UNIVERSITEITSEKSAMENS

APM2616

October/November 2012

COMPUTER ALGEBRA

Duration . 2 Hours

100 Marks

EXAMINERS:

FIRST SECOND: DR JMW MUNGANGA PROF R MARITZ

Closed book examination.

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue.

This paper consists of 2 pages

Answer all the questions

QUESTION 1

MuPAD cannot solve directly the differential equation

$$\begin{cases} \frac{dy}{dx} = y(x)\cos x^2 - \sin x^3\\ y(0) = 2 \end{cases}$$

Write MuPAD code to find a series solution of the form

$$y(x) = 2 + y_1 x + y_2 x^2 + y_9 x^9 + 0(x^{10})$$

for the differential equation

Hint Express $\cos(x^2)$ and $\sin(x^3)$ as series, and in the differential equation equate coefficients of x^0, x^1, \dots, x^8

[20 marks]

QUESTION 2

Write MuPAD code to create a set, then create new sets with

(a) One member removed

(5 marks)

(b) One new member

(5 marks)

(c) Union of the two sets above

(5 marks)

[15 marks]

[TURN OVER]

QUESTION 3

Implement a procedure Quadrature whose input is a function f (of one variable) and a list X of numerical values $x_0 < x_1 < x_n$ The call Quadrature (f, X) should compute a numerical approximation of the integral

$$\int_{x_0}^{x_n} f(x) dx$$

by means of the formula

$$\sum_{i=0}^{n-1} (x_{i+1} - x_i) f(x_i)$$

[25 marks]

QUESTION 4

Write MuPAD code to draw a graph that plots the function $f(t) = e^{\sin t}$ and $g(t) = \frac{t^2}{1+t^2}$ for $t \in [-1,5]$ The axes should be appropriately labelled, and the scale in the vertical and horizontal directions should be the same. The graph of f is blue and that of g is green.

QUESTION 5

Write LaTeX code, in the form of a complete document, for the following

1 In what follows, Ω is a bounded domain of \mathbb{R}^3 with boundary Γ We define the following

$$\mathbf{X} = \left\{ \varphi \in \mathbf{H}^1(\Omega) \mid \varphi_{/\Gamma} = 0 \right\}$$

Poincaré inequality

$$\|\varphi\| \le C_{\Omega} \|\nabla \varphi\|, \tag{1}$$

holds for $\varphi \in \mathbf{X}$

2 Let

$$\phi(x) = \left[\sqrt{\sum_{n=1}^{\infty} \frac{\partial^n \varepsilon}{\partial x_n^n} \frac{1}{\sqrt{n}} \phi^{(n)}(x)} \right]^{\frac{1}{n}}$$
 (2)

Show that ε and φ are well defined for x > 0, in (1) and (2)

[20 marks]

TOTAL: [100 marks]