
For	
  example,	
  
> A6=rand(5,5) 

A6 = 
   0.228451   0.744584   0.311120   0.412804   0.415285 
   0.752986   0.990980   0.539382   0.236439   0.684900 
   0.079324   0.587490   0.386354   0.543607   0.880370 
   0.052009   0.885506   0.522269   0.963522   0.262930 
   0.392542   0.796100   0.162770   0.461631   0.082264 
 

> A7=inv(A6) 
A7 = 
  -7.124120   1.774712   1.615726   0.305008   2.922358 
   7.035698  -1.304923  -1.866377  -1.131128  -1.064458 
   0.157018   2.020572  -2.009178   2.431010  -3.883385 
  -6.063413   0.067611   2.244590   1.005264   2.812304 
  -0.378068  -0.217589   1.731535  -0.960240   0.414733 

 
b) Delete	
  a	
  row	
  or	
  a	
  column	
  from	
  a	
  matrix:	
   

 
For	
  example,	
  where	
  you	
  delete	
  the	
  2nd	
  row	
  of	
  A6	
  and	
  the	
  3rd	
  column	
  of	
  A7.	
  
> A6(2,:)=[] 

A6 = 
   0.228451   0.744584   0.311120   0.412804   0.415285 
   0.079324   0.587490   0.386354   0.543607   0.880370 
   0.052009   0.885506   0.522269   0.963522   0.262930 
   0.392542   0.796100   0.162770   0.461631   0.082264 
 

> A7(:,3)=[] 
A7 = 
  -7.124120   1.774712   0.305008   2.922358 
   7.035698  -1.304923  -1.131128  -1.064458 
   0.157018   2.020572   2.431010  -3.883385 
  -6.063413   0.067611   1.005264   2.812304 
  -0.378068  -0.217589  -0.960240   0.414733 
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This enables you to construct any form of matrix or vector that you want or need. 
Now let’s go further to see what else is important. 
 
2.4.1 Calculations	
  with	
  vectors	
  and	
  matrices	
  using	
  matrix	
  algebra	
  

Octave as program recognizes two different meanings that can be given to 
arithmetic operations on vectors and matrices.  
 
2.4.2 Matrix	
  algebra	
  

In the first case, the operators have the same meaning as used in matrix algebra.  
 

a) Case	
  1	
  
Addition and subtraction, A + B, and A – B, are defined whenever A and B are 
matrices of the same size, namely, they each have the same number of rows and 
columns. 
 

Activity	
  2-­‐6	
  Calculate	
  the	
  matrices	
  with	
  +	
  and	
  -­‐	
  
Calculate	
  the	
  matrices:	
  	
   A8=rand(2,3);	
  	
  	
   B1=ones(2,3);	
  	
  	
  	
  	
  	
   A8+B1	
  
 

FEEDBACK: 
> A8=rand(2,3) 

A8 = 
   0.35475   0.95425   0.70169 
   0.18010   0.15871   0.60431 
 

> B1=ones(2,3) 
B1 = 
   1   1   1 
   1   1   1 
 

> A8+B1 
ans = 
   1.3548   1.9542   1.7017 
   1.1801 1.1587   1.6043 

 
b) Case	
  2	
  

Multiplication, A B, is defined whenever A and B are matrices with the number of 
columns in A equal to the number of rows in B, or, if either A or B is a scalar. 
 

Activity	
  2-­‐7	
  Calculate	
  the	
  matrices	
  with	
  x	
  
Calculate	
  the	
  matrices:	
  	
   A9=rand(2,3);	
  	
  	
   B2=rand(3,4);	
  	
  	
   A9*B2	
  
 
FEEDBACK: 
> A9=rand(2,3) 

A9 = 
 
   0.795470   0.401763   0.840127 
   0.918606   0.521561   0.087270 
 

> B2=rand(3,4) 
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B2 = 
 
   0.59073   0.14314   0.74667   0.34705 
   0.75876   0.39622   0.19848   0.20565 
   0.57285   0.47794   0.56639   0.50184 
 

> A9*B2 
ans = 
 
   1.25602   0.67458   1.14954   0.78030 
   0.98839   0.37985   0.83885   0.46986 
 

> 2.3*A9 
ans = 
 
   1.82958   0.92406   1.93229 
   2.11279   1.19959   0.20072 

 

c) Case	
  3	
  
Raising to a power, An, is defined whenever A is a square matrix, and it means  
A x A x A ... (n times). 

 

Activity	
  2-­‐8	
  Calculate	
  the	
  matrices	
  with	
  a	
  An	
  
Calculate	
  the	
  matrices:	
  	
   A10=rand(3,3);	
  	
   A10^2;	
  	
   A10^5	
  
 
> A10=rand(3,3) 

A10 = 
 
   0.85898   0.12942   0.92354 
   0.73955   0.88709   0.30950 
   0.16907   0.29217   0.70776 
 

> A10^2 
ans = 
 
   0.98971   0.49582   1.48702 
   1.34363   0.97307   1.17662 
   0.48096   0.48785   0.74750 
 

> A10^5 
ans = 
 
   3.8196   2.7376   4.9474 
   5.0490   3.5300   6.4821 
   2.3903   1.6891   3.0186 
 

d) Case	
  4	
  
Division is not straightforward in matrix algebra. Here we will introduce the 
Octave operators \ and / within the context of solving a system of simultaneous 
equations (In fact, the operators \ and / can be used more generally, but we will 
not discuss that).  
 
For	
  example,	
  
Suppose that we have n by n square matrix A, and column vectors x and b both of 
length n, and that we want to solve for x in 

A x = b. 



APM1513/1 

 
27 

Then, 
x = A-1 b. 

 
The Octave notation for the above is 
x=A\b. 
 

Of course, we could also write in Octave x=inv(A)*b, but this is less efficient so 
the \ operator is preferred. 

 
For	
  example,	
  

Suppose instead that we want to solve 
y A = c 

with y and c  now row vectors of length n. Then 
y = c A-1. 

The Octave notation for the above is 
y=c/A 

Of course, we could also write in Octave y=c*inv(A), but again this is less 
efficient.  

 

Activity	
  2-­‐9	
  Calculate	
  the	
  matrices	
  with	
  division	
  
Calculate	
  the	
  matrices:	
  	
  	
   A11=rand(3,3);	
  	
   b=rand(3,1);	
  	
   c=rand(1,3)	
  

x=A11\b;	
   	
   inv(A11)*b;	
  	
   y=c/A11;	
  
c*inv(A11)	
  

 
> A11=rand(3,3) 

A11 = 
   0.088404   0.120302   0.727375 
   0.940880   0.350956   0.817928 
   0.373165   0.451789   0.714572 
 

> b=rand(3,1) 
b = 
   0.093734 
   0.363911 
   0.892151 
 

> c=rand(1,3) 
c = 
   0.87188   0.98920   0.42356 
 

> x=A11\b 
x = 
  -0.39420 
   2.73657 
  -0.27583 
 

> inv(A11)*b 
ans = 
  -0.39420 
   2.73657 
  -0.27583 
 

> y=c/A11 
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y = 
  -2.147898   0.048056   2.724118 
 

> c*inv(A11) 
ans = 
  -2.147898   0.048056   2.724118 
 

 
2.4.3 Element-­by-­element	
  calculations	
  with	
  arrays	
  (vectors	
  and	
  matrices)	
  	
  

The second meaning that Octave recognizes for arithmetic operations on vectors 
and matrices is to do the calculations on an element-by-element basis. Actually, in 
this case, the objects with which we work are not vectors or matrices (because 
they do not satisfy the required rules), so it is better to call them arrays, and talk 
about element-by-element operations on the arrays.  
 
For	
  example,	
  
Suppose that we have a 1 x n array v and we want to construct a new array u, each 
element of which is the square of the corresponding element in v. In mathematical 
notation, what we want is 

uk = vk
2, for each value of the index k.  

 
In Octave, if we write u=v^2 we will get an error message, so instead we use the 
operator (.^) to indicate that we are doing a calculation element-by-element, by 
writing u=v.^2. 

 

Activity	
  2-­‐10	
  Calculate	
  the	
  matrices	
  of	
  arrays	
  
Calculate	
  the	
  matrices:	
  	
  v=rand(1,4);	
  u=v^2;	
  u=v.^2	
  

 
> v=rand(1,4) 

v = 
   0.295962   0.194619   0.078277   0.839960 
 

> u=v^2 
error: for A^b, A must be square 
error: evaluating binary operator `^' near line 53, column 4 
error: evaluating assignment expression near line 53, column 
2 
 

> u=v.^2 
u = 
   0.0875937   0.0378766   0.0061273   0.7055324 

  

NOTE: If you are doing matrix calculations there will be NO .^, but in element-
by-element arrays calculations you will need the full stop (.). 
 

Here are some more examples of valid element-by-element calculations on arrays. 
 

Activity	
  2-­‐11	
  Calculate	
  more	
  arrays	
  
Calculate	
  the	
  arrays:	
  	
  A12=rand(4,3);	
  B3=rand(4,3);	
  A12.*B3.*1.8;	
  A12.^B3	
  

 
> A12=rand(4,3) 
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A12 = 
   0.95540   0.56061   0.65058 
   0.54163   0.53082   0.11537 
   0.14583   0.27776   0.53204 
   0.22211   0.63209   0.37170 
 

> B3=rand(4,3) 
B3 = 
   0.787186   0.138921   0.080241 
   0.390426   0.846420   0.913880 
   0.561953   0.374361   0.883199 
   0.039100   0.810616   0.554635 
 

> A12.*B3.*1.8 
ans = 
   1.353745   0.140185   0.093965 
   0.380638   0.808729   0.189779 
   0.147506   0.187165   0.845815 
   0.015632   0.922290   0.371081 
 

> A12.^B3 
ans = 
   0.96472   0.92275   0.96609 
   0.78710   0.58504   0.13895 
   0.33893   0.61906   0.57274 
   0.94287   0.68946   0.57758 
 

> A12./B3./3 
ans = 
   0.404565   1.345152   2.702612 
   0.462424   0.209044   0.042080 
   0.086500   0.247316   0.200800 
   1.893515   0.259922   0.223388 

 
 

From the above, we see that element-by-element calculations obey the following 
rules: 

• The operators are “.+”,  “.-“, “.*”, “./”, “.^”. 
• Each array in the expression must have the same size, i.e. all arrays must 

have the same number of rows m as well as the same number of columns n 
• One of the operands for .* ./ .^ may be a scalar. 

 

Activity	
  2-­‐12	
  Construct	
  vectors	
  
Set	
  up	
  a	
  row	
  vector	
  b	
  with	
  elements	
  1,	
  2,	
  3,	
  4,	
  5.	
  Use	
  array	
  operations	
  on	
  b	
  to	
  set	
  
up	
  the	
  following	
  vectors,	
  each	
  with	
  5	
  elements:	
  
a)	
  2,	
  4,	
  6,	
  8,	
  10	
  
b)	
  ½,	
  1,	
  3/2,	
  2,	
  5/2	
  
c)	
  1,	
  ½,	
  1/3,	
  ¼,	
  1/5	
  
d)	
  1,	
  4,	
  9,	
  16,	
  25	
  
 
FEEDBACK 
Were you able to construct all the above vectors?  
Here is a solution to c):  
> 1./b 
 
 



 
 

 30 

2.4.4 Extraction	
  of	
  some	
  commonly-­needed	
  properties	
  of	
  matrices	
  and	
  vectors	
  

The operators size, length and sum, give useful information about matrices 
and vectors. 
 

• Use size(matrix_name)  
This gives the number of rows, followed by the number of columns, in the matrix.  

 
For	
  example	
  

  
> A13=ones(4,3) 

A13 = 
   1   1   1 
   1   1   1 
   1   1   1 
   1   1   1 
 

> size(A13) 
ans = 
   4   3 

 

• Use length(vector_name)  
This is used to find the number of elements in a vector. Formally, it returns the 
greater of the number of rows or the number of columns in an array, but it is 
better practice to apply it only to vectors.  
 

For	
  example	
  
  

> v=1:5 
v = 
  1  2  3  4  5 
 

> length(v) 
ans =  5 
 

• Use sum(matrix_name)  
This adds up the elements in each column of a matrix - with the exception of a 
row vector in which case it adds up the elements in the row.  
 

For	
  example	
  
  

> sum(v) 
ans =  15 
 

> sum(A13) 
ans = 
   4   4   4 

 
 

2.5 Miscellaneous	
  features	
  of	
  Octave	
  
 
If you look at the Octave manual, you will see that there are many features and 
commands available. Here we describe just a few of them that you should find 
particularly useful. 
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2.5.1 Suppression	
  of	
  output	
  with	
  the	
  semi-­colon	
  (;)	
  terminator	
  

The normal result of executing a statement in Octave – both in a .m file and in the 
command window – is that the answer is displayed in the command window. Of 
course, you always want to see the final answer of a calculation, but sometimes it 
is neater to suppress the output of intermediate steps. This is done using the 
semicolon statement terminator.  
 
For	
  example	
  
 
> A14=ones(2,3); 
> A14 

A14 = 
   1   1   1 
   1   1   1 

 
2.5.2 Multiple	
  line	
  statements	
  with”	
  ...”	
  

Sometimes an Octave statement can be quite long, and it would be convenient to 
split it over several lines. This is achieved by means of ... (as shown in the 
following example). The “...” construct can be used in both the command window 
as well as in a .m file. 
 
For	
  example	
  
 
> A15=[1 2 3 4 5 6 7 8 9;12 1 3 14 15 16 17 18 19;... 
> 21 22 23 24 25 26 27 28 29] 

A15 = 
    1    2    3    4    5    6    7    8    9 
   12    1    3   14   15   16   17   18   19 
   21   22   23   24   25   26   27   28   29 

 
 
2.5.3 Several	
  statements	
  on	
  the	
  same	
  line	
  

It is permissible to write several statements on the same line, separating the 
statements with either a semi-colon (in which case the output is suppressed), or 
with a comma (in which case the output is shown).  
 
For	
  example,	
  
 
> c1=2,c2=c1^2;c3=c2^2 

c1 =  2 
c3 =  16 

 
 
2.5.4 The	
  display	
  command	
  “disp”	
  

When Octave outputs the value of a variable, it appears in the form variable (=) 
value.  
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For	
  example	
  
 
> c1=2 
c1 = 2 

Sometimes, you want to suppress the "variable =" part, for example when 
producing a Table. You can also use the disp command to place text into the 
Octave output.  
 

For	
  example	
  
 
> disp(c1) 
 2 

 
> disp("Place text here ...") 

Place text here ... 
 
 
2.5.5 Input	
  	
  statement	
  

The input statement causes something to be displayed on the screen in the Octave 
window, and then the system waits for the user to type in a statement in that 
window. Usually, this facility is used within a .m-file and asks the user to specify 
a parameter needed in the calculation.  
 

Activity	
  2-­‐13	
  
Write	
  a	
  program	
  that	
  asks	
  the	
  user	
  to	
  enter	
  a	
  square	
  matrix	
  A,	
  and	
  then	
  to	
  enter	
  
a	
  column	
  vector	
  b,	
  and	
  then	
  to	
  request	
  a	
  result	
  using	
  Return,	
  to	
  find	
  or	
  solve	
  the	
  
system	
  of	
  equations	
  Ax=b.	
  
 
FEEDBACK:  
File ex2.m 
input("Enter a square matrix A  "); 
input("Enter a column vector b  "); 
input("Press Enter to find the result of solving Ax=b"); 
x=A\b 
 

Octave window 
> ex2 

Enter a square matrix A, A=[1 2;3 4] 
Enter a column vector b, b=[5;6] 
 
Press Enter to find the result of solving Ax=b 
x = 
  -4.0000 
   4.5000 

 
 
2.5.6 Complex	
  numbers	
  

Handling complex numbers in Octave is easy! As was said earlier as part of the 
built-in functions,  is represented by i or j.  
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Find	
  the	
   	
  
 
The variable z with real part 2 and imaginary part 3 is created by the statement, 
> z=2+3*i. 

All the arithmetic operators and most functions work with complex numbers, for 
example, 
> sqrt(z) 

ans =  1.67415 + 0.89598i 
 
There are some functions that are specific to complex numbers, and if applied to a 
real number, they simply treat it as a complex number with zero imaginary part.  
 
For	
  example	
  
 
> real(3+2*i) 
ans =  3 
> imag(3+2*i) 
ans =  2 
> abs(3+2*i) 
ans =  3.6056 
> conj(3+2*i) 
ans =  3 - 2i 
 
 

If you are working with complex numbers, be careful about the following: 
• DO NOT USE by i or j as variables anywhere in your program – the 

effect would be to change the default meaning from   
• For a matrix with complex elements, the transpose operator (') means to 

take the complex conjugate transpose, that means, rows and columns are 
interchanged and also the signs of the imaginary parts are changed. 

 
 
2.5.7 Operator	
  precedence	
  rules	
  

The issue here is how the program assigns meaning to something like x=a*b+c  
 

Activity	
  2-­‐14	
  
Will	
  Octave	
  treat	
  this	
  as	
  x=(a*b)+c	
  	
  or	
  as	
  x=a*(b+c)?	
  	
  
 
FEEDBACK: 
The answer is x=(a*b)+c, because the operator * has precedence over the 
operator  +.  
 
The operator precedence rules in Octave, in order of increasing precedence, are:  
 
+ - * / \ .\ .* ./ ^ .^ 
(For more full details, go to the Octave manual, under Expressions, Arithmetic 
Operators, Section 8.8 Operator Precedence.)  
 
However, having said this, it is much better practice to write code that makes 
extensive use of parentheses () so as to avoid errors due to Octave interpreting 
your code differently to what you intended. Thus, for example, the entries in the 
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left and right columns below are equivalent, but it is better to write code with 
parentheses as in the right column. 
 
For	
  example,	
  

x=a^b*c x=(a^b)*c 
x=a*b+c x=(a*b)+c 
x=a/b/c x=a/(b*c) 

 
 
2.5.8 Comments	
  (%)	
  

Comments can be included in Octave code using the % symbol, so everything to 
the right of the % is ignored by the Octave interpreter. Comments are usually made 
in .m files, and you can comment out a whole line or just part of a line. Below we 
show how we might include comments in the file ex1.m (from Study Unit 1). 
 

For	
  example,	
  
%Octave script to solve the matrix equation Ax=b 
A=[1 2;3 4] %The matrix A 
b=[5;6] %The column vector b 
x=A\b %The answer x 

 

 
2.6 Control	
  commands:	
  Loops	
  and	
  branches	
  

 
2.6.1 “For”	
  loops	
  

Often in programming, you want to repeat an action a fixed number of times. In 
Octave this is achieved by means of a “for” loop. We start with an example, and 
then give the general syntax. 
 

Activity	
  2-­‐15	
  
In	
  the	
  following	
  Octave	
  code,	
  find	
  n!	
  (n-­‐factorial),	
  with	
  n	
  between	
  1	
  and	
  10,	
  
where	
  
n!	
  =	
  1	
  x	
  2	
  x	
  3	
  ...	
  x	
  (n-­‐1)	
  x	
  n.	
  
 
FEEDBACK: 
In this case, you need to write the Octave code as a .m file. 
 
File fac.m 
n=10; 
fact=1;s 
for k=1:n 
  fact=k*fact; 
  factorials(k,:)=[k fact]; 
end 
factorials 

 
Ocatave window 
> fac 

 
factorials = 
         1         1 
         2         2 



APM1513/1 

 
35 

         3         6 
         4        24 
         5       120 
         6       720 
         7      5040 
         8     40320 
         9    362880 
        10   3628800 

 
The general form of the loop is: 

for index=start_value:increment:end_value 
  statements 
end 

(If the increment is omitted, it is assumed to be 1.) 
 

Activity	
  2-­‐16	
  
Evaluate	
  the	
  following	
  series:	
  
12	
  +	
  22	
  +	
  32	
  +	
  ...	
  +	
  1002	
  
 
FEEDBACK 
Did you get the right answer? It is 338350. 
 
 
2.6.2 Matrix	
  or	
  array	
  operations	
  versus	
  “for”	
  loops	
  

Often, the same effect can be achieved by using array or matrix arithmetic as by 
using a “for” loop.  
 

Activity	
  2-­‐17	
  
Let	
  us	
  look	
  again	
  at	
  the	
  problem	
  of	
  constructing	
  a	
  vector,	
  each	
  element	
  of	
  which	
  
is	
  the	
  square	
  of	
  the	
  corresponding	
  element	
  in	
  a	
  given	
  vector.	
  	
  
 
FEEDBACK: 
We saw that the following code solves the problem. 
 
> v=rand(1,4) 

v = 
   0.295962   0.194619   0.078277   0.839960 

 
> u=v.^2 

u = 
   0.0875937   0.0378766   0.0061273   0.7055324 

 
Alternatively, using for loops, we could instead write the last statement as 
> for k=1:4,u(k)=v(k)^2;end 
> u 

u = 
   0.0875937   0.0378766   0.0061273   0.7055324 

 

Activity	
  2-­‐18	
  
Which	
  should	
  you	
  rather	
  use,	
  array	
  and	
  matrix	
  operations,	
  or	
  for	
  loops?	
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This is a matter of programming style, and there is no definite answer. However, 
we can say that an important factor is that code should be written in a way that is 
easy for someone else to understand, which usually means that the simpler the 
code is the better. So, in the above example, we would prefer the array arithmetic 
option (u=v.^2), and that is usually the case (provided this can be done in a 
straightforward way). We suggest that the calculation of factorials is best done 
using a “for” loop. 
 
 
2.6.3 If	
  statements	
  

 
The general form of an “if” statement is: 
 

if (CONDITION) 
  statements 
elseif (CONDITION) 
  statements 
elseif (CONDITION) 
  statements 
... 
else (CONDITION) 
  statements 
endif 

 
 
Here	
  is	
  an	
  example	
  (as	
  given	
  in	
  the	
  online	
  Help)	
  
 
>           x = 1; 
>           if (x == 1) 
>             disp ("one"); 
>           elseif (x == 2) 
>             disp ("two"); 
>           else 
>             disp ("not one or two"); 
>           endif 

one 
 
Let us look at another example.  
 

Activity	
  2-­‐19	
  
A	
  bank	
  wants	
  to	
  calculate	
  the	
  interest	
  due	
  to	
  its	
  customers	
  and	
  add	
  this	
  to	
  their	
  
accounts.	
  This	
  is	
  complicated	
  since	
  the	
  interest	
  rate	
  applicable	
  depends	
  on	
  the	
  
initial	
  balance,	
  as	
  follows:	
  
	
   Initial	
  balance	
   	
   Interest	
  rate	
  
	
   Less	
  than	
  R1	
  000	
   0%	
  
	
   R1	
  000	
  to	
  R5	
  000	
   5%	
  
	
   R5	
  000	
  to	
  R10	
  000	
   8%	
  
	
   R10	
  000	
  to	
  R20	
  000	
   9%	
  
	
   Above	
  R20	
  000	
   10%	
  
 
The Octave code is placed in the file bank.m, and the code is: 
 
File bank.m 
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if (oldbalance < 1000) 
  rate =0; 
  elseif (oldbalance <5000) 
    rate=0.05; 
  elseif (oldbalance <10000) 
    rate=0.08; 
  elseif (oldbalance <20000) 
    rate=0.09; 
  else 
    rate=0.1; 
endif 
   
newbalance=oldbalance*(1+rate)   

 
Ocatave window 
> oldbalance=30000 

oldbalance =  30000 
> bank 

newbalance =  33000 
> oldbalance=3000 

oldbalance =  3000 
> bank 

newbalance =  3150 
> oldbalance=300 

oldbalance =  300 
> bank 

newbalance =  300 
 
The coding of complicated conditions may best be done using a “switch” 
statement (you can find out more about this command from the online Help 
facility). 
 
2.6.4 Evaluation	
  of	
  conditions	
  

“If” statements (and other constructs that we will come across later), take a 
specified action provided that a condition is true.  
 
A condition is something that can be either true or false, and is of the form 
 a operation b 
where a, b are scalars and where operation is one of the following: 
  
Octave code Mathematical meaning 
 <  <  
 <=  ≤  
 >  >  
 >=  ≥  
 ==  =  
 
If you want to test for equality, use == rather than =, for example 

> if(a==b) 

 
However, you should test for equality with caution, using it only with integers and 
not with real numbers. The reason is because of round-off error. The exact result 
of a calculation may be a=1 but it could well be that what is stored in the 
computer is a=1+10-15, and a test if(a==1)would produce the result false. So 
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instead use if(abs(a-1)<10^(-10)) where abs is the absolute magnitude 
function. 
 
In mathematical language you may write something like, if (a<x<b), but you 
should not write the equivalent in Octave, since there should be only one 
operation in each condition expression. In Octave, you achieve the desired effect 
by using the additional operators: 
 
 Octave code Mathematical meaning 
 &  and 
 |  or 
 
So the Octave equivalent of if (a<x<b) is 
 if((a<x) & (x<b)) 

 
2.6.5 Conditional	
  loops	
  

In a “for” loop, the loop is executed a predetermined number of times. Often, you 
would want to exit the loop when some condition that is a result of the calculation 
being done is satisfied.  
 
In Octave you achieve this by using while or do until loops. The general form 
of the these constructs is 

 while(CONDITION) 
   statements 
 endwhile 
and 
 do 
   statements 
 until(CONDITION) 

 
The difference between the two constructs is that in the “do until” version the 
loop is executed at least once. 
 

Activity	
  2-­‐20	
  
Suppose	
  that	
  you	
  go	
  to	
  the	
  bank	
  with	
  the	
  variable	
  interest	
  rate	
  described	
  above.	
  
You	
  have	
  an	
  amount	
  of	
  money	
  to	
  invest,	
  and	
  want	
  to	
  see	
  how	
  long	
  you	
  will	
  have	
  
to	
  wait	
  until	
  the	
  investment	
  grows	
  to	
  a	
  target	
  amount.	
  The	
  program	
  is	
  in	
  the	
  file	
  
ex3.m.	
  Note,	
  it	
  makes	
  use	
  of	
  the	
  file	
  bank.m	
  .	
  
 
FEEDBACK: 
File ex3.m 
startbalance 
oldbalance=startbalance; 
years=0; 
while(oldbalance<targetbalance) 
  bank; 
  years=years+1 
  oldbalance=newbalance; 
endwhile   

 
Ocatave window 
> startbalance=4100 

startbalance =  4100 



APM1513/1 

 
39 

> targetbalance=6000 
targetbalance =  6000 

> ex3 
startbalance =  4100 
newbalance =  4305 
years =  1 
newbalance =  4520.3 
years =  2 
newbalance =  4746.3 
years =  3 
newbalance =  4983.6 
years =  4 
newbalance =  5232.8 
years =  5 
newbalance =  5651.4 
years =  6 
newbalance =  6103.5 
years =  7 

 
 

Activity	
  2-­‐21	
  
Evaluate	
  the	
  following	
  series	
   	
  in	
  which	
  un	
  is	
  not	
  known	
  explicitly	
  but	
  is	
  

given	
  in	
  terms	
  of	
  a	
  recurrence	
  relation.	
  You	
  should	
  stop	
  the	
  summation	
  when	
  
|un|	
  <	
  10

-­‐8	
  .	
  

	
  with	
  u1	
  =	
  0.5	
  

 
FEEDBACK 
Did you get the right answer? It is 0.81642. If you have problems with this 
activity, go online and discuss it with your fellow students. 
 
 

2.7 Functions	
  
 
The general idea of a function is that it is a piece of code that reads in some form 
of data, manipulates it in some way, and produces some other form of data. 
Octave has many pre-defined functions, but more importantly it allows the user to 
create new functions, and proper use of this feature is essential in the development 
of well-structured programs in Octave. 
 
2.7.1 Pre-­defined	
  functions	
  

We have already come across a number of examples of functions.  
 
Here is a list of some common mathematical functions that are implemented in 
Octave: 

cos sin tan sec cosec cot log exp sinh cosh tanh abs sqrt 

 
There are many, many predefined functions (see the Octave manual, Function 
Index, pages 591-602). These functions can be applied to a scalar or to an array, 
and when applied to an array the function operates on every element of the array.  
 
For example, look at the next activity. 
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Activity	
  2-­‐22	
  
Find	
  a	
  matrix	
  B	
  whose	
  elements	
  are	
  the	
  exponential	
  function	
  (exp)	
  applied	
  to	
  
each	
  element	
  of	
  a	
  matrix	
  A	
  
 
FEEDBACK: 
> A=rand(2,2) 

A = 
   0.596494   0.308671 
   0.073614   0.176858 

 
> B=exp(A) 

B = 
 
   1.8157   1.3616 
   1.0764   1.1935 

 
 
2.7.2 User-­defined	
  functions	
  

You can define your own functions also. Some important points to note about 
function definitions include: 

• You must choose actual names for the return_name, function_name 
and inputs, and the Octave statements in the function must calculate the 
return_name from the inputs. 

• The code defining the function must be placed in a separate .m file called 
function_name.m. 

• Once a function has been defined, you can call it from the Octave 
command window, from an Octave script (ordinary .m file), or from 
another function. 

• A function can have several input slots, and the return_name  can be a 
scalar or an array. 

• From a technical point of view, data is passed to an Octave function by 
value rather than by reference, and variables used inside a function are 
hidden from the calling program. This means that, even if you have 
statement input1=1 the value of the variable equivalent to input1 in the 
calling statement will not be reassigned to 1. 

 

Activity	
  2-­‐23	
  
Define	
  your	
  own	
  functions,	
  using	
  the	
  syntax	
  below.	
  
 
SYNTAX: 

function return_name=function_name(input1,input2, 
...,inputn) 
  Octave statements that use the inputs to calculate 
return_name 
endfunction 

 
 
Here is an example. 
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Activity	
  2-­‐24	
  
Find	
  a	
  function	
  that	
  computes	
  the	
  roots	
  of	
  the	
  quadratic	
  equation	
  

	
  
using	
  the	
  formula	
  

.
	
  

 
FEEDBACK: 
We create a function file quadratic.m and then call it from the Octave command 
window. 
 
File quadratic.m 
function x = quadratic(a,b,c) 
  disc=sqrt(b^2-4*a*c); 
  x(1)=(-b+disc)/(2*a); 
  x(2)=(-b-disc)/(2*a); 
endfunction   

 
Ocatave window 
> z=quadratic(1,-5,6) 

z = 
   3   2 

 
> disc 

error: `disc' undefined near line 21 column 1 
 
The last statement demonstrates that, although disc must have been computed to 
have value 1 during the execution of quadratic, this value is hidden from the main 
Octave window. 
 
2.7.3 Function	
  handles	
  

A function “handle” is a means of passing the name of a function, rather than a 
value (i.e. a real or complex number), to another function. It is really quite simple, 
and is often required when using one of Octave's pre-defined functions.  
 
For	
  example,	
  	
  
Suppose that we want to evaluate numerically the area under the curve f(x) in the 
range a < x <b, like, 

 

In Octave, this is achieved using the predefined function “quad”. The “calling” 
syntax is 

quad(@f,a,b) 
 

 
So, the “@” symbol indicates the created “handle” of the function. Let’s look at 
the following activity where the code illustrates this in another example. 
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Activity	
  2-­‐25	
  

Using	
  a	
  program,	
  calculate,	
  	
   	
  
 
FEEDBACK: 
> quad(@sin,0,pi/6) 

ans =  0.13397 
 

Activity	
  2-­‐26	
  
Using	
  a	
  program,	
  evaluate	
  

	
  

 
FEEDBACK: 
The first step is to write a function file, say fv.m, that defines the integrand, and 
then use quad from the command window. Note that we use array arithmetic 
operators (./ and .^) in fv.m because (for certain later applications) it is convenient 
that the function be able to operate on an array. 
 
So, write an m-file and calculate y=fv(x). 
 
File fv.m 

function y=fv(x) 
  y=1./(1+x.^1.8); 
endfunction   

 
Ocatave window 
> quad(@fv,1,3) 

ans =  0.50214 
 
 
Finally, we look at how a function handle that is passed to another function can be 
used in that function. In other words, we look at how a function like quad would 
deal with the function passed to it. Actually, the internal workings of quad are 
fairly complicated, so instead let us look at the problem of calculating the average 
slope of a function f(x) over an interval 0< x <b.  
 

Activity	
  2-­‐27	
  
Calculate	
  the	
  average	
  slope	
  of	
  a	
  function	
  f(x)	
  over	
  an	
  interval	
  0<	
  x	
  <b,	
  defined	
  as	
  

.
	
  

 
FEEDBACK: 
We write a function file, “average_slope.m”, and use it to find the average slope 
of the function fv defined above in the interval (1,3), as well as the average slope 
of the sine function in the interval (0,π). 
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NOTE: In the function file, average_slope.m, the program does not permit us to 
write, say, f(b); instead, we use feval(f,b). 
 
File, average_slope.m 

function x=average_slope(f,a,b) 
  fb=feval(f,b); 
  fa=feval(f,a); 
  x=(fb-fa)/(b-a); 
endfunction   

 
Ocatave window 
> average_slope(@fv,1,3) 

ans = -0.18921 
> average_slope(@sin,0,pi) 

ans = 3.8982e-017 
 
 

2.8 Graphics	
  
 
2.8.1 Plotting	
  functions	
  with	
  “fplot”	
  

You have already, in Study Unit 1, been introduced to this command. The usual 
syntax for this command is: 

fplot(@function_name,[lower_limit,upper_limit]) 
 
The example given in Study Unit 1 was: 
> fplot(@sin,[0,7.5]) 

 
You can also use fplot with a user-defined function, provided that the 
arithmetic operators used in defining the function are array operators, i.e. .* ./ .^ 
etc. Do the next example, together with the graph, for the function fv, defined 
above. 
 

Activity	
  2-­‐28	
  
Plot	
  the	
  function	
  fv	
  in	
  the	
  range	
  -­‐1	
  <x	
  <	
  1.	
  
 
> fplot(@fv,[-1,1]) 

 



 
 

 44 

 
 
2.8.2 Plots	
  in	
  2-­dimensions	
  with	
  “plot”	
  

The basic syntax is 
plot(x,y) 

where x,y are row-vectors of the same length.  
 
 
 

Activity	
  2-­‐29	
  
Plot	
  a	
  function	
  in	
  2-­‐dimenstions.	
  
 
 
> x=0:0.5:3 

x = 
   0.00000   0.50000   1.00000   1.50000   2.00000   2.50000   
3.00000 

 
> plot(x,sin(x)) 

(See the plotted graphic, next.) 
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You can see that the effect of plot is to plot the points 
(x(1),sin(x(1))=(0,sin(0))=(0,0) up to (x(7),sin(x(7)) and then join these points by 
straight lines. The above graph is not smooth, but if you use a lot of points, the 
graph appears to be everywhere smooth.  
 
For example, 
> x=0:0.01:3; 
> plot(x,sin(x))  
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There are many options available for controlling the appearance of a graph. Here 
are some of them: 
 

• Change the default colour of the graph Give the desired colour of the 
graph as a third argument to either plot or fplot. The recognized colours 
are 

o "b" blue 
o "c" cyan 
o "g" green 
o "k" black 
o "m" magenta 
o "r" red 
o "y" yellow 

• Draw graphs of several functions in the same plot You can do this very 
easily with both plot and fplot. All that you do is include additional 
arguments specifying the extra graphs in the argument list of plot or 
fplot. 

• Give the graph a title Once the graph has been created, enter in the 
Octave window 

title("Name of graph"); 
• Label the axes Once the graph has been created, enter in the Octave 

window 
xlabel("Name of horizontal axis"); 
ylabel("Name of vertical axis"); 

• Give a legend to an curve Once the graph has been created, enter in the 
Octave window 

legend("Name of curve"); 

In the case that there are several functions on the same graph, the syntax is  
legend("Name of curve1","Name of curve2"); 

where curve1 and curve2 refer to the order in which the curves were 
defined in the plot or fplot command 

The following examples use all the above features. 

Activity	
  2-­‐30	
  
Plot	
  the	
  graph,	
  give	
  it	
  a	
  title,	
  labels	
  and	
  add	
  a	
  legend.	
  
 
FEEDBACK: 
Type: 
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> plot(x,cos(x),"g",xx,sin(xx),"m") 
> title("cos(x) and sin(x)"); 
> xlabel("x"); 
> ylabel("cos,sin"); 
> legend("cos(x)","sin(x)"); 
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2.8.3 Plotting	
  lines	
  in	
  3-­dimensions	
  with”	
  plot3”	
  

The usage of plot3 is very similar to that of plot in 2 dimensions. The basic 
syntax is 

plot3(x,y,z) 
where x,y,z are row-vectors of the same length. As with plot you can give a title 
to the graph, label the axes, have multiple plots on the same axes, assign colours 
to each plot, and give a legend to each plot. Here are some examples. 
 

Activity	
  2-­‐31	
  
Plot	
  a	
  3-­‐dimensional	
  graph	
  of	
  the	
  helix	
  (x	
  =	
  sin(2πz),	
  y	
  =	
  cos(2πz),	
  z),	
  with	
  title,	
  
labels,	
  colours	
  and	
  a	
  legend.	
  
 
FEEDBACK: 
Type: 
> z=0:0.01:5; 
> plot3(sin(2*pi*z),cos(2*pi*z),z) 
> xlabel("x"); 
> ylabel("y"); 
> zlabel("z"); 
> title("helix") 
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Activity	
  2-­‐32	
  
Plot	
  a	
  3-­‐dimensional	
  graph	
  for	
  the	
  helix	
  (x	
  =	
  sin(2πz),	
  y	
  =	
  cos(2πz),	
  z),	
  together	
  
with	
  the	
  straight	
  line	
  (x	
  =	
  z/2	
  –	
  1,	
  y	
  =	
  1	
  –	
  z/3,	
  z),	
  with	
  title,	
  labels,	
  colours	
  and	
  a	
  
legend.	
  
 
FEEDBACK: 
Type in the following: 
> z=0:0.01:5; 
> plot3(sin(pi*z),cos(pi*z),z,"r",z./2-1,1-z./3,z,"g") 
> legend("helix","straight line"); 

 
 
NOTE: you can always rotate the view of a 3-dimensional graph; just place the 
mouse over the graph, hold down the left mouse button, and move the mouse. 
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e) Plotting	
  surfaces	
  3-­dimensions	
  with	
  “mesh”	
  
The simplest way to use mesh is to apply it to a matrix, and in this case, the 
coordinates on the horizontal axes are the indices of the matrix.  

Activity	
  2-­‐33	
  
Use	
  mesh	
  to	
  produce	
  a	
  3-­‐D	
  graph	
  for	
  ...	
  
 
Type: 
> for a=1:20 for b=1:20 
> A(a,b)=sin(0.3*a)*cos(0.3*b); 
> end end 
> mesh(A) 

 
However, we would normally use 3 arguments as, mesh(xx,yy,zz), with 
xx,yy,zz being matrices of the same size. We use meshgrid to generate xx,yy 
representing an evenly spaced grid in the (x,y) plane, and then use array operators 
to generate a surface z=f(x,y).  
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Activity	
  2-­‐34	
  
Plot	
  the	
  graph,	
  with	
  a	
  mesh,	
  

	
  

in	
  the	
  range	
  -­‐7	
  ≤	
  x	
  ≤	
  7,	
  -­‐11	
  ≤	
  y	
  ≤	
  11.	
  
 
FEEDBACK: 
Type: 
> [xx,yy]=meshgrid(-7:0.3:7,-11:0.3:11); 
> zz=sin(sqrt(xx.^2+yy.^2))./sqrt(xx.^2+yy.^2); 
> mesh(xx,yy,zz) 

 

 
You can also obtain a contour map, or combine a surface plot with a contour map, 
using the commands contour and meshc respectively. The syntax is similar to 
that of mesh. As with other plotting routines, it is simple to give the plot a title and 
to label the axes. In the following examples we use xx,yy,zz (as defined above). 
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Activity	
  2-­‐35	
  
Plot	
  the	
  graph	
  

	
  

in	
  the	
  range	
  -­‐7	
  ≤	
  x	
  ≤	
  7,	
  -­‐11	
  ≤	
  y	
  ≤	
  11,	
  with	
  a	
  countour	
  map.	
  
 
Type: 
> contour(xx,yy,zz) 

 
 
 

 



APM1513/1 

 
53 

 
 

Activity	
  2-­‐36	
  
Plot	
  the	
  graph,	
  with	
  a	
  mesh,	
  

	
  

in	
  the	
  range	
  -­‐7	
  ≤	
  x	
  ≤	
  7,	
  -­‐11	
  ≤	
  y	
  ≤	
  11	
  
 
Type: 
> meshc(xx,yy,zz) 
> xlabel("x") 
> ylabel("y") 
> title("example of a surface and contour plot") 
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2.8.4 Other	
  features	
  of	
  graphics	
  

The above notes have given just a very brief introduction to the many graphical 
facilities available in Octave. The description includes everything that will be 
needed in this module, but you should be aware that it is easy to use Octave to 
construct other types of graph. (If you would like to find out more, read the 
manual, Section 15, pages 177 to 211.) 
 
One feature that will be needed later is the plotting of discrete points that are not 
joined by lines. The discrete points plotted can be any of: 

^ * + . o x 
and the syntax is just to add the point style to the parameter list when calling plot 
or fplot. 
 

Activity	
  2-­‐37	
  
Plot	
  discrete	
  points	
  in	
  a	
  graph	
  that	
  are	
  not	
  joined	
  by	
  lines.	
  
 
FEEDBACK: 
 
Type: 
> fplot(@sin,[0,7.5],"*") 

or 
> plot(x,sin(x),"o") 
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2.9 Additional	
  Exercises	
  
 

Activity	
  2-­‐38	
  
Do	
  the	
  exercises	
  below.	
  Keep	
  evidence	
  of	
  your	
  work	
  (copy	
  and	
  paste	
  your	
  efforts	
  
to	
  your	
  workbook	
  or	
  make	
  a	
  printout	
  from	
  your	
  diary	
  file).	
  
 

1. Evaluate the following series 

a.  

b.  

 
2. Evaluate the following series  in which un is not known explicitly 

but is given in terms of a recurrence relation. You should stop the 
summation when |un| < 10-8 

 with u1 = 0.5, u2 = 0.6 
 

3. Modify quadratic.m that solves the quadratic equation a x2 + b x + c = 0 
using the formula 

 

 
The function file should have (a, b, c) as input and should return the two 
solutions for x. The amendment required is that the function should check 
whether a = 0 and if so it should give the solution x = -c / b; if also b = 0, it 
should report an error message and exit the function without trying to 
divide by zero. Show that your code is correct by testing it on the cases 

a. x2 + 5 x + 6 = 0 
b. 2 x + 4 = 0 
c. x2 + 4 = 0 
d. 0 = 0 

 
4. Formulas to find a numerical approximation to the first and second 

derivatives of a function f(x) are 

 

with the approximation being better and better as . Write function 
files deriv1.m (for the first derivative) and deriv2.m (for the second 
derivative) that implement these formulas. The inputs to each formula 
should be the function to be differentiated (remember the function handle 
construct @), the value of x, and the value of h. Use your code to estimate 

a. The first derivative of sin(x) at x = π/4 with h = 10-5 
b. The second derivative of tan(x) at x = π/6 with h = 10-3 

 
5. Use the functions deriv1 and deriv2 constructed in question 5 to find the 

first and second derivatives of  
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f (x) = x exp(x2) 
at x = 0.5. Evaluate both derivatives for h = 10-2, 10-3, 10-4, ... , 10-12, and 
then for each value of h evaluate the error. The exact answers are  

f '(x)  = (2 x2 + 1) exp(x2),  f ''(x)  = (4 x3 + 6 x) exp(x2). 
Then plot log10 (error) against log10 (h) (In Octave, the function log10 is 
log10). At what value of h is the error minimized? 

 
6. Use Octave to draw the following graphs 

a. f(x) = x sin(x), -3 ≤ x ≤ 8 
b. f(x) = x cos(x2), 0 ≤ x ≤ 5 

 
7. A formula for the population of the USA, using the logistic model, is 

 

where t is the date in years. Some actual data is as follows 
Date Population 
1800 5308000 
1820 9638000 
1840 17069000 
1870 38558000 
1900 75995000 
1930 122775000 
1950 150697000 

Plot the graph of P(t) against t as a continuous line, and the given data as 
discrete circles, i.e. do not join them with lines (Discrete circles are 
obtained by adding "o" to the plot parameter list). 

 
8. A rather beautiful fractal picture can be obtained by plotting the points (xi, 

yi) generated by the following difference equations 
xi+1 = yi (1 + sin (0.7 xi)) – 1.2  
yi+1 = 0.21 - xi 

starting with (x1, y1) = (0, 0).  
Write a program to draw the picture (plot individual points and do not join 
them). 

 
2.10 	
  	
  	
  In	
  Summary	
  

 
Now that you have completed this study unit, you can write your own code in 
Octave, and use it to for numerical calculations. You now have sufficient 
programming knowledge to be able to tackle interesting problems in linear 
algebra, and you will start to do so in the next study unit. 
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Study	
  Unit	
  3: Use	
  of	
  Octave	
  to	
  
solve	
  linear	
  systems	
  of	
  equations	
  

Time period: 15 hours approximately	
  
 
LEARNING OUTCOMES 
At the end of this Study Unit, you should be able to write computer programs that: 

• Solve linear systems of equations using the direct method of Gaussian 
elimination 

• Solve linear systems of equations using the Jacobi iterative method 
• Solve linear systems of equations using the Gauss-Seidel iterative method 
• Identify systems of linear equations that are problematic for the above 

methods 
 
3.1 Introduction	
  
 
This Study Unit is concerned with systems of linear equations that have a unique 
solution.  
 
The more general case of over-determined or under-determined systems will be 
discussed in Study Unit 4. 
 
3.2 Gaussian	
  elimination	
  
 
There is no need for you to write a Gaussian elimination code, as this process is 
pre-defined in Octave using the construct x=A\b already introduced in Study Units 
1 and 2 (Actually, Octave does not implement pure Gaussian elimination, but 
rather uses matrix factorization whose details are beyond the scope of a first level 
module).  
 

Activity	
  3-­‐1	
  
Suppose	
  that	
  we	
  want	
  to	
  solve	
  
	
   1	
  x1	
  +	
  2	
  x2	
  =	
  5	
  
	
   3	
  x1	
  +	
  4	
  x2	
  =	
  6	
  
 
FEEDBACK: 
The Octave code is 
 
> A=[1 2;3 4]; 
> b=[5;6]; 
> x=A\b 
x = 
 
 -4.0000 
  4.5000 

 
Thus the required answer is 
 x1 = -4, x2 = 4.5 
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The above constructs can be used for any number of equations and unknowns 
(provided, of course, that the number of equations is the same as the number of 
unknowns). 
 
3.3 Iterative	
  methods	
  
 
Here we discuss the Jacobi and Gauss-Seidel methods. However, first we should 
point out that, for a real problem, these methods perform better than x=A\b only 
for diagonally dominant, sparse matrices. We will define diagonally dominant 
later; in a sparse matrix, most of the entries are zero. Also, the speed of modern 
computers is such that it is, in practice, worthwhile to use an iterative method 
rather than x=A\b only for large matrices, which means matrices that are bigger 
than about 1000 x 1000. In practice, iterative methods should be used only for 
large, diagonally dominant, sparse matrices. 
 
Iteration techniques are usually very easy to apply and can best be illustrated by 
examples. 
 

Activity	
  3-­‐2	
  
Solve	
  the	
  following	
  system	
  of	
  equations:	
  
	
  

	
   	
   (3.2.1)	
  
 
FEEDBACK:  
Before solving the system let us make two obvious observations: 
(i) The system (3.2.1) can be solved very easily by Gaussian elimination to 

yield the unique solution  but the purpose of the 
examples is to illustrate a technique. 

(ii) You will notice that, from a numerical point of view, the coefficient matrix 
of (3.2.1) viz  

 

is dominated by the diagonal entries in that their absolute values are much larger 
than the absolute values of the other entries. 
 
Solution 
We shall use two different iterative techniques and we begin with the Jacobi 
method. The first step is to ‘solve’ the first equation in (3.2.1) for , the second 
for  and the third for . In fact, we don't really solve the equations, we merely 
re-write them in the form  
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        (3.2.2) 

The second step is to assume that an approximate solution to the system is  
   

 
Note that it is not essential to choose (0, 0, 0) as the initial approximation. If we 
happen to know that, say, (1, 1, 1) is an approximate solution, then we could 
equally well begin with this approximation. In most cases, however, we do not 
know an approximate solution and it is customary to begin with (0, 0, 0). 
 
The next step is to substitute the initial approximation (0, 0, 0) in (3.2.2) and we 
obtain the first approximate solution 

          (3.2.3) 

The first approximation  is better than (0, 0, 0) and it is 
obvious that to obtain an even better approximation, we simply repeat the 
procedure with the solution (3.2.3) i.e. we iterate. If we substitute (3.2.3) in (3.2.2) 
we obtain the second approximation  

        

 

The iterations are obtained from an Octave program and are 
 
ans = 
 
  0.85000  1.00500  1.00250  1.00010  0.99997  1.00000  1.00000 
 -1.30000 -1.03500 -0.99800 -0.99935 -0.99999 -1.00001 -1.00000 
  1.80000  2.01500  2.00400  2.00005  1.99994  2.00000  2.00000 
 
After seven iterations we therefore obtain a solution which, to six significant 
figures, coincides with the exact solution. 
 
A slight variation of the Jacobi method is the so-called Gauss-Seidel method.  The 
Gauss-Seidel method is usually (but not always) better than the Jacobi method and 
the only difference is that as better approximations become available, so we make 
immediate use of them in the next equation. (It's actually much easier than it 
sounds.) 
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As before, our initial approximation is  and if we 
substitute this in (3.2.2) then the first equation yields  

       

For , however, we do not put 

      

but instead we use the value  which we have just obtained from the 
first equation.  In other words,  

      

and we note that we have to use the value  in this equation because at this 

stage, this is all that we know about . We now go ahead and compute  from 

(3.2.2) using the values  and  as given by immediately above, i.e.  

     

We now do a second iteration in precisely the same way to obtain  
 

     

The second and third equations of (3.2.2) yield respectively  

     

and  

     

 

Further iterations are obtained from an Octave program and are 
 

ans = 
 
  0.85000  1.01107  0.99996  0.99999  1.00000 
 -1.21500 -0.99824 -0.99991 -1.00000 -1.00000 
  2.00650  2.00093  1.99999  2.00000  2.00000 

 

After five iterations we therefore obtain a solution which, to six significant 
figures, coincides with the exact solution. In this particular example, therefore, the 
Gauss-Seidel method beats the Jacobi method by two iterations. 
 
Octave program 
We give here the Octave code for the Gauss-Seidel method. It is easy to modify 
this code so that it implements the Jacobi method instead, and that is left as an 
exercise for the student. The code is written as a function file. The user gives to 
the function the matrix A, the right hand side b, and the current estimate for the 
solution xold. The function performs one iteration of the Gauss-Seidel method 
returning the new estimate for the solution. Note the use of the temporary matrix 
At which has zeros in its diagonal; this can be avoided, but then the main loop 
defining xnew(k) would be rather more complicated. In the Octave window, we 
define A, b, and the initial estimate of the solution for the problem stated above, 
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and then use a for loop to make a fixed number (in this case, five) of iterations of 
the Gauss-Seidel method. 
 

Activity	
  3-­‐3	
  
Create	
  the	
  m-­‐file	
  (below)	
  and	
  run	
  it	
  in	
  Octave.	
  
 
FEEDBACK: 
 
File gauss_seidel.m 
function xnew=gauss_seidel(A,b,xold) 
 n=size(A)(1); 
 At=A; 
 xnew=xold; 
 for k=1:n 
  At(k,k)=0; 
 end 
 for k=1:n 
  xnew(k)=(b(k)-At(k,:)*xnew)/A(k,k); 
 end 
endfunction 
 

Ocatave window 
> A=[20 1 -1;1 -10 1;-1 1 10]; 
> b=[17 13 18]'; 
> x(:,1)=[0 0 0]'; 
> for k=1:5 x(:,k+1)=gauss_seidel(A,b,x(:,k)); end; 
> x 
 

ans = 
 
  0.85000  1.00500  1.00250  1.00010  0.99997  1.00000  
1.00000 
 -1.30000 -1.03500 -0.99800 -0.99935 -0.99999 -1.00001 -
1.00000 
  1.80000  2.01500  2.00400  2.00005  1.99994  2.00000  
2.00000 

 
3.4 Diagonal	
  dominance	
  
 
Now let us consider the system of equations  

     

 
The solution is .  
 
Suppose we try to solve this system by the Gauss-Seidel method. We put 

 and we obtain 
 

x = 
 
  0  3  1  3  1  3  1 
  0  2 -0  2 -0  2 -0 

 
Thus the result of iteration is that we go around in circles. In other words, this 
system cannot be solved by an iteration process and the question automatically 
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arises: when does a system admit a convergent iterative solution? Incidentally, 
note that a solution converges if, after sufficiently many iterations, the exact and 
approximate solutions differ by as small an amount as we wish. 
 
In this case it is easy to state the answer but the proof is beyond the scope of this 
course. Let us write the coefficient matrix of a system of equations in the usual 
notation (as referred to in MAT103N), that is:  

 

 
Note that since we are assuming unique solutions throughout this Study Unit, the 
coefficient matrix must be square and of rank n. The matrix A is said to be strictly 
diagonally dominant if the absolute value of each diagonal entry is greater than 
the sum of the absolute values of the remaining entries in the same row, for 
example:  
 

 

 
Clearly the coefficient matrix of (3.2.1) is strictly diagonally dominant since  

 
 
Now it can be shown that if a coefficient matrix A is strictly diagonally dominant 
then both the Jacobi and Gauss-Seidel iterative solutions to the system of 
equations Ax = b are convergent. Note that the condition on A is a sufficient 
condition - not a necessary condition. In other words, there may be coefficient 
matrices which are NOT strictly diagonally dominant but the corresponding 
equations may nonetheless admit convergent Jacobi or Gauss-Seidel solutions.  
 
However, the conditions on these matrices are too technical for this course and for 
our purposes we shall regard the condition as necessary as well as sufficient. 
There is one trivial exception to this which we discuss in the next example. 
 

Activity	
  3-­‐4	
  
Consider	
  the	
  system	
  	
  

	
  
 
FEEDBACK: 
Can one use iterative techniques to solve this system? Clearly, the coefficient 
matrix is NOT strictly diagonally dominant since the first two equations do not 
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satisfy the required condition. However, we know that we can interchange the first 
two equations without affecting the solution to the system and if we do this, we 
obtain a coefficient matrix which IS strictly diagonally dominant, that is: 

. 

 
The system of equations is therefore  

  

and if we solve by Gauss elimination we obtain the solution 
 (x1, x, x3) = (1.3409, 2.1477, 1.7841) 

Using the Gauss-Seidel method beginning with (0, 0, 0), we get 
 
ans = 
 
  0.00000  1.25000  1.22321  1.34683  1.33916  1.34108  1.34088 
  0.00000  1.58333  2.15575  2.14053  2.14825  2.14761  2.14774 
  0.00000  1.69048  1.76842  1.78391  1.78392  1.78410  1.78409 
 

After six iterations we therefore obtain a solution which, to five significant 
figures, coincides with the exact solution. (An iteration is indicated here as a 
column of figures.) 
 
3.4.1 Stopping	
  criterion	
  

 
The question which you are probably asking yourself at this point is: When does 
one stop? One way would be to simply limit the number of iterations to 5 or 10 or 
whatever. The problem here is that one doesn't know how fast the approximations 
are converging and after a considerable number of iterations one might still be 
quite a long way from a reasonable solution. A better way would be to place a 
restriction on the relative error. The difficulty here is that one doesn't know the 
exact solution - if one did, there wouldn't be much point in finding an approximate 
solution.  
 
For iteration schemes, therefore, we define the relative error  by 

. 

 
Find the relative errors  in the activity above. 
 
By definition, we have to compute  

. 

 
for i = 1, 2, 3. We have  
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. 

 
If we were required to iterate until all relative errors were less than, say 0.005, 
then we see that we would have to do at least one more iteration, and find . 
 

Octave code with a stopping condition that depends upon the relative error uses 
the until construct. We write the code as a function file with inputs A, b (as 
usual); the initial estimate of the solution xinitial; the maximum permitted 
value for the relative error TOL; the maximum number of permitted iterations 
max_it; and the method to be used for obtaining an iterative solution method, 
which will be either gauss_seidel or jacobi. As we saw earlier, the iterative 
method may not converge, so one needs to specify a maximum number of 
iterations otherwise the program will never exit the conditional loop; recall that 
when evaluating a conditional statement | means or. The function returns the 
solution, and reports the number of iterations used, giving an error message if this 
number exceeds max_it. In the Octave window, we set A, b, xinitial; and 
then call iterative_linear_solve using the function handle construct @ to 
specify the method. We run the program for two cases discussed earlier, one in 
which convergence occurs and the other in which it does not. 
 

Activity	
  3-­‐5	
  
Create	
  the	
  m-­‐file	
  (below)	
  and	
  run	
  it	
  in	
  Octave.	
  
 
File iterative_linear_solve.m 
function 
xnew=iterative_linear_solve(A,b,xinitial,TOL,max_it,method) 
 xold=xinitial; 
 k=0; 
 do 
  xnew=feval(method,A,b,xold); 
  err=max(abs((xnew-xold)./xnew)); 
  xold=xnew; 
  k=k+1; 
 until((err<TOL) | (k>max_it)); 
 k 
 if (k>max_it) 
  disp("ERROR: METHOD DID NOT CONVERGE"); 
  xnew=[]; 
 endif 
endfunction 
 
Ocatave window 
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> A=[20 1 -1;1 -10 1;-1 1 10]; 
> b=[17 13 18]'; 
> x0=[0 0 0]'; 
> y=iterative_linear_solve(A,b,x0,1/10^5,5,@gauss_seidel) 
 

k = 5 
y = 
 
  1.0000 
 -1.0000 
  2.0000 

 
> A=[1 1;1 -1]; 
> b=[3 1]'; 
> x0=[0 0]'; 
> y=iterative_linear_solve(A,b,x0,1/10^4,5,@gauss_seidel) 

k = 6 
ERROR: METHOD DID NOT CONVERGE 
y = [](0x0) 

 

Activity	
  3-­‐6	
  
Solve	
  the	
  following	
  systems	
  of	
  equations,	
  using	
  the	
  A\b	
  construct,	
  as	
  well	
  as	
  the	
  
Gauss-­‐Seidel	
  method	
  with	
  a	
  tolerance	
  of	
  10-­‐7	
  	
  
20	
  x1	
  -­‐	
  x2	
  +	
  x3	
  =	
  20	
  
2	
  x1	
  +	
  10	
  x2	
  -­‐	
  x3	
  =	
  11	
  
x1	
  +	
  x2	
  -­‐	
  20	
  x3	
  =	
  -­‐18	
  
 
Did you get the correct answer? It is x1 = x2 = x3 = 1. 
 
 
3.5 Exceptional	
  cases	
  (where	
  the	
  solution	
  may	
  not	
  be	
  

reliable)	
  
 
In this Study Unit we are solving linear systems of the form A x = b where A is a n 
x n matrix. As shown (in MAT103N), we know that a unique solution exists 
provided the determinant of A is non-zero, or equivalently, provided that the rank 
of A is equal to n; such a matrix is called non-singular.  
 
In Octave, it is very easy to check these conditions using the pre-defined functions 
det and rank.  
 

Activity	
  3-­‐7	
  
Check	
  these	
  conditions	
  in	
  Octave	
  using	
  the	
  pre-­‐defined	
  functions	
  det	
  and	
  rank.	
  	
  
 
> A=[2 3;6 9] 
 

A = 
  2  3 
  6  9 

 
> det(A) 

ans = 0 
> rank(A) 

ans = 1 
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Even though the matrix is singular and a unique solution does not exist, Octave 
nevertheless will construct a solution (with a warning message). For example, 
with A defined as above, 
> b=[2 2]'; 
> A\b 

warning: matrix singular to machine precision, rcond = 0 
warning: attempting to find minimum norm solution 
ans = 
 
 1.9725e+015 
 -1.3150e+015 

 
If you see such a warning message, you should check the rank or determinant of 
A, and note that the solution given by Octave is not unique and may not be a 
solution at all. 
 
From a mathematical viewpoint, the determinant is either zero or not, and if it is 
nonzero the system has a unique solution. However, from the viewpoint of 
computing the solution, the situation is not so simple. Loosely expressed, 
problems can arise if we are in a situation in which the matrix is nearly singular 
(but identifying this situation is more involved than just looking at the numerical 
value of the determinant).  
 

Activity	
  3-­‐8	
  
Consider	
  the	
  following	
  examples	
  	
  
1)	
  	
   1000	
  x1	
  +	
  2000	
  x2	
  =	
  5000	
  	
  
2)	
  	
   1000	
  x1	
  +	
  2000.001	
  x2	
  =	
  6000	
  
 
The determinant of the coefficient matrix is 1, but if we interpret the problem 
geometrically we see that we are trying to find the point of inter of two almost 
parallel lines, so that we are in a situation in which the matrix is nearly singular. 
We call such a matrix ill-conditioned, and measure how close it is to being 
singular by its condition number. In Octave, the condition number is a pre-
defined function denoted by cond and defined for a square matrix A by 

cond(A) = norm(A) * norm(inv(A)), 
where norm(A) is a measure of the average magnitude of the elements of A, and in 
this module we will not define it more precisely. The condition number is always 
at least one, and a singular matrix has an infinite condition number: the larger the 
condition number, the more ill-conditioned is the matrix. Do the examples below. 
 
ACTIVITY 
 
> A1=eye(6)/10^5 

 
A1 = 
 

 1.0000e-005 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 
 0.0000e+000 1.0000e-005 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 
 0.0000e+000 0.0000e+000 1.0000e-005 0.0000e+000 0.0000e+000 0.0000e+000 
 0.0000e+000 0.0000e+000 0.0000e+000 1.0000e-005 0.0000e+000 0.0000e+000 
 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 1.0000e-005 0.0000e+000 
 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 0.0000e+000 1.0000e-005 
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> cond(A1) 
ans = 1  

 
> A2=ones(6,6) 

A2 = 
 
  1  1  1  1  1  1 
  1  1  1  1  1  1 
  1  1  1  1  1  1 
  1  1  1  1  1  1 
  1  1  1  1  1  1 
  1  1  1  1  1  1 
 

> cond(A2) 
ans = Inf 
 

> A3=A2+rand(6,6)/10^5; 
> cond(A3) 

ans = 5.9902e+006 
 
> format long 
> A4=[1000 2000;1000 2000.001] 

A4 = 
 
  1000.00000000000  2000.00000000000 
  1000.00000000000  2000.00100000000 

 
> det(A4) 

ans = 0.999999999976464 
> cond(A4) 

ans = 10000004.0000005 
 
You can use the condition number to estimate the accuracy at which Octave 
solves for x in A x = b. First, we define the residual which is A x - b. Normally, 
when we are using a direct method with the A\b construct, the residual is of the 
order of machine precision (which in Octave is the variable eps, and is usually 
about 2×10-16), but for an iterative method it depends on the tolerance chosen and 
can be much larger. Then the accuracy at which we determine x will be no better 
than the residual multiplied by the condition number. 
 
3.6 Additional	
  Exercises	
  
 
1. Solve the following systems of equations, using the A\b construct, as well as 

the Gauss-Seidel method with a tolerance of 10-7 (in some cases convergence 
may not occur) 

a.  2 x1 - x2 + 3 x3 = 8 
4 x1 + 2 x2 - 5 x3 = -9 
6 x1 + 3 x2 + x3 = 12 
 

b.  0.1 x1 + 0.05 x2 + 0.1 x3 = 1.3 
12 x1 + 25 x2 - 3 x3 = 10 
-7 x1 + 8 x2 + 15 x3 = 2 
 

c.  10 x1 + x2 + 2 x3 = 3 
x1 + 10 x2 - x3 = 1.5 
2 x1 + x2 + 10 x3 = -9 
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d.  12 x1 - 3 x2 + 4 x3 - 2 x4 = 12 

2 x1 + 10 x2 - x3 - 20 x4 = 15 
x1 - x2 + 20 x3 + 4 x4 = -7 
x1 + x2 - 20 x3 - 3 x4 = -5 
 
 
 
 

e.  10 x1 - x2 + 7 x3 - 18 x4 = 2 
2 x1 + 10 x2 – 4 x3 - 20 x4 = 1 
-1.5 x1 + 6 x2 - 20 x3 - 2 x4 = 9 
2 x1 + 5 x2 - 2 x3 + 30 x4 = -18 

 
 
2. Modify the function file gauss_seidel.m to produce a new function file 

jacobi.m that implements the Jacobi method. Now use the Jacobi method to 
solve example 3.2.1, i.e. 

 

 
3. Write a function file that takes as input a matrix A, and tests whether or not the 

matrix is (a) square, and (b) diagonally dominant, reporting the answers on the 
screen. Show that your code is correct by testing it for the matrix in question 
2, as well as for cases where the matrix is not diagonally dominant, and not 
square. 

 
4. Modify the function file iterative_linear_solve.m to produce a new function 

file iterative_linear_solve 2.m, in which the stopping condition is that 
magnitude of the residual (A x – b) should be less than a given tolerance. 
Show that your code works by applying it to the problem in question 2, using 
the Gauss-Seidel method. 

 
In practice, this alternative stopping method is not often used. Why not? 
 

5. The Hilbert matrix is a square n × n matrix defined by 
 

 

 
Define b(n) to be a column vector of dimension n, and with each element 1. 
Construct b(n) and , and then solve for x(n),  x(n) = b(n), in the cases n 
= 4,7,10 and 13. Comment on the results. 

 
6. Define the 100 × 100 square matrix A and the column vector b by 
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where Iij is the 100 × 100 identity matrix (i.e. 1 on the main diagonal and 0 
everywhere else). Solve A x = b for x using both the Gauss-Seidel method and the 
A\b construct. Do not give the whole vector x in your output, but only x2, x50 and 
x99. 
 
3.7 In	
  conclusion	
  
 
You have now used Octave to solve linear systems of equations, including large 
systems that are impossible to solve by hand. In these systems, the number of 
equations was equal to the number of unknowns, but what can be done if that is 
not the case? We will look at this question in the next study unit. 
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Study	
  Unit	
  4: Overdetermined	
  
and	
  underdetermined	
  systems	
  of	
  

linear	
  equations	
  
Time period: 15 hours approximately	
  
 
LEARNING OUTCOMES 
At the end of this Study Unit, you should be able to write Octave programs that 

• Determine whether a system of equations has a unique solution, or 
whether it is overdetermined or underdetermined 

• Use Octave to find the best "least squares" approximation to an 
overdetermined system 

• Use Octave to find parameters that give the best "least squares" fit of a 
given form of curve to given data 

• Use Octave to find the general solution of an underdetermined system 
 
 
4.1 Identification	
  of	
  overdetermined	
  and	
  underdetermined	
  

systems	
  
 
Suppose that we have m equations involving n unknowns. Writing the system in 
matrix form 
 

A x = b 
 
the matrix A has m rows and n columns, x is a column vector with n rows, and b is 
a column vector with m rows. The following situations can arise. 
 
4.1.1 A	
  is	
  square	
  (m	
  =	
  n)	
  and	
  det(A)	
  ≠	
  0	
  

As discussed in Study Unit 3, such systems are neither overdetermined nor 
underdetermined and have a unique solution. 
 
4.1.2 A	
  is	
  square	
  (m	
  =	
  n)	
  and	
  det(A)	
  =	
  0	
  

Such systems are either underdetermined, as in 
 

 

which has infinitely many solutions, x1 = 1 + α, x2 = 1 - α, for any value of α; or 
inconsistent, as in 
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which has no solutions. 
 
4.1.3 There	
  are	
  more	
  equations	
  than	
  unknowns	
  (m	
  >	
  n)	
  

Usually such systems are overdetermined and a solution satisfying all the 
equations does not exist. However, it is possible that some of the equations are 
linear combinations of the others and that there are only n independent equations, 
as in 
 

 

which has the unique solution, x1 = 1, x2 = 1; or even that there are fewer than n 
independent equations so that there are infinitely many solutions, as in 
 

 

which has solutions, x1 = 1 + α, x2 = 1 - α, for any value of α. 
 
4.1.4 There	
  are	
  more	
  unknowns	
  than	
  equations	
  (n	
  >	
  m)	
  

Such systems are underdetermined, and usually have infinitely many solutions, as 
in 
 

 

which has solutions, x1 = 1 + α, x2 = 1 - α, x3 = 1 + α for any value of α. However, 
it is also possible for such systems to be inconsistent, as in 
 

 

which has no solutions. 
 
4.2 Overdetermined	
  systems	
  
 
Here we are concerned with situations in which there are more (independent) 
equations than unknowns, so that a solution to the problem A x = b does not exist. 
So what more can be said? The answer comes down to what type of situation the 
system of equations is modeling. While it may be that non-existence of an exact 
solution is a sufficient answer, there are circumstances in which we would like to 
find an approximate solution. Consider the following example 
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Activity	
  4-­‐1	
  
A	
  car	
  is	
  undergoing	
  uniform	
  acceleration.	
  Measurements	
  have	
  been	
  made	
  of	
  the	
  
car's	
  displacement	
  (s)	
  from	
  the	
  origin	
  against	
  time	
  (t)	
  as	
  follows:	
  
	
  
t	
  	
   s	
   	
  
1	
   6.7118	
  	
  
2	
   10.3049	
  	
  	
  
3	
   16.1415	
  
4	
   23.9482	
  
5	
   33.8839	
  
6	
   45.9405	
  
7	
   60.1468	
  
8	
   76.3638	
  
9	
   94.6527	
  
10	
   115.1413	
  
	
  
Since	
  the	
  car	
  is	
  undergoing	
  uniform	
  acceleration,	
  s	
  and	
  t	
  are	
  related	
  by	
  
	
   s	
  =	
  s0	
  +	
  u0	
  t	
  +	
  ½	
  a	
  t

2	
  .	
  
	
  
Use	
  the	
  above	
  data	
  to	
  find	
  the	
  best	
  estimate	
  of	
  the	
  constants	
  s0,	
  u0	
  and	
  a.	
  
 
We will solve the example later, but for now, we are interested in issues that are 
more general. Because of measurement inaccuracies, it makes sense that that there 
will not be values of s0, u0 and a, that exactly fit all the data points, and that a 
good approximate solution is all that can be expected. However, that still leaves 
the question as to what, precisely, is meant by a good approximate solution? We 
are no longer trying to solve A x = b but instead we are seeking a column vector x* 
such that the error in the approximation (also called the residual) ε is as small as 
possible, where 
 ε = (A x* – b) 
 
Now, ε is not a scalar quantity but is a column vector, so what do we mean by 
saying that we want ε to be as small as possible? There is not a clear answer to 
this question, and in subsequent courses you will learn about a number of different 
ways of defining the magnitude of a vector. Here, we use the definition 
(technically, the L2 norm) 

 | ε | =  
 
which can also be interpreted as the length of the vector.  
 
In Octave, the norm of x is found by the call norm(x). So, we want to find a 
vector x* such that the value of | ε | is minimized. Minimization is a simple 
problem in calculus, and also in this case is easy to work out. However, it requires 
applying calculus to vectors and matrices, which is a second level topic so here 
we just state the result. The condition that | ε | is minimized leads to the normal 
equations 

A' A x* = A' b 
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where A' is the transpose of A (which was defined both mathematically and in 
Octave in Study Unit 2). The matrix (A' A) is a square n × n matrix and (A' b) is a 
n-vector, so (provided det(A' A) ≠ 0) there is a unique solution for x*. 
 
Here is a simple example on the use of the normal equations in Octave for you to 
work through. 
 

Activity	
  4-­‐2	
  
Solve	
  the	
  system	
  of	
  equations	
  
	
   	
  x1	
  +	
  2	
  x2	
  =	
  0	
  
	
   3	
  x1	
  -­‐	
  x2	
  =	
  4	
  
	
   2	
  x1	
  +	
  x2	
  =	
  1	
  
 
Octave window 
> A=[1 2;3 -1;2 1] 

A = 
 
  1  2 
  3 -1 
  2  1 

 
> b=[0;4;1] 

b = 
 
  0 
  4 
  1 
 

> At=A' 
At = 
 
  1  3  2 
  2 -1  1 
 

> An=At*A 
An = 
 
  14  1 
  1  6 

 
> det(An) 

ans = 83.000 
> bn=At*b 

bn = 
 
  14 
  -3 

 
> xn=An\bn 
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xn = 
 
  1.04819 
 -0.67470 

 

It is also important to note that, if a system is overdetermined, Octave will 
automatically find the solution to the normal equations, as shown in the following 
addition to the above Octave session 
 
> xs=A\b 

xs = 
 
  1.04819 
 -0.67470 

 
> err=A*xs-b 

err = 
 
 -0.30120 
 -0.18072 
  0.42169 

 
So, here we have also used Octave to work out the residual (as err).  
 
It is important to note that, in the above example, Octave just gave the answer to 
A\b as the solution of the normal equations without any error or warning message. 
So, if you use Octave to solve a system of equations, do not assume that the 
answer you get is the exact solution until you check that the residual (A*xs-b) is 
zero, or at least very small. 
 
Also, note that it is important to check, as we did in the above example, whether 
or not the determinant of the normal matrix (A' A) is zero. While the procedure of 
transforming to normal form ensures that the normal equations are consistent, if 
the determinant is zero the solution found by Octave is not unique and there will 
be infinitely many solutions, as described in the next . 
 
We are now ready to return to the first Activity 
 

Activity	
  4-­‐3	
  
Find	
  the	
  solution	
  to	
  Activity	
  4-­‐1	
  
 
FEEDBACK:  
We take the data that we are given and substitute it in to the assumed equation. 
We get: 
 t = 1:  s0 + u0 1 + a 0.5  = 6.7118 
 t = 2:  s0 + u0 2 + a 2  = 10.3049 
      ...... 
 t = 10:  s0 + u0 10 + a 50  = 115.1413 
 
This we can write in matrix form as 
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The Octave code to solve the problem is quite straightforward. First, we type in 
the given data as a column vector b; and then generate the matrix A. Look 
carefully at how A is constructed, because you do something similar in all 
problems in which you try to estimate parameters by matching a given formula to 
given data. Then we check that the determinant of A'A is non-zero, and solve the 
problem using the A\b construct. We find: 
 xs(1) = s0 = 5.13361 
 xs(2) = u0 = 0.50944 
 xs(3) = a = 2.09808 
 
We plot the given data points (as *), as well as the function s = s0 + u0 t + ½ a t2 
with the parameters having the values just determined, as a continuous blue line. 
Finally, we work out the residual, as err. We see in the graph that, in this case, 
we have been able to construct a curve that fits the given data very well.  
 
> b=[6.7118 10.3049 16.1415 23.9482 33.8839 45.9405 60.1468 ... 
   76.3638 94.6527 115.1413]'; 
> t=[1:10]'; 
> A=[ones(10,1) t t.^2/2]; end; 
> det(A'*A) 

ans = 1.0890e+005 
> xs=A\b 

xs = 
 
  5.13361 
  0.50944 
  2.09808 

> tt=1:0.1:10; 
> s=xs(1)+t*xs(2)+xs(3)*t.^2/2; 
> plot(t,b,"*r",tt,s,"b") 
> err=A*xs-b 

err = 
 
 -0.0197373 
  0.0437355 
 -0.0382168 
  0.0078059 
  0.0229036 
  0.0151764 
 -0.0441759 
 -0.0161532 
  0.0380445 
 -0.0093827 

 
The graph output is: 
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In this case, the given curve fit the data quite well. Following below is another 
example of curve fitting, where the curve does not provide a particularly good fit. 
 

Activity	
  4-­‐4	
  
Fit	
  a	
  curve	
  of	
  the	
  form	
  

y	
  =	
  a	
  sin(x)	
  +	
  c	
  
to	
  the	
  data:	
  
	
   x	
   	
   y	
  
	
   1.23	
   	
   1.8934	
  
	
   1.98	
   	
   1.9721	
  
	
   2.47	
   	
   1.4022	
  
	
   5.64	
   	
   0.2967	
  
 
FEEDBACK: 
Octave code 
> x=[1.23 1.98 2.27 5.64]'; 
> b=[1.8934 1.9721 1.4022 0.2967]'; 
> A=[sin(x) ones(4,1)]; 
> xs=A\b 

xs = 
 
  1.01307 
  0.87810 

 
> det(A'*A) 

ans = 6.5990 
> err=A*xs-b 

err = 
 
 -0.060496 
 -0.164574 
  0.251255 
 -0.026185 
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> xx=1.2:0.1:5.7; 
> plot(x,b,"*r",xx,xs(1)*sin(xx)+xs(2),"b") 

 

 
We see here that the curve produced does not fit the given data points particularly 
well. 
 
4.3 Underdetermined	
  systems	
  
 
A typical example of an underdetermined system is one in which there are more 
unknowns to find than there are equations given. In such situations, use of the 
simple A\b construct causes Octave to find a solution. Here is an example with 3 
equations and 6 unknowns. 
 

Activity	
  4-­‐5	
  
Find	
  the	
  unknowns	
  in	
  the	
  following	
  underdetermined	
  system.	
  
 
FEEDBACK: 
> A=rand(3,6) 

A = 
  0.890721  0.161542  0.413566  0.822816  0.132409  0.051145 
  0.596242  0.327903  0.573553  0.478045  0.095813  0.322198 
  0.566379  0.054946  0.522928  0.824055  0.903582  0.407719 

 
> b=rand(3,1) 

b = 
  0.266035 
  0.134006 
  0.067834 

 
> x0=A\b 

x0 = 
  0.1970789 
  0.0050822 
 -0.0092682 
  0.1400378 
 -0.1219441 
 -0.1089772 
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> err=A*x0-b 
err = 
 -2.2204e-016 
 -1.1102e-016 
 -2.7756e-016 

 
The last statement evaluates the residual, as err, confirming that we have indeed 
found a solution of the problem. But is it the only solution? Theory tells us that if 
there are m equations in n unknowns with m < n, then in the general case we 
would expect a general solution to involve n – m arbitrary parameters; so in this 
example we would expect three arbitrary parameters. We look for the additional 
solutions using a technique that is quite common in many areas of applied 
mathematics. We write the general solutions as 

 

where x0 is the particular solution already found, αi are the arbitrary parameters, 
and pi are n-vectors that we wish to find. Applying the equation A x = b, we 
immediately see that for each i the pi satisfy 
 A pi = 0. 
 
This means that, in the language of linear algebra, we are looking for the null 
space of A. In this module, we will not say any more about the determination of 
the null space. In Octave, finding the null space is trivial: we just use the pre-
defined function null, as shown below. The answer is returned as a matrix, the 
columns of which are the vectors pi that we are seeking. 
 
> N=null(A) 

N = 
 -0.582073  0.271316  0.200055 
  0.347654  0.687301 -0.360124 
 -0.170757 -0.584404 -0.441237 
  0.676688 -0.181640  0.069560 
 -0.213805  0.280840 -0.251502 
  0.086892  0.024746  0.753331  

 
> A*N(:,1) 

ans = 
 1.1102e-016 
 0.0000e+000 
 1.1102e-016 

 
> A*N(:,2) 

ans = 
 -5.5511e-017 
 1.5266e-016 
 2.7756e-016 

 
> A*N(:,3) 

ans = 
 1.3878e-017 
 -6.9389e-018 
 1.5266e-016 

 
In the above code, we applied the matrix A to each column of N, and confirmed 
that it is indeed in the null space of A. 
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Here is another example of an underdetermined system of equations. 
 

Activity	
  4-­‐6	
  
Solve,	
  
	
   	
  x1	
  +	
  2	
  x2	
  +	
  3	
  x3	
  =	
  1	
  
	
   4	
  x1	
  +	
  5	
  x2	
  +	
  6	
  x3	
  =	
  2.	
  
 
Octave code 
> A=[ 1 2 3;4 5 6] 
> b=[1 2]' 
> A\b 

ans = 
 
 -0.055556 
  0.111111 
  0.277778 

 
> null(A) 

ans = 
 
  0.40825 
 -0.81650 
  0.40825 
 

Thus the general solution to the problem is 

. 

 
But, what happens if we try to solve an underdetermined and inconsistent system? 
 
4.4 Underdetermined	
  and	
  inconsistent	
  system	
  
 
Sometimes we need to solve a more complex system where it is both 
underdetermined and inconsistent. 
 

Activity	
  4-­‐7	
  
Solve:	
  

	
  

 
Octave code 
> A=[1 2 1;2 4 2]; 
> b=[4;2]; 
> x=A\b 
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warning: dgelsd: rank deficient 2x3 matrix, rank = 1 
x = 
  0.26667 
  0.53333 
  0.26667 

 
> null(A) 

ans = 
  0.91287  0.00000 
 -0.36515 -0.44721 
 -0.18257  0.89443 

 
Octave gives a warning that there may be a problem, and reports the rank of the 
matrix A. Here the rank is 1 which is less than the number of rows (2). In general, 
if the rank is less than the number of rows, the system may be inconsistent. What 
Octave does in such a case is to construct and solve the normal equations; in other 
words, the particular solution found is not an exact solution to the problem but is 
the best approximate solution. In such cases, we should check the residual, to see 
by how much the solution fails to satisfy the given system of equations.  
 
Here we find: 
> err=A*x-b 

err = 
 -2.4000 
  1.2000 

 
4.5 Additional	
  Exercises	
  
 
1. Find the best straight line (y = m x + c) fit to the data points  

(x, y) = (0, 1), (2, 0), (3, 1), (3, 2), (3, 1).  
Produce a graph showing the line, together with the given data points as 
discrete points. 

 
2. Find the cubic polynomial that best fits the data points  

(x, y) = (-1, 14), (0, -5), (1, -4), (2, 1), (3, 22).  
Produce a graph showing the polynomial, together with the given data points 
as discrete points. 
 

3. The sales figures for a business are as follows for the first six months of the 
year: 

R40 000, R44 000, R52 000, R64 000, R80 000, R84 000.  
The owner believes that the sales curve can be approximated by a quadratic 
function. Find the best quadratic fit to the data, and use it to estimate the 
projected sales for the rest of the year. 
 

4. A formula for the population of the USA is 
 

where t is the date in years. Some actual data is as follows 
Date Population 

 1800 5308000 
 1820 9638000 

1840 17069000 
1870 38558000 
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1900 75995000 
1930 122775000 
1950 150697000 

Find values of P0 and a that give a best fit of the formula to the data. Produce 
a graph showing the function P(t) against time as a continuous line, together 
with the given data points as discrete points 

 
5. Write a function file that generates a random solution to an underdetermined 

system of equations. The function should take a matrix A and a column vector 
b as inputs. It should check that the number of rows in A and b are the same, 
and that the number of rows in A is strictly less than the number of columns; if 
not, generate an error message and exit the function. The function should 
construct a solution x0 to the problem, and also find the null space; and then 
generate a random solution by generating random numbers for the coefficients 
αi of the null space vectors pi. Finally, the function should check that the rank 
of A is equal to the number of rows; if not, generate a warning message (that 
the system may be inconsistent), and calculate and print out the residual. Test 
the function with different matrices to check that all the features work 
correctly. 

 
6. Consider the system of equations 

x1 + x2 + x3 = 3 
x1 + 2 x2 + x3 = 3 
x1 - x2 + x3 = 1 

Use Octave to show that the system is inconsistent. Construct and solve the 
normal equations, find the null space, and then construct the best approximate 
general solution. 
 

4.6 In	
  conclusion	
  
 
You have now used Octave to solve linear systems in which the numbers of 
unknowns and equations are not the same, and you have applied this to the 
problem (which is found in many areas of science) of fitting a given curve to 
given data. 
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Study	
  Unit	
  5:	
  Eigenvalues,	
  
eigenvectors	
  and	
  matrix	
  

diagonalization	
  
Time period: 15 hours approximately	
  
 
Learning outcomes 
At the end of this Study Unit, you should be able to write programs that: 

• Find the eigenvalues and eigenvectors of a square matrix A using the 
program function eig. 

• Find, when it exists, a matrix P that diagonalizes A. 
• Use the power method to find the dominant eigenvalue and corresponding 

eigenvector of A. 
 
Some of this knowledge you might have already encountered in MAT103N. More 
detail will also follow in MAT211R. In this module the focus is a statement 
(without proof), for mathematical background. 
 
 
5.1 Summary	
  of	
  mathematical	
  results	
  
 
Here we state (without any proof) the key definitions and results about 
eigenvalues and eigenvectors. (Further details are given in other modules such as 
MAT103N and MAT211R.) 
 

Definition	
  
Given an n × n matrix A, λ and v (≠ 0) are said to be an eigenvalue and 
associated eigenvector if 

A v = λ v   
 
5.1.1 Calculation	
  of	
  eigenvalues	
  and	
  eigenvectors	
  

 
The eigenvalues are found by rewriting the above definition as 

(A - λ In ) v = 0     (1) 
where In is the n × n unit matrix, and observe that a non-zero solution for v can 
exist only if 

det (A - λ In ) = 0 
which is called the characteristic equation. It is a polynomial equation in λ of 
degree n. By the fundamental theorem of algebra, the equation has n roots. In 
general, some of the roots may be complex, and it may happen that some roots are 
repeated. Given an eigenvalue, Eqn. (1) can be solved to find the associated 
eigenvector (and if the eigenvalue is complex, then in general so is the 
eigenvector). The result found for an eigenvector is not unique, because you can 
always multiply an eigenvector by a non-zero scalar and get another eigenvector 
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with the same eigenvalue. Thus often, the solution found for an eigenvector is 
given in normalized form, which means that the vector v is rescaled so that it is a 
unit vector. Explicitly, the construction is 
 

v → u = v |v|-1  with  |v| =  

 
(In Octave, for a vector v, |v| is coded as norm(v)). Note however that even a 
normalized eigenvector is not uniquely defined: if it is real, it is not unique up to 
multiplication by -1, and if it is complex up to multiplication by any complex 
number c with |c|=1. 
 
5.1.2 Some	
  useful	
  properties	
  of	
  eigenvalues	
  and	
  eigenvectors	
  

 
• In the general case, there are no repeated roots and there are n distinct 

eigenvalues. It can then be shown that the corresponding eigenvectors 
form a complete set of linearly independent vectors. This means that any 
n-vector x can be expressed uniquely as a linear sum of eigenvectors, 

 

x =  αi vi 

for some (unique) scalar coefficients αi. 
 

• Now suppose that the characteristic equation has repeated roots, and that 
there are r distinct eigenvalues with r < n. Suppose that there are m 
linearly independent eigenvectors, then m will be somewhere in the range 
r ≤ m ≤ n. If m = n then the set of eigenvectors is complete, and if m < n 
we say that the set of eigenvectors is degenerate. 

 
• If the matrix A is real, and if (λ, v) are a complex eigenvalue-eigenvector 

pair, then their complex conjugates (λ*, v*) are also an eigenvalue-
eigenvector pair. 

 
5.2 The	
  Octave	
  command	
  eig	
  
 
It is very easy in Octave to find the eigenvalues and eigenvectors of a matrix A, 
using the command eig. The syntax is illustrated in the following code 
> A1=[3 -1 0;-1 2 -1;0 -1 3] 

A1 = 
   3  -1   0 
  -1   2  -1 
   0  -1   3 

 
> [P1 L1]=eig(A1) 

P1 = 
  4.0825e-001  -7.0711e-001  -5.7735e-001 
  8.1650e-001  -1.4076e-017  5.7735e-001 
  4.0825e-001  7.0711e-001  -5.7735e-001 
 
L1 = 
   1   0   0 
   0   3   0 
   0   0   4 
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We see that the diagonal entries of L are the eigenvalues, and the columns of P are 
the corresponding normalized eigenvectors. Here are some more examples 
 

• Complex eigenvalues and eigenvectors 
> A2=rand(3,3) 

A2 = 
 
   0.618515   0.539806   0.305781 
   0.774175   0.111187   0.676873 
   0.686104   0.076203   0.474557 

 
> [P2 L2]=eig(A2) 
P2 = 
 
   0.60969 + 0.00000i   0.55806 - 0.17883i   0.55806 + 0.17883i 
   0.61906 + 0.00000i  -0.35045 + 0.39556i  -0.35045 - 0.39556i 
   0.49502 + 0.00000i  -0.61425 + 0.00000i  -0.61425 - 0.00000i 
 
L2 = 
 
   1.41489 + 0.00000i   0.00000 + 0.00000i   0.00000 + 0.00000i 
   0.00000 + 0.00000i  -0.10532 + 0.15067i   0.00000 + 0.00000i 
   0.00000 + 0.00000i   0.00000 + 0.00000i  -0.10532 - 0.15067i 
 

• Repeated eigenvalues with a degenerate set of eigenvectors 
> A3=[-3 2;-2 1] 

A3 = 
 
  -3   2 
  -2   1 

 
> format long 
> [P3 L3]=eig(A3) 
P3 = 
 
   0.707106781186548+0.000000000000000i   0.707106781186548-0.000000000000000i 
   0.707106781186547+0.000000002257377i   0.707106781186547-0.000000002257377i 
 
L3 = 
 
  -1.000000000000000+0.000000006384826i   0.000000000000000+0.000000000000000i 
   0.000000000000000+0.000000000000000i  -1.000000000000000-0.000000006384826i 
   
> rank(P3) 

ans =  2 
> cond(P3) 

ans = 6.2649e+008 
 

Analytically, it is easy to work out the characteristic equation, 
 

 
 
which clearly has a repeated eigenvalue  λ = 1. Then working out the 
eigenvectors, we find that there is only one, namely (in normalized form) 
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Octave finds the eigenvalues correctly to 10 significant figures, giving an 
erroneous small imaginary part to each eigenvalue. As a consequence of this 
error, Octave incorrectly finds that there are two linearly independent 
eigenvectors (although the difference between the two eigenvectors is very 
small). Thus it shows that the rank of the eigenvector matrix is 2 when the 
correct value is 1. However, the large condition number found for the matrix 
of eigenvectors indicates that the value found for the rank may not be reliable.  
 
This is an important point: In cases in which equal, or nearly equal, 
eigenvalues are found, you should check the condition number of the 
eigenvector matrix, and a large condition number indicates that the 
eigenvectors found are not all linearly independent. 
 
• Repeated eigenvalues with a complete set of eigenvectors 

> A4=[1 -3 3;3 -5 3;6 -6 4] 
A4 = 
 
   1  -3   3 
   3  -5   3 
   6  -6   4 

 
> [P4 L4]=eig(A4) 

P4 = 
 
  -0.40825  -0.40825  -0.43794 
  -0.40825   0.40825  -0.81576 
  -0.81650   0.81650  -0.37781 
 
L4 = 
 
   4.00000   0.00000   0.00000 
   0.00000  -2.00000   0.00000 
   0.00000   0.00000  -2.00000 

 
> cond(P4) 

ans =  4.1103 
 
5.3 Matrix	
  diagonalization	
  
 
Matrix diagonalization is trivial in Octave, because the eigenvector matrix P 
returned by Octave is also the diagonalization matrix as we can check by 
evaluating P-1AP. For example, using the matrices defined in the previous section, 
> inv(P1)*A1*P1 

ans = 
 
  1.0000e+000  -1.2035e-017  -9.3493e-016 
  -5.3668e-017  3.0000e+000  -1.0221e-015 
  -1.2821e-016  -3.4044e-017  4.0000e+000 

 
> inv(P4)*A4*P4 

ans = 
 
  4.0000e+000  -6.3448e-016  -6.6104e-016 
  3.9926e-016  -2.0000e+000  -5.3424e-017 
  6.2439e-016  -8.4134e-017  -2.0000e+000 
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5.4 The	
  power	
  method	
  
 
In certain real-world problems we may have to deal with large diagonalizable 
matrices whose characteristic equation is time-consuming to solve. In Octave, the 
function eig takes only a few seconds to find the eigenvalues and eigenvectors of 
a matrix of size 500 × 500, so in practice, in this context, large means larger than 
about 500 × 500. Moreover, the main feature of interest in many real-world 
problems is the so-called dominant eigenvalue i.e. the eigenvalue whose absolute 
value is larger than the absolute values of all the other eigenvalues. The dominant 
eigenvalue is particularly important in circumstances where we are interested in 
the behaviour of xp = Ap x0 for large p.  
 
We now describe an iterative process to determine an approximation to the 
dominant eigenvector (the eigenvector corresponding to the dominant 
eigenvalue). From the approximation to the dominant eigenvector, it is a trivial 
matter to compute an approximation to the dominant eigenvalue. The procedure 
which we follow is known as the power method and is quite straightforward. 
 
Now, we describe the algorithm for the power method, and then explain why it 
works. 
 
5.4.1 Algorithm	
  

 
Algorithm is defined as a logical step-by-step procedure for solving a 
mathematical problem in a finite number of steps, often involving repetition of the 
same basic operation. 
 
Given an n × n matrix A, we choose an arbitrary non-zero n-dimensional column 
vector x0 and proceed to construct 
 

x1 = A x0, x2 = A x1, ... , xi = A xi-1, ... , xp = A xp-1,  
 
Then each xi is an estimate of the (non-normalized) dominant eigenvector, with 
the estimate becoming better and better as i increases. At each value of i we can 
construct an estimate µi of the dominant eigenvalue using the Rayleigh quotient 
formula 
 

µi = (xi-1 . xi ) / (xi-1 . xi-1) 
 
We estimate the relative error εi in xi using a definition similar to that given in 
Study Unit 3, section 2, 
 

. 

 
Our estimate of the relative error is the norm of the difference between successive 
estimates of xi normalized. We continue the computation until εi is less than a 
given tolerance, at, say, i = p. Then we estimate the dominant eigenvalue as λ = 
µp, and the normalized dominant eigenvector as v = xp / | xp |. 
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5.4.2 Justification/why	
  

 
We suppose that A has a complete set of eigenvectors, so that the initial estimate 
x0 can be written as 
 

x0 = α1 v1  + α2 v2  + ...  + αn vn 
 
where v1 ... vn are the eigenvectors, and suppose that λ1 ... λn are the corresponding 
eigenvalues.  
 
Suppose also that λ1 is the dominant eigenvalue, so that 
 

. 

 
We now multiply x0 by A, and do this p times, getting 
 

Ap x0 = α1 λ1
p v1  + α2 λ2

p v2  + ...  + αn λn
p vn 

 

= α1 λ1
p (v1 +  v2 +  v3 + ... + 

 vn ). 

 

Now as p → ∞, , , ... ,  → 0, so that 

 
Ap x0 → α1 λ1

p v1, 
 
as required. 
 
Usually the power method converges quite rapidly, although there are exceptions 

• If x0 is chosen such that α1 = 0, then the method cannot converge to v1. In 
order to avoid this possibility, we usually set x0 randomly, i.e. using 
Octave's random function, and run the power method for two different 
initial vectors x0. 

• If the largest eigenvalue of A is complex, then its complex conjugate is 
also an eigenvalue. In this case, although λ1 ≠ λ2, |λ1| = |λ2| and the power 
method will probably fail. 

• If the largest eigenvalue of A is a multiple root of the characteristic 
equation, with or without degenerate eigenvectors, then the power method 
will probably fail. 

• Note, however, that although the theorem guarantees convergence only if 
there is a complete set of eigenvectors, in practice convergence usually 
does occur in the case that there are degenerate eigenvectors provided the 
associated eigenvalue has an absolute value strictly less than that of the 
largest eigenvalue. 
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We now give a function file power_method.m that implements the power method, 
using a conditional loop that exits once the relative error is below a given 
tolerance, or the maximum number of iterations has been exceeded. The inputs to 
the function are the matrix A, the tolerance TOL, and the maximum number of 
iterations max_it. 
 
File power_method.m 

function [e_vec lam]=power_method(A,TOL,max_it) 
  k=0; 
  n=size(A)(1); 
  e_vec_old=rand(n,1); 
  do 
    e_vec_new=A*e_vec_old; 
    lam=(e_vec_new'*e_vec_old)/(e_vec_old'*e_vec_old); 
    err=norm(e_vec_new/norm(e_vec_new)-
e_vec_old/norm(e_vec_old)); 
    e_vec_old=e_vec_new; 
    k=k+1; 
  until((err<TOL) | (k>max_it)); 
  k 
  e_vec=e_vec_new/norm(e_vec_new); 
  if (k>max_it) 
    disp("ERROR: METHOD DID NOT CONVERGE"); 
    e_vec=[]; 
    lam=[]; 
  endif 
endfunction 

 

The following extract from the Octave command window shows some examples 
of the use, and failure, of the power method. First, we apply the method to the 
various matrices A1 to A4 specified in Section 2. 
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Feedback: Octave window output 
> [P L]=power_method(A1,1/10^6,100) 

k =  38 
P = 
 
   0.57735 
  -0.57735 
   0.57735 
 
L =  4.0000 

 
> [P L]=power_method(A2,1/10^6,100) 

k =  8 
P = 
 
   0.60969 
   0.61906 
   0.49502 
 
L =  1.4149 

 
> [P L]=power_method(A3,1/10^6,100) 

k =  101 
ERROR: METHOD DID NOT CONVERGE 
P = [](0x0) 
L = [](0x0) 

 
> [P L]=power_method(A4,1/10^6,100) 
k =  20 
P = 

 
   0.40825 
   0.40825 
   0.81650 
 
L =  4.0000 
 
> A5=rand(1000,1000); 
> [P L]=power_method(A5,1/10^6,100); 

k =  5 
> L 

L =  499.93 
> [P L]=eig(A5); 
> L(1,1) 

ans =  499.93 
 
In the last example we generated a large (1000 × 1000) random matrix, and we 
see that both eig and power_method give the same result for the largest 
eigenvalue. Also, if you run the program, you will see that eig takes much more 
time than power_method. Note that, because we used a random generator, if you 
run the program you would get different numerical values. 
 
5.5 Additional	
  Exercises	
  
 
1. Find the eigenvalues and eigenvectors of the following matrices, using both 

eig and power_method (for the dominant eigenvalue and eigenvector). If the 
power method fails, discuss why. For those matrices that are diagonalizable, 
give the diagonalization matrix 

a.     2.781344  -1.921334   0.493612   1.367198  -1.014289 



 
 

 90 

    0.015050  -0.205731   0.903377   1.780261  -0.824057 
   -0.087144   0.606003   2.977860  -0.140473  -0.750938 
    0.212440  -2.477599   0.980236   4.233562  -1.207581 
   -0.136646  -1.168924   0.453692   0.915245   1.712964 
 

b.    -1.54575  -3.47002  -1.70112  -2.58917 
   -3.28104  -2.07998  -1.45597  -2.75629 
    0.55497   0.94078   2.02863   0.46100 
    8.94120   9.67047   4.47796   9.09710 
 

c.    -1.6731385  -3.6381454  -1.8272855  -2.7022868 
   -1.7080530  -0.0039461   0.1019678  -1.3595453 
    2.4426950   3.4321965   3.8982919   2.1372124 
    5.7672696   5.4815125   1.3344020   6.2787928 
 

d.      4.9541    6.6650    8.1445    2.9998 
10.1406   17.3006   14.2773    9.3552 
8.9200   10.6881    8.4619    7.7253 
-25.6960  -40.6289  -38.0172  -21.7166 
 

2. Modify the power method so that the stopping condition is changed to 

tolerance 

 
where xn, µn are the current estimates of the eigenvector and eigenvalue. 
Demonstrate the validity of your code by running it on the matrices in 
question 1. 

 
3. Modify the power method so that it finds the smallest eigenvalue and 

corresponding eigenvector. You do this by evaluating 
xn+1 = A-1 xn 

rather than xn+1 = A xn. When convergence occurs, it is to the eigenvector 
corresponding to the smallest eigenvalue, and to the inverse of the smallest 
eigenvalue. Demonstrate the validity of your code by running it on a number 
of test cases. 

 
4. Consider a fictional species, and suppose that the population can be divided 

into three different age groups: babies, juveniles and adults. Let the population 
in year n in each of these groups be  

x(n) =  

The population changes from one year to the next according to x(n+1) = A x(n), 
where the matrix A is 
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In the long term, what will be the relative distribution of the population 
amongst the age groups? 
 

5. spread of an infectious disease in a town can be modeled (when the number of 
infected people is much less than the total population) as x(n+1) = A x(n) , where 
n refers to the month, and 

x(n) =  

The disease is spread by mosquito bites, and xm(n) refers to the number of 
mosquitoes that carry the disease; xs(n) is the number of sick people; xr(n) is the 
number of people who recover; and xd(n) is the number of people who die. The 
matrix A is 

   

In the long term, at what rate will the incidence of the disease increase every 
month? Consequently as a public health initiative, the mosquito breeding areas 
are being sprayed with insecticide, and the matrix A changes to B where 

   

Show that the effect will be that the disease will be eradicated 
 
5.6 In	
  conclusion	
  
You have now successfully used Octave to find the eigenvalues and eigenvectors 
of a matrix, and applied this to some real-world problems. 
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Study	
  Unit	
  6:	
  Linear	
  programming	
  
Time period: 15 hours approximately	
  
 

LEARNING	
  OUTCOMES 
At the end of this Study Unit, you should be able to: 

• Understand the basic concepts of linear programming. 
• Use the Octave package glpk to solve problems in linear programming 
• Express realistic problems in mathematical terms, and then use the Octave 

package glpk to solve them 
 
The focus here is the solving of the linear programming problems with some 
touching on realistic problems. 
 
6.1 The	
  basic	
  ideas	
  of	
  linear	
  programming	
  
 
You will recall that in MAT111N we briefly discussed linear programming, which 
is the problem of trying to maximize or minimize a certain linear function, called 
the objective function, in which the variables were subject to constraints in the 
form of inequalities. We restricted our attention to problems involving two 
variables only and this enabled us to use geometric methods in solving them. In 
essence, the constraint inequalities enabled us to determine a region of the xy-
plane in which all the inequalities were satisfied. We called this the feasible 
region of the problem. The objective function could be represented as a plane 
sitting above the xy -plane and clearly we were only interested in that part of the 
plane above the feasible region. It was a fairly simple matter to show that the 
maximum or minimum of the objective function occurred at one of the so-called 
extreme points (i.e. corners) of the feasible region. We therefore simply evaluated 
the objective function at the various extreme points and this gave us the height of 
the plane above these points. The largest or smallest height gave us the maximum 
or minimum value of the objective function subject to the various constraints. 
 
Example 6.1.1 
Maximize the function  

L = 40 x1 + 60 x2  
 
subject to the constraints  

2 x1 + x2 ≤ 70 
x1 + x2 ≤ 40  
x1 + 3 x2 ≤ 90   
x1,  x2 ≥ 0  

 
This is a 2D problem so it can easily be solved using the geometric method, as 
shown in Fig. 6.1.1. The maximum of the function L is found by evaluating it at 
the various extreme points and we find that the maximum occurs at C = (15, 25) 
and that the maximum value is L = 2100. 
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Fig 6.1.1 

 
In practice, linear programming is a widely applied field of mathematics, because 
it can be used to guide business decisions to maximize profits. For example, the 
variables represent the different products made by a business, the objective 
function is a linear sum of the profits made on the different products, and the 
constraints represent a variety of factors such as factory capacity, market 
limitations, supply limitations, etc. In practice, the number of variables and 
constraints can be large, and it is impossible to use a geometric method (which 
can only be used when there are two, or perhaps three, variables). Thus we have to 
resort to algebraic methods to solve the problem.  
 
However, there are geometric results that will be useful. The following are easy to 
show when there are two variables, and in fact hold whatever the number of 
variables (but we will not prove this) 

• The maximum or minimum of the objective function occurs at one of the 
extreme points (i.e. corners or vertices) of the feasible region 

• The feasible region is convex (which means that any straight line between 
two points in the region lies entirely within the region) 

 
The consequence of convexity is that we do not have to worry about local minima 
or maxima: if an extreme point is maximum (or minimum) relative to 
neighbouring extreme points, then it is the solution to the problem. For example, 
suppose we want to maximize L = x2 over the shaded region in Fig. 6.1.2. In both 
cases (a) and (b), this occurs at the point D; however, in case (a) the region is non-
convex and there is another local maximum at the point B, whereas in case (b) the 
region is convex and there are no other local maxima. 
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Fig. 6.1.2 

 
In addition, we will assume (as in Example 6.1.1) that all variables are non-
negative, i.e. 
 

 
 
The reasons for doing so are that, in practice, the variables usually represent 
quantities like production runs which cannot be negative, and also making the 
assumption does simplify matters. 
 
You might think that the simplest way to tackle a linear programming problem, 
given the power of modern computers, is just to find all the extreme points (which 
are just solutions of linear systems of equations), and then evaluate the objective 
function at these points. However, for a large system, that problem is far too 
complex. For example, if there are 50 variables and 100 constraints, the number of 
points that must be examined is 
 

 

 
Modern computers run at about 109 operations per second, so the above 
computation would take much longer than the age of the Universe. So instead, an 
iterative approach is used. 
 
6.2 The	
  simplex	
  method	
  
 
Although implemented algebraically, the method has a straightforward geometric 
interpretation. The idea is that we start with a simple, known, extreme point 
usually the origin. Then we identify neighbouring extreme points and evaluate the 
objective function there. We choose as our next iterate that extreme point with the 
largest (or smallest) value of the objective function. The process is continued until 
moving to another extreme point does not increase (or decrease) the objective 
function. The method is guaranteed to work because the feasible set is convex, 
and will converge to a solution after a number of steps of the order of the number 
of variables plus the number of constraints. The solution found could, in principle, 
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be infinite, but in practice that would mean that the constraints have not been 
completely specified. 
 
The justification of the algebraic implementation of the simplex method is beyond 
the scope of this first level module, and instead we simply describe the use of the 
Octave package glpk that implements the simplex algorithm. 
 
After this summary/background, lets see how we can use a program to solve such 
problems. 
 
6.3 The	
  Octave	
  glpk	
  “package”	
  
 
Octave has a “package” glpk to solve problems in linear programming. We 
illustrate its use by means of applying it to example 6.1.1, and then discuss more 
generally how the package is used. 
 
The Octave code to solve the problem is 
> C=[40;60] 

C = 
 
   40 
   60 

 
> A=[2 1;1 1;1 3] 

A = 
 
   2   1 
   1   1 
   1   3 

 
> b=[70;40;90] 

b = 
 
   70 
   40 
   90 

 
> lb=[] 

lb = [](0x0) 
> ub=[] 

ub = [](0x0) 
> ctype="UUU" 

ctype = UUU 
> vartype="CC" 

vartype = CC 
> s=-1 

s = -1 
> [xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s) 

xmax = 
 

   15.000 
   25.000 
 
Lmax =  2100 

 
We now examine the above code and describe how it relates to the mathematical 
specification of the problem. 
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• C is a column vector such that L=Cx'  (with x a column vector, x' a row 
vector) is the function to be minimized or maximized 

• A is a matrix such that Ax expresses the left hand side of the constraints 
• b is a column vector that specifies the right hand side of the constraints 
• lb is a column vector that specifies the lower bound of each element in x. 

If this lower bound is always 0, then, according to the Octave manual, we 
do not need to specify lb and simply define it as the empty matrix. 
However, in some cases we have found that Octave is unstable when lb is 
not set explicitly to 0 

• ub is a column vector that specifies the upper bound of each element in x. 
If this upper bound is always infinity, then we do not need to specify ub 
and simply define it as the empty matrix 

• ctype is a string of characters containing the sense of each constraint in 
the constraint matrix. Each element of the string may be one of the 
following values 

o U An inequality constraint with an upper bound ( ≤bi). 
o S An equality constraint ( = bi). 
o L An inequality constraint with a lower bound ( ≥ bi). 

Here, there are 3 constraints each of which is an upper bound 
• vartype is a string of characters with length equal to the size of x. For our 

purposes, each entry will always be C 
• s is either -1 meaning that L  must be maximized,  or +1 meaning that L 

must be minimized 
• xmax is the solution found for x  that maximizes (or minimizes) L 
• Lmax is the maximum (or minimum) value found for L that satisfies all the 

constraints 
 
Here are some more examples 
 
ACTIVITY 6.2.1 
Maximize the function  

L = 2 x1 + 5 x2 + 4 x3 
 
subject to the constraints  

x1 + 2 x2 + x3 ≤ 4 
x1 + 2 x2 + 2 x3 ≤ 6  
x1,  x2,  x3 ≥ 0.  

 
The Octave code is 
> C=[2;5;4] 

C = 
 
   2 
   5 
   4 

 
> A=[1 2 1;1 2 2] 

A = 
 
   1   2   1 
   1   2   2 
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> b=[4;6] 
b = 
 
   4 
   6 
 

> lb=[] 
lb = [](0x0) 

> ub=[] 
ub = [](0x0) 

> ctype="UU" 
ctype = UU 

> vartype="CCC" 
vartype = CCC 

> s=-1 
s = -1 

> [xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s) 
xmax = 
 
   1.6934e-316 
   1.0000e+000 
   2.0000e+000 
 
Lmax =  13 

 
Example 6.2.2 
Minimize the function  

L = -2 x1 +  x2  
 
subject to the constraints  

2 x1 + x2 ≤ 20 
x1 - x2 ≤ 4  
-x1 +  x2 ≤ 5   
x1,  x2 ≥ 0  

 
The Octave code is 
> C=[-2;1] 

C = 
 
  -2 
   1 

 
> A=[2 1;1 -1;-1 1] 

A = 
 
   2   1 
   1  -1 
  -1   1 

 
> b=[20;4;5] 

b = 
 
   20 
    4 
    5 

 
> lb=[] 

lb = [](0x0) 
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> ub=[] 
ub = [](0x0) 

> ctype="UUU" 
ctype = UUU 

> vartype="CC" 
vartype = CC 

> s=1 
s =  1 

> [xmin,Lmin]=glpk(C,A,b,lb,ub,ctype,vartype,s) 
xmin = 
 
   8 
   4 
 
Lmin = -12 
 
octave-3.0.0.exe:48> C=[2.5 2 1.5 3]'; 
octave-3.0.0.exe:49> A=[1 1 1 1;0 1 0 1;1 1 0 0]; 
octave-3.0.0.exe:50> b=[100000 50000 55000]'; 
octave-3.0.0.exe:52> lb=[0 10000 0 0]'; 
octave-3.0.0.exe:53> ub=[50000 100000 40000 100000]'; 
octave-3.0.0.exe:54> ctype="UUU"; 
octave-3.0.0.exe:55> vartype="CCCC"; 
octave-3.0.0.exe:56> s=-1; 
octave-3.0.0.exe:57> 
[xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s) 
xmax = 
 
   45000 
   10000 
    5000 
   40000 
 
Lmax =  260000  

 
 
6.4 More	
  realistic	
  linear	
  programming	
  examples	
  
 
We now give some real-life examples of linear programming problems. In each 
case, the first step is to translate the description into a mathematical formulation, 
i.e. the specification of the variables, the constraints and the objective function. 
We then solve the problems using the glpk package. 
 
Activity	
  6.3.1	
  

As an example: The Milko Dairy can receive no 
more than 100 000 litres of milk per day. Due to a 
long-term contract, at least 10 000 litres of each 
day's milk must be used for cheese manufacture. 
The balance can be used for bottled milk, butter or 
yoghurt. At today's market prices, the contribution 
to profit and fixed cost of each litre of milk, when 
put to these uses, is as follows 

 
Butter  R2.50 

Cheese  R2.00 
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Bottled milk R1.50 

Yoghurt R3.00 
 

The butter equipment can handle up to 50 000 litres 
of milk per day, and the milk equipment up to 40 
000 litres. Part of the yoghurt and cheese processing 
uses the same equipment, and this imposes a limit 
on the combined usage of 50 000 litres per day. The 
butter and cheese packaging equipment can handle a 
combined usage of at most 55 000 litres per day. 
 

What mix of products should the company produce 
so as to maximize profit? 

 
Solution/Feedback 
We start by defining our variables: 
 
 x1  Number of litres of milk used for butter 
 x2  Number of litres of milk used for cheese 
 x3  Number of litres of milk used for bottled milk 
 x4  Number of litres of milk used for yoghurt 
 
Then the objective function is 
 
 L = 2.5 x1 + 2.0 x2 + 1.5 x3 + 3.0 x4    
 
The constraints are 
 
 x1 + x2 + x3 + x4  ≤ 100 000 

x2 ≥ 10 000 
 x1 ≤ 50 000 
 x3  ≤ 40 000 
 x2 + x4  ≤ 50 000 
 x1 + x2  ≤ 55 000 
 
Octave code 
> C=[2.5 2 1.5 3]'; 
> A=[1 1 1 1;0 1 0 1;1 1 0 0]; 
> b=[100000 50000 55000]'; 
> lb=[0 10000 0 0]'; 
> ub=[50000 Inf 40000 Inf]'; 
> ctype="UUU"; 
> vartype="CCCC"; 
> s=-1; 
> [xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s) 

xmax = 
 
   45000 
   10000 
    5000 
   40000 
 



 
 

 100 

Lmax =  260000 
 
Comments 
Thus the Milko Dairy will maximize its trading profit for the day at R260 000 by 
using 45 000 litres of milk for butter, 10 000 for cheese, 5 000 for bottled milk 
and 40 000 for yoghurt. In the Octave code, we have expressed constraints that 
involve only a single variable by setting lower bounds or upper bounds on the 
variables by specifying the vectors lb and ub. In the vector ub, we then set the 
upper bound as Inf, meaning infinity, for those variables (x2 and x4) that do not 
have explicit upper bounds. Then the constraint matrix A and right hand side b 
represent only the three constraints comprising two or more variables. 
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Example	
  6.3.1	
  
The	
  ABC	
  clothing	
  manufacturing	
  company	
  has	
  a	
  number	
  of	
  different	
  product	
  
lines,	
  T-­‐shirts,	
  jeans,	
  dresses,	
  jackets,	
  coats,	
  etc.	
  Let	
  us	
  call	
  these	
  products	
  P1,	
  P2,	
  
P3	
  and	
  P4.	
  The	
  manufacture	
  of	
  the	
  clothing	
  requires	
  raw	
  materials	
  including	
  
different	
  types	
  and	
  quality	
  of	
  raw	
  cloth,	
  dyes,	
  accessories	
  like	
  buttons,	
  buckles,	
  
zips,	
  etc.,	
  packaging	
  materials,	
  etc.	
  and	
  we	
  call	
  the	
  raw	
  materials	
  R1,	
  R2,	
  R3	
  ,	
  R4	
  
and	
  R5.	
  Each	
  product	
  line	
  requires	
  different	
  quantities	
  of	
  raw	
  materials,	
  and	
  the	
  
following	
  table	
  shows	
  how	
  much	
  of	
  each	
  raw	
  material	
  should	
  be	
  available	
  in	
  
order	
  to	
  produce	
  one	
  unit	
  of	
  each	
  product	
  line	
  
	
  
	
   R1	
  	
   R2	
   R3	
   R4	
   R5	
  
P1	
  	
   0.1	
   0.09	
   0.095	
   0.03	
   0.02	
  
P2	
   0.23	
   0.17	
   0.132	
   0.19	
   0.03	
  
P3	
   0.17	
   0.19	
   0.201	
   0.02	
   0.021	
  
P4	
   0.11	
   0.08	
   0.123	
   0.04	
   0.07	
  
	
  
The	
  manufacturing	
  process	
  involves	
  different	
  departments	
  in	
  the	
  factory,	
  dyeing,	
  
cutting	
  and	
  sewing,	
  quality	
  inspection,	
  and	
  packaging,	
  and	
  we	
  call	
  these	
  
departments	
  D1	
  to	
  D4.	
  Each	
  product	
  line	
  requires	
  time	
  (in	
  hours)	
  in	
  the	
  various	
  
departments	
  as	
  follows	
  
	
  
	
   D1	
  	
   D2	
   D3	
   D4	
  

P1	
  	
   0.7	
   1.1	
   0.8	
   0.2	
  
P2	
   1.1	
   0.85	
   0.95	
   0.3	
  
P3	
   0.6	
   0.9	
   0.6	
   0.4	
  
P4	
   0.9	
   1.2	
   0.4	
   0.2	
  
	
  
Management	
  needs	
  to	
  set	
  a	
  production	
  schedule	
  for	
  the	
  next	
  month.	
  The	
  buying	
  
department	
  has	
  obtained	
  quotations	
  for	
  the	
  various	
  raw	
  materials,	
  although	
  
some	
  items	
  are	
  in	
  short	
  supply	
  and	
  there	
  are	
  supply	
  limitations	
  
	
  
	
   	
   	
   R1	
  	
   R2	
   R3	
   R4	
   R5	
  
Price	
  (Rands)	
   	
   3050	
   3550	
   4800	
   3970	
   3020	
  
Supply	
  limitations	
   60	
   	
   70	
  
	
  
The	
  sales	
  department	
  advises	
  current	
  market	
  rates	
  for	
  the	
  product	
  lines,	
  
together	
  with	
  any	
  upper	
  limits	
  that	
  should	
  not	
  be	
  exceeded	
  to	
  avoid	
  market	
  
over-­‐supply	
  and	
  price	
  depression.	
  
	
  
	
   	
   	
   P1	
  	
   P2	
   P3	
   P4	
  
Price	
  (Rands)	
   	
   6200	
   7000	
   8000	
   7300	
  
Sales	
  limit	
   	
   100	
   200	
   200	
   200	
  
	
  
In	
  addition,	
  due	
  to	
  an	
  outstanding	
  contract,	
  at	
  least	
  10	
  units	
  of	
  P1	
  must	
  be	
  
produced.	
  
Each	
  department	
  can	
  provide	
  400	
  hours	
  per	
  month.	
  How	
  much	
  of	
  each	
  product	
  
line	
  should	
  be	
  produced	
  so	
  as	
  to	
  maximize	
  the	
  company's	
  trading	
  profit?	
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Solution 
We start by defining our variables: 
 x1 = P1, x2 = P2,  x3 = P3, x4 = P4, x5 = R1, x6 = R2, x7 = R3, x8 = R4, x9 = R5 
 
The objective function is the income expected from sales of each product line, less 
the cost of the raw materials, 
 
 L = 6200 x1 + 7000 x2 + 8000 x3 + 7300 x4 – 3050 x5 – 3550 x6 – 4800 x7 – 
3970 x8 – 3020 x9 
 
The constraints due to the time available in each department are 
 

0.7 x1 + 1.1 x2 + 0.6 x3 + 0.9 x4 ≤ 400 
1.1 x1 + 0.85 x2 + 0.9 x3 + 1.2 x4 ≤ 400 
0.8 x1 + 0.95 x2 + 0.6 x3 + 0.4 x4 ≤ 400 
0.2 x1 + 0.3 x2 + 0.4 x3 + 0.2 x4 ≤ 400 

 
The amounts of raw materials required for each product line translate into equality 
constraints 
 

- 0.1 x1 - 0.23 x2 - 0.17 x3 - 0.11 x4 + x5 = 0 
- 0.09 x1 - 0.17 x2 - 0.19 x3 - 0.08 x4 + x6 = 0 
- 0.095 x1 - 0.132 x2 - 0.201 x3 - 0.123 x4 + x7 = 0 
- 0.03 x1 - 0.19 x2 - 0.02 x3 - 0.04 x4 + x8 = 0 
- 0.02 x1 - 0.03 x2 - 0.021 x3 - 0.07 x4 + x9 = 0 

 
Variables x2 to x9 are subject to a lower bound of 0, and for x1  
 
 x1 ≥ 10 
 
Many of the variables are subject to an upper bound 
 
 x1 ≤ 100, x2 ≤ 200, x3 ≤ 200, x4 ≤ 200, x5 ≤ 60, x7 ≤ 70 
 
The Octave code is written in a .m file 
 
File ex6_3_2.m 

ctype="UUUUSSSSS"; 
lb=[10 0 0 0 0 0 0 0 0]; 
ub=[100 200 200 200 60 Inf 70 Inf Inf]; 
s=-1; 
b=[400 400 400 400 0 0 0 0 0]'; 
vartype="CCCCCCCCC"; 
A=[0.7 1.1 0.6 0.9 0 0 0 0 0; 
1.1 0.85 0.9 1.2 0 0 0 0 0; 
0.8 0.95 0.6 0.4 0 0 0 0 0; 
0.2 0.3 0.4 0.2 0 0 0 0 0; 
-0.1 -0.23 -0.17 -0.11 1 0 0 0 0; 
-0.09 -0.17 -0.19 -0.08 0 1 0 0 0; 
-0.095 -0.132 -0.201 -0.123 0 0 1 0 0; 
-0.03 -0.19 -0.02 -0.04 0 0 0 1 0; 
-0.02 -0.03 -0.021 -0.07 0 0 0 0 1]; 
C=[6200 7000 8000 7300 -3050 -3550 -4800 -3970 -3020]'; 
[xmax,Lmax]=glpk(C,A,b,lb,ub,ctype,vartype,s) 
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Feedback: sOctave window 
> ex6_3_2 

xmax = 
 
    10.000 
    38.411 
   200.000 
   146.959 
    60.000 
    57.187 
    64.296 
    17.476 
    15.839 
 
Lmax = 2.1918e+006 

 
Comments 
Thus the company will maximize its trading profit for the month at R2 191 800 by 
producing 10 units of product P1, 38 units of product P2, 200 units of product P3, 
and 147 units of product P4. The company will need to order 60 units of raw 
material R1, 57 units of raw material R2, 64 units of raw material R3, 17 units of 
raw material R4, and 16 units of raw material R5. 
 
 
6.5 Additional	
  Exercises	
  
 
1. Find the maximum value as well as the point at which the maximum occurs of 

L= x1 + 2 x2 + 3 x3 
subject to the constraints 
  x1 + x2 + 2 x3 ≤ 8 
  3 x1 + 3 x2 + x3 ≤ 9 
  x1, x2, x3 ≥ 0 

 
2. Find the minimum value as well as the point at which the minimum occurs of 

L= -3 x1 -4 x2 + x3 
subject to the constraints 
  -x1 + x2 + 2 x3 ≤ 5 
  2 x1 + x2 + x3 ≤ 20 
  x1, x2, x3 ≥ 0 

 
3. Find the minimum value as well as the point at which the minimum occurs of 

L= -2 x1 -5 x2 + x3 
subject to the constraints 
  x1 + 2 x2 - x3 ≤ 6 
  x2 + 2 x3 ≤ 6 
  2 x2 + x3 ≤ 4 
  x1, x2, x3 ≥ 0 

 
4. Find the maximum value as well as the point at which the maximum occurs of 

L= 2 x1 + 3 x2 + 4 x3 + 3 x4 
subject to the constraints 
  1.5 x1 + 2 x2 + 1.5 x3 + x4 ≤ 30 
  1 x1 + 2 x2 + 1 x3 + 3 x4 ≤ 45 
  5 x1 + 4 x2 + 7 x3 + 2 x4 ≤ 65 
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  6 x1 + 3 x2 + 7 x3 + 4 x4 ≤ 60 
  8 x1 + 4 x2 + 8 x3 + 2 x4 ≤ 70 
  x1, x2, x3, x4 ≥ 0 

 
5. The Suitcase Manufacturing Company produces a number of different types of 

suitcase of varying qualities, which are called S1, S2, S3, S4 and S5. The 
manufacturing process involves different departments in the factory, and we 
call these departments D1 to D6. Each suitcase requires time (in minutes) in the 
various departments as follows 

 D1  D2 D3 D4  D5  D6  
S1  10 15 10 12 5 5 
S2 15 20 16 20 8 5 
S3 21 25 20 20 20 8 
S4 26 21 28 25 25 10 
S5 33 28 30 29 34 15 

The contribution to gross profit (i.e., the selling price less the cost of raw 
materials) of each type of suitcase is given in the following table, which also 
shows the minimum number of each type of suitcase that must be produced 
together with the maximum number (in terms of contracts with retail stores) 
    S1  S2 S3 S4  S5 

Profit (Rands)  120 150 235 300 350 
Minimum number 200 100 100 100 100 
Maximum number 500 300 300 300 300 

In addition, there is, this month, a supply limitation on the locks used on the 
higher quality suitcases (S3, S4, and S5), and the total production of these 
suitcases cannot exceed 600. 
 
Each department can provide 24000 minutes per month, except Department 
D6, which can only offer 15000 minutes. How much of each product line 
should be produced so as to maximize the company's trading profit? 

 
6. A company receives orders to deliver its goods to three different cities as 

follows 
City  A B C 
Order  22 21 25 

where the quantity of the order is in truckloads. The company has sufficient 
stock in its warehouses and a truckload of goods can be delivered from any 
warehouse to any city. However, there are a limited number of trucks 
available at each warehouse 
  Warehouse P Q R 
  Trucks  17 31 26 
The variable costs (in Rands) per truckload to deliver goods from each 
warehouse to each destination are 
    City A  B  C 
  Warehouse 
   P  6000  5000  4000 
   Q  5000  5500  6000 
   R  9000  8500  8000 
 
 
What is the cheapest delivery schedule and what is its cost? 
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[Hint: Choose the variables as x1 to x9 where x1 is the number of truckloads 
from P to A, x2 is the number from P to B, ... , , x9 is the number from R to C] 

 

6.6 In	
  conclusion	
  
You have now successfully used Octave to solve linear programming problems 
that cannot be tackled by the simple graphical method. You have also successfully 
solved some real-world linear programming problems. 
 
 




