

APM2616

May/June 2012

COMPUTER ALGEBRA

Duration · 2 Hours 100 Marks

EXAMINERS:

FIRST DR JMW MUNGANGA SECOND . PROF R MARITZ

This examination paper remains the property of the University of South Africa and may not be removed from the examination room.

This paper consists of 2 pages

Answer all the questions

QUESTION 1

Given that the following have been defined in a MuPAD session

n positive integer

x array of n identifiers

 $g n \times n \text{ matrix}$

write a MuPAD procedure called mygam that takes the above as input and outputs $n \times n \times n$ array defined by

$$C_{abc} = \frac{1}{2} \sum_{i=1}^{n} h_{ci} \left(\frac{\partial g_{ai}}{\partial x_b} + \frac{\partial g_{bi}}{\partial x_a} - \frac{\partial g_{ab}}{\partial x_i} \right)$$

where h is the matrix inverse of g

[20]

QUESTION 2

The order p of a root x of a function f is the order of the smallest non-vanishing derivative at the point x. For example, if $f(x) = x^2$, then the order of the root at x = 0 is 2. Write MuPAD code to find the order of the root at x = 0 of

$$f(x) = \exp(\sin x) - \sin(e^x - 1) - 1$$
 [20]

QUESTION 3

Write LaTeX code, in the form of a complete document, for the following

1 In what follows, Ω is a bounded domain of \mathbb{R}^3 with boundary Γ We define the following

$$\mathbf{X} = \left\{ \varphi \in \mathbf{H}^1 \left(\Omega \right) \mid \varphi_{/\Gamma} = 0 \right\}$$

Poincaré inequality

$$\|\varphi\| \le C_{\Omega} \|\nabla \varphi\|, \tag{1}$$

holds for $\varphi \in \mathbf{X}$

2 Let

$$\phi(x) = \left[\sqrt{\sum_{n=1}^{\infty} \frac{\partial^n \varepsilon}{\partial x_n^n} \frac{1}{\sqrt{n}} \phi^{(n)}(x)} \right]^{\frac{1}{n}}$$
 (2)

Show that ε and ϕ are well defined for x > 0, in (1) and (2)

[20]

QUESTION 4

Let rd denote the rounding function mapping a real point x to the nearest integer. Write a MuPad program to plot the function

 $f(x) = \frac{|x - rd(x)|}{x}$

on the interval [1, 30]

[20]

QUESTION 5

Let $f = (1+a)^3 \sin x \cos x - e^{3x} \cos^2(2x)$ Use MuPad to find a representation of f in the form $f_2 = (1+a)^3 \sin x \cos x - e^{3x} \cos^2(2x)$ $a+bx+cx^2$ (a,b,c numerical constant) valid for x<<1 You may assume that $e^x=1+x+rac{x^2}{2}$, $\cos x = 1 - \frac{x^2}{2}$, and $\sin x = x$ **TOTAL:** [100]