

APM2616

October/November 2014

COMPUTER ALGEBRA

Duration . 2 Hours

100 Marks

EXAMINERS:

FIRST . SECOND . DR JMW MUNGANGA PROF R MARITZ

Closed book examination.

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 3 pages

Answer all the questions

QUESTION 1

Given that the following have been defined in a MuPAD session

n positive integer

x array of n identifiers

 $g \ n \times n \ \text{matrix}$

write a MuPAD procedure called mygam that takes the above as input and outputs $n \times n \times n$ array defined by

$$C_{abc} = \frac{1}{2} \sum_{i=1}^{n} h_{ci} \left(\frac{\partial g_{ai}}{\partial x_b} + \frac{\partial g_{bi}}{\partial x_a} - \frac{\partial g_{ab}}{\partial x_i} \right)$$

where h is the matrix inverse of g

[20 Marks]

QUESTION 2

Write a MuPAD procedure, called mydiff(fx), that does not use the operator D or diff. The input parameters are f which is a polynomial in x, and x which is an identifier. The output should be the first derivative of f with respect to x.

[20Marks]

QUESTION 3

Write LaTeX code, in the form of a complete document, for the following

1. In what follows, Ω is a bounded domain of \mathbb{R}^3 with boundary Γ . We define the following.

$$\mathbf{X}=\left\{ \varphi\in\mathbf{H}^{1}\left(\Omega\right)\ \varphi_{/\Gamma}=0\right\}$$

Poincaré inequality

$$\|\varphi\| \le C_{\Omega} \|\nabla \varphi\|, \tag{1}$$

holds for $\varphi \in X$

2 Let

$$\phi(x) = \left[\sqrt{\sum_{n=1}^{\infty} \frac{\partial^n \varepsilon}{\partial x_n^n} \frac{1}{\sqrt{n}} \phi^{(n)}(x)}\right]^{\frac{1}{n}}$$
(2)

Show that ε and φ are well defined for x > 0, in (1) and (2).

[20Marks]

QUESTION 4

Write a MuPad code that produces the graph shown below, containing plots of

- (a) $y = \sin x$
- (b) The solution of the differential equation

$$\frac{dy}{dx} = \frac{x}{y}, \quad \text{with } y(0) = 2$$

[20Marks]

QUESTION 5

Let $f=(1+a)^3 \sin x \cos x - e^{3x} \cos^2{(2x)}$ Use MuPad to find a representation of f in the form $f=a+bx+cx^2$ (a,b,c numerical constant) valid for x<<1 You may assume that $e^x=1+x+\frac{x^2}{2}$, $\cos x=1-\frac{x^2}{2}$, and $\sin x=x$ [20Marks]

© UNISA 2014