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Question 1

Consider the eigenvalue problem 4Ax = Ax with

il

A= and 47! =

W

W A~ O
A—R

0
9
0

[, 3 \S e

(a) the dominant eigenvalue and the associated eigenvector,

S o= O

N —W| — | —

(b) the eigenvalue with the smallest absolute value and the associated eigenvector,

(c) the remaining eigenvalue and the associated eigenvector.

In all cases, start with the vector (1, 1, 1) and iterate three times. Use at least 4 decimal digits with rounding.

SOLUTION

Given

(a) Gerschgorin’s circle theorems can be formulated as follows:

Theorem I

S o= O

B =9 = | —

Let 4 be an n x n matrix (with the a;;s real- or complex—valued), then all the eigenvalues of 4 lie in

the union of the following n disks, D;, in the complex plane:

D,-:{zeC:lz—a,-,-l <
j=T j#i

Zn: }a,-,-|}, i

1,2,...

, .

(D; 1s simply the disk with centre a;; and radius equal to the sum of the absolute values of the entries

in row / which are not on the main diagonal.)
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Theorem 11

If k of these disks do not touch the other n —k disks, then exactly &k eigenvalues (counting multiplicities)
lie in the union of those & disks.

For the matrix 4 above we have

Dy = {zeC:lz—(-06)] < |0] + 6] = 6}
Dy = {zeC:|z=9 <[4+ 2] =6}
Dy = {zeC:|z-=5|<|-3]+10] =3}.

According to Gerschgorin I and II one eigenvalues lies in D and the other two lie in D, U Ds.

For the sake of interest we shall verify this by calculating the eigenvalues and the corresponding eigen-
vectors analytically. We have

Ax = Ax
A—ADx = 0

where I denotes the 3 x 3 identity matrix. If x # 0 we must have |4 — A/| = 0. Now

—6— 2 0 6
|4 — 1| = 4 9— 2
-3 0 5-1
—6— 1 6
- o-n| 705 S0

= O-D{(=6-1) (5 -4 —6(=3)}
- (9—1)(/12“—12)
= 9=+ =3).

Hence the characteristic equation is

O—=D)(U+4)A=3)=0

with roots, i.e. the eigenvalues of A4,
A=-—4,3, 0.

This confirms our earlier conclusion, because —4 lies in D while 3 and 9 lie in D; U Ds.



The eigenvectors:

) =—4
(A4—2Dx =0

—6 — (—4) 0 6 X1 0
o 4 9 — (—4) 2 x |=10
-3 0 5—-(—-4) X3 0

—2x14+6x3 = 0 (1)

4x; +13x,+2x3 = 0 )

—3x1+93 = 0 (3)

From (1) and (3) it follows that x; = 3x3, so that (2) implies that

1 14
X == (4x1 + 2x3) = TRl
while an arbitrary value can be taken for x3. Hence the eigenvectors for A = —4 are given by
14 14 )
x=\3m, —m, m)=m(3, ——, 1), m arbitrary.
13 13
A=3
—6—3 0 6 X1 0
A-iAHx=0& 4 9-3 2 x2 | =10
-3 0 5-3 X3 0
3
—9x1 +6x3 = 0 =x3= Exl

1 7
4x; +6x2+3x3 = 0 =x= 5 (4x1 + 2x3) = — g

3
—3x1 +3x = 0 = X3 :Exl

The eigenvector for 1 = 3 is

7 3 7 3 )
x=\|n, ——n, =n)=n|l, ——, =), n arbitrary.
6 2 6 2

~
Il
O

(=]

—6-9 0 6—9 77T x
(A—ADx =0 4 9-9 2 n | =
-3 0 5-9 || x; 0

(e)



(b)

(©)
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—15x1 — 3X3 =0 = x3 = —5x1
dx14+2x3 = 0 =>x3=2x1=>x1=x3=0
—3x;—4x3 = 0

The eigenvector for 4 = 9 is

x=(0,p,0)=p(0,1,0), p arbitrary.

The power method
The dominant eigenvalue can be found by applying the power method to the matrix A4.
Thus for Ax = Ax :

—6 0 6 [0 0

492 = [15|=15] 1

-3 0 5 | | 2 0.1333
—6 0 6 0 ] [ 0.8000 0.0863
492 1 = | 92667 | =9.2667| 1
-3 0 5 || 01333 | | 0.6667 0.0719

After 2 iterations we obtain

A =9.2667, x =(0.0863, 1, 0.0719).

After 10 iterations we obtain

A =18.9994, x = (0.0001, 1, 0.0000).

Compare this with the result in (i) when A =9and p = 1 :

x=1(0,1,0).
The smallest absolute eigenvalue can be obtained by computing the inverse of 4 and then using the
power method because
—1 -1 -1 1
Ax =Ax=>x =4 "Ax =4 Ix = 4 x:Ix

and conversely

1
A 'x = Ux = x = AA 'y = Aux = Ax = —x.
u



This proves that A1, 12, ..., 4, are the eigenvalues of 4 if and only if the eigenvalues of A~ are

%, cee, ,% Hence the eigenvalue of 4 with smallest absolute value is the inverse of the eigenvalue of

A~ with largest absolute value. So compute A~! and apply the power method.

—% 0 % 1 0.0833 0.3333
= g —3 1 | =] 0.0185 | =0.25]| 0.0741
1 1
“Lo 1 1 0.2500 1
-3 0 1 0.3333 0.3611
13 1 1 _

55 3 0.0741 = | —0.2449
“Lo 1 1 0.4167
0.8667
= 0.4167| —0.5877
1

After 2 iterations we estimate the dominant eigenvalue of 47! as

0.4167

and the corresponding eigenvector as

x = (0.8667, —0.5877, 1).
The eigenvalue of least magnitude of A4 is therefore

= 2.4000

A=
0.4167

and the corresponding eigenvector is the one given above.
After 10 iterations we obtain

1
A=
0.3407

=2.935, x =(0,6884, —0.7805, 1).

Compare this with the result in (i) when A =3 and n =

WIN

2 7
X = (5, Y 1) = (0, 6667, —0.7778, 1).

The convergence of the power method is slower than in (a) because the magnitude of the dominanet
eigenvalue of 47!, %, is not much larger than that of the eigenvalue with the second largest magnitude,

1

g
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(d) The two calculated eigenvalues, 11 & 9.2667 and 1, = 2.4000, both lie in the union of the disks D;
and D3. Hence we know from (i) that the remaining eigenvalue A3 must lie in Dy, i.e. A3 must be near
—6. In order to use the inverse power method we must first shift the eigenvalues.

If 4 is an eigenvalue of 4 with corresponding eigenvector x, then
Ax = Ax
Ax — (=6)Ix = Ax —(—6)x
(A44+6Hx = (A+6)x

Hence the eigenvalues of 4 + 617 are
AM+6, la+6, 13+6

and the eigenvalues of (4 + 67)~! are
1 1 1
/11-|—6, /12+6’ /13-|-6'

Note that the eigenvectors reamin unchanged. Since A3 is near —6, 4346 will be small. Thus /131? will
be the dominant eigenvalue of (4 + 67)~! (compared to 111? ~ 0.0655 and —— =~ 0.1190), and so

Ar+6
the power method can be used to find it. First we use the Gauss—Jordan method to obtain (4 + 61)~" :
0 0 6|1 0 O
4 15 210 1 O
| =3 0 110 0 1
1 _1
SR
15 13 1
L 00 L|f 0 o0
10 =Yoo o -1 7
X 7
10 1
~ o0l F0 5 g
L 0 0 1/ 0 0 ]
10 0 N0 =17
b 7
1 1
| 0 0 1 5 0 0 |
11 1
n g _1
S I
A+6D)" =| -5 = 13
c 0 0

Now the power method is applied
11

T8 0 _f 1 0.2777
1 1 _
- L& 1 = | —0.0296
Lo 0 1 0.1667
1
= 02777| —=0.1067
0.6000



—_

}—8 0 —4% 1 0.4111
1 1 _
—? s 18 —0.1067 = —0.1390
g 0 0 0.6000 0.1667
1
= 04111 —-0.3380
0.4054
After 2 iterations we obtain
1 1
= 04111 c. Ay =————6=-3.5676
A3+ 6 04111

x = (1, —0.3380, 0.4054).

After 10 iterations we obtain

1
A3 = ————6=4.000, x = (1, 0.3590, 0.3333).
0.5000
Compare this with the result in (a) when A = —4 and m = % :

14 1
=1, —=, =) =(, 0.3590, 0.3333).
39" 3

Question 2
Consider the characteristic—value problem
V' =2y 4 ky =0, y(0) =y(1) =0.

Taking & = 0.2, derive an eigenvalue problem for determining the non-zero values of k& for which the
differential equation has non-trivial solutions. (Do not solve the eigenvalue problem.)

SOLUTION

We proceed as follows:

Let
x,-:i(O.Z), y,-=y(x,-), i=0,1,...,5,

so that
w=0, ys=0. (2)

We approximate the derivatives in (1) by second—order central differences. With 2 = 0.2 this gives

L N S
(02)2 DT TIEU T 502)

it1 = yi-1) +kyi =0
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5 5
- <§x3 +25) yie1 + 50y; + (Exf — 25) Vieli =kyi, i=1,...,4

Notice that we have taken all the terms in which k appears to the right hand side. Simplification of the
coefficients, using (2), yields

501 =249, = ky
—=25.4y1 + 50y, —24.6)3 kya
=259y, +50y3 —24.1ys = kw3
—26.6y3 +50ys = kya.

Hence we have the following eigenvalue problem:

Find the (non—zero) eigenvalues k and the corresponding eigenvectors y of the matrix M, i.e. k and y
such that My = ky, where

50 =249 0 0 1
| =254 50 =246 0 | »
M= 0 -259 50 —241 1" Y7T| »
0 0 —-26.6 50 V4
Question 3
Solve the boundary—value problem
YA () =9y = —9x +36x2+6x —6,
y) = =2, y@)=-4

by using the shooting method. Use the modified Euler method (with only one correction at each step), and
take 2 = 0.2. Start with an initial slope of y’(1) = —2.99 as a first attempt and y’(1) = —3.01 as a second
attempt. Then interpolate. Continue until the solutions corresponding to two consecutive estimates of y'(1)
agree in at least 2 decimal places. Compare the result with the analytical solution y = x3 — 3x2.

SOLUTION
Set
z = d—y = y’
dx ’
then
Z/ — ﬁ — 1/
dx

The second—order differential equation (1) can thus be written as a system of two coupled first—order differ-
ential equations:

y =z )
7 = 9xy—z2—9x34+36x2+6x—6=g(x,y,2) 3)

with boundary conditions
y(H)=-2, y@)=-4



To solve (2)—(3) we must estimate z (0) = )’ (0) . For a chosen estimate z( the algorithm is

Predictor Corrector
zp =zi + hz Zitl :Z,-—I—h%[z;—i—z’ (xi—i-h,yp,zp)]
yp=vi+hy  vipi=yi+hy [+ (i Ry zp)]

Sequence of calculations:

xg = 1

Yo = =2

zo = estimate

z; = g(Xi, Vi, zi)
zZp = zi+ hz;

Vi =z

yp = Yithy

Z/p = g(-xi +haypazp)

o = zth(2+2) 2

Yp = Zitl
Yigl = yi+h(y£+y},) /2
Xiv1 = Xi+h.

Note that we have improved the algorithm slightly by using the corrected value z; | instead of z,, to calculate
Vp-
The question suggested the estimates

zo = —2.99 (first attempt)
zop = —3.01 (second attempt)
The third estimate is calculated by using the extrapolation formula:

G, —G
20:G1+ﬁ(D—R1)

10
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where
Gy = -=-2.99
G, = -=-3.01
D = —4

Ry = y(2) calculated when zp = —2.99
Ry = yp(2) calculated when zg = —3.01.

This procedure of calculation and extrapolation is repeated, each time using the previous two estimates
of zop and the corresponding calculated values of y (2), until the difference of —4 and the value of y (2)
calculated for the last extrapolated estimate z(, as well as the maximum difference on [1, 2] of the solutions
y corresponding to two consecutive estimates of zq, are less than a chosen tolerance.

A disadvantage of the shooting method is that it does not always converge when the problem is nonlinear and
the initial estimates of z are not sufficiently close to the exact value. In practice, i.e. when the exact solution
is unknown, this can be a problem if additional information about )’ is not available. This is illustrated by
our problem when we use the initial estimates zo = —2.9 and zo = —3.1. Note the large values produced at
x = 2 in iterations 2 and 5 where zinitial < —3. Note also that although the exact values for y (2) and y (4)
are obtained the intermediate values and the values for z are not very accurate. This is due to the inaccuracy
of the modified Euler method for the large step size # = 0.2.

PROGRAM AS 3 1 (output);

CONST
xinitial = 1.0;
xfinal = 2.0;
yinitial = -2.0;
yfinal = -4.0;
zinitl = -2.99; zinit2 = -3.01;
{ zinitl = -2.9; zinit2 = -3.1; }
h = 0.2;
tol = le-3;
imax = round((xfinal - xinitial) /h);
itermax = 20;
TYPE
index = 1..imax;
iter = 1l..itermax;
sol = array[index] of real;
VAR
i : O0..imax;
J o+ iter;
X, vy, z, diff, d : real;
zi, yf : arrayl[iter] of real;
pre y : sol;
fst : text;
FUNCTION fy(x,y,z : real) : real;

11



(* calculates y’ *)

BEGIN
fy := z;
END; {fy}
FUNCTION fz(x,y,z : ©real) : real;
(* calculates z’ *)
BEGIN
fz := - sqgr(z) + 9*x*y
+ (36 - 9*x)*sqr(x) + 6*x - 6,
END; {fz}
PROCEDURE ModEuler (j : integer;
zinitial : real;
VAR yend, diff : real;
VAR pre y : sol);
VAR
a, %, v, z, yp, zp, fy0, £z0 : real;
i : index;
BEGIN
X := xinitial;
y := yinitial;
z := zinitial;
diff := 0.0;
writeln (fst);
writeln(fst,”’ iteration ’,3j,":',
" zinitial = ',zinitial:10:06);

writeln(fst,

X % z'),
writeln(fst,x:12:6, y:12:6, z:12:06);
FOR 1 := 1 to imax DO

BEGIN

fz0 := fz(x,vy,2);

zp := z + h*fzO0;

fy0 := fy(x,vy,2);

yp =y + h*fy0;

X = x + h;

z 1= z + h*(fz0 + fz(x,yp,zp))/2;

y =y + h*(fy0 + fy(x,yp,z))/2;

writeln (fst,x:12:6, y:12:6, z:12:6);
IF j >= 2 THEN

BEGIN
d := abs(y - pre yl[il]);
IF d > diff THEN
diff := d;
END; {if 3}
pre yl[i] := vy;

END; {for i}

12
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yend := pre ylimax],
writeln(fst,’ error in final y =7,
(yfinal - yend) :10:6);
IF j >= 2 THEN
writeln (fst,
max|y - pre y| = ’,diff:10:6);
END; {ModEuler}

BEGIN {program}
assign(fst,’a:\as01 3 1l.dat’);
rewrite (fst);
writeln (fst); writeln (fst);
writeln (fst,

kHxxKkx ASSIGNMENT 3, QUESTION 17,

’ *****’);

writeln (fst);

writeln (fst,’ tolerance = ’,to0l:6:3);
writeln(fst,’ maximum iterations = ’',itermax);
zi[1l] := zinitl;

zi[2] := zinit2;

FOR j := 1 to 2 DO

ModEuler (j, zi[3j], yf[j], diff, pre y);

REPEAT

(* Interpolate the previous two initial wvalues of
z to find the next estimate of zinitial: *)

d := yf[j] - yE[j - 11;

(* Test to avoid division by zero: *)

IF abs(d) >= 1.0E-10 THEN

BEGIN

zi[j + 1] := zi[jJ - 1] + (zi[J] - zi[j - 1])~*

(yfinal - yf[j - 11)/4;
J =3+ 1
ModEuler (j, zi[jl, yfl[j], diff, pre y);
END {if abs(d)}

ELSE
writeln (fst,’ DIVISION BY ZERO');
UNTIL ((diff < tol) and (abs(yf[j] - yfinal) < tol))
or (j = itermax) or (abs(d) < 1.0E-10);
writeln (fst);
writeln(fst,’ Exact solution’);
writeln (fst,’ X y z");
FOR i := 0 to imax DO
BEGIN
X := xinitial + i*h;
y = (x - 3)*sqr(x);

13



z 1= 3*x*(x - 2);

writeln(fst,x:12:6,

END; {for i}
close (fst);

END.

14

*xAKk*  ASSIGNMENT 3,

tolerance = 0.001

maximum iterations =

iteration 1:
X

1.000000 -2.
1.200000 -2.
1.400000 -3.
1.600000 -3.
1.800000 -4,
2.000000 -6.

error in final y =

iteration 2:
X

1.000000 -2.
1.200000 -2.
1.400000 -3.
1.600000 -3.
1.800000 -5.
2.000000 -14.

error in final y =

max|y - pre y|

iteration 3:
X

1.000000 -2.
1.200000 -2.
1.400000 -3.
1.600000 -3.
1.800000 -4,
2.000000 -5.

error in final y =

max|y - pre_yl
iteration 4:

X

1.000000 -2.
1.200000 -2.

y:12:6, z:12:6);

QUESTION 1  **#**%*

20
zinitial = -2.990000
3% z
000000 -2.990000
591791 -2.927910
161089 -2.765066
720067 -2.824720
428752 -4.262123
376087 -15.211230
2.376087
zinitial = -3.010000
3% z
000000 -3.010000
600063 -2.990630
197867 -2.987410
863464 -3.668557
080148 -8.498290
635467 -87.054898
10.635467
= 8.259380
zinitial = -2.984246
3% z
000000 -2.984246
589422 -2.909971
150683 -2.702642
681220 -2.602728
279109 -3.376161
512105 -8.953800
1.512105
= 9.123362
zinitial = -2.979978
% z
000000 -2.979978
587667 -2.896692



N

.400000
.600000
.800000
.000000

-3.
-4,
-5.

error in final y =

max|y - pre_y|

iteration 5:

R

b
.000000
.200000
.400000
.600000
.800000
.000000

-4.

error in final y =

max|y - pre_y|

iteration 6:

N PR R e

X
.000000
.200000
.400000
.600000
.800000
.000000

-4.

error in final y =

maxl|y - pre_y|

iteration 7:

I N e

b
.000000
.200000
.400000
.600000
.800000
.000000

-4.

error in final y =

max|y - pre vyl

iteration 8:

e

b
.000000
.200000
.400000
.600000
.800000

-2.970576

-2.966614

-2.965177

-2.965013

.143013 -2.656767
653050 -2.443603
176625 -2.792149
039964 -5.841245

.039964
= 0.472141
zinitial =
v Z

.000000 -2.970576
.583811 -2.867534
.126266 -2.557015
.592870 -2.109026
.972977 -1.692045
308304 -1.661223

0.308304
= 0.731660
zinitial =
y Z

.000000 -2.966614
.582190 -2.855284
.119269 -2.515509
.568252 -1.974322
.895126 -1.294417
082087 -0.575188

0.082087
= 0.226217
zinitial =
y z

.000000 -2.965177
.581602 -2.850844
.116739 -2.500524
.559424 -1.926329
.867920 -1.158628
008374 -0.245911

0.008374
= 0.073713
zinitial =
y z

.000000 -2.965013
.581535 -2.850340
.116452 -2.498824
.558425 -1.920907
.864863 -1.143475

APM3711/202
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2.000000

-4,

error in final y =

max|y - pre_yl

iteration 9:

b
.000000
.200000
.400000
.600000
.800000
.000000

S

-3.
-4,

error in final y =

max|y - pre_yl

Exact solution

b
.000000
.200000
.400000
.600000
.800000
.000000

S L

000249 -0.210381
0.000249

= 0.008125

zinitial = -2.965008

vy z
.000000 -2.965008
.581533 -2.850325
.116443 -2.498772
.558394 -1.920741
864770 -1.143012
000001 -0.209300

0.000001

= 0.000248

vy Z
.000000 -3.000000
.592000 -2.880000
.136000 -2.520000
.584000 -1.920000
.888000 -1.080000
.000000 0.000000

Question 4

Consider the partial differential equation

with boundary conditions

yu—2Vu=12, 0<x <4, 0<y<3

x = 0andx=4: u=060
0
y = 0andy=3: @ _
y
(a) Taking &7 = 1, sketch the region and the grid points. Use symmetry to minimize the number of

unknowns u; that have to be calculated and indicate the u; in the sketch.

(b) Use the 5-point difference formula for the Laplace operator to derive a system of equations for the u;.

SOLUTION

(a) The line x = 2 is symmetry—line because the domain, boundary conditions and all the terms in the
differential equation are symmetric with respect to this line. The unknowns that have to be determined,

are uyp, ua, .

.., ug. The numbers in brackets indicate how the symmetry is used to determine u at the

other mesh points. Fictitious points u, . .., u r, have been added to the mesh in order to deal with the
derivative boundary conditions. Note that u, and u y will only be needed in the 9—point formula.

16
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y
----- - - _-_—-——
U, TR ()
1
| : !
1 1 |
y=3
u; u, (uy)
u u (uy)
u= 60 : N u= 60
Us Us (ug)
X
1 U; Ug (U7)| x=4
1 1 1 1
1 1 1 1
1 1 1 1
L. P deeo o 3
Us Ug Ug (u)

The line y = 1.5 is not a symmetry—line because:

(1) The coefficient y of u in the differential equation is not a symmetric function with respect to this
line, and

(2) the boundary conditions at y = 0 and y = 3 cannot be satisfied by a function which is symmetric
about y = 1.5. To see this, consider a function v (x, y) which we assume is symmetric about this
line, i.e.

p(x,1.5—2z)=0(x,1.542z), 0<x<4, 0<z<l15.

Denote the functions in this equation by w (x,z), i.e. w(x,z) = v (x,1.5—2) = v (x,1.5+2).
From the two definitions of w and the chain rule we get

0 0 0

e (x,1.5—-2)= &

0z 0Oz Oy |y=15-2
ow

0 (x,1.542) +av
=—0v(x,1.542)=4+—
oz oy

0z y=1.5+z

With z = 1.5 this gives
ov

_ ov
oy

y=0 oy

y=3

Thus for symmetry the derivatives must have opposite signs- see the following figure.

17



y=10) |

f(X) is not symmetric about x=0,
f(-ay=f(@)=-1

y=1(¥

f(X) is symmetric about x=0,
f(-a)=1, f(@=-1

This also applies to boundary conditions with higher—order derivatives of odd order. If the order of
differentiation is even, the boundary values must be equal for symmetry to be possible.

(b) Since Ax = Ay = 1 in the mesh above, we can approximate the Laplace operator by the 5—point

difference formula on p. 554 [p. 555] of Gerald:

1
= 1

Vu (xi,yj) tH

—4 1
1

uij

Uigl,j +ui-1,j +uijp1 +uij—1 — 4.

Substitution of this into the differential equation yields the difference equation

(vj +8) wij = 2 (wig1,; +uim1,j +uij1 +uij-1) = 12.

(*)

Apply (*) at each of the eight internal mesh points. Then we obtain the following system of linear

equations:

(1) G+8)ur —2(uy+60+u, +us) =12
2) B+ uy—2wy+uy +up+ug)=12
3) Q+8)uz—2(ws+60+u; +us)=12
4) Q4+ us—2ws+uz+uy+ug) =12
(5) (1+8)us —2(ug+ 60 +us +u7) =12
©6) (14+8) us—2us+us~+us+ug) =12
(7) (04 8)u7 —2 (ug + 60 + us +u;) = 12
&) 0+8)ug—2w7+u7+us+ug) =12

we determine u,, up, u. and u; by means of the central-difference formula

ou

18

Ui j+1 — Ui,j—1
2h '




(c)
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This gives
Uy — U3 ou
21 :ax:lzs ua:u3+10 (9)
y=3
and similarly
””;”4 =5 . up=us+10 (10)
B5Me _ 5 - u=us—10 (11)
2
”6;”‘1 =5 . ug=ug—10 (12)

Here one can clearly see that the above boundary conditions are not symmetric with respect to the line
y = L.5, since otherwise the equations (9) and (10) would have been the same form as (11) and (12),
respectively.

Substituting (9) — (12) in (1) — (8), we obtain a system of equations which looks as follows in matrix
notation:

T 11 -2 —4 u 152
—4 11 —4 us 32
—2 10 =2 -2 s 132

—2 —4 10 -2 ug || 12
-2 9 —2 -2 us |~ | 132
—2 —4 9 —2 g 12
—4 8 —2 us 112
] —4 -4 8 ||ug | | -8]

For the sake of interest we calculate the solution. Since the size of the matrix is small, the system of
equations should be solved by a direct method, e.g. Gaussian elimination with partial pivoting. See
Gerald, sections 2.4 and 2.5. The solution below was found by using a Pascal program which applies
Gaussian elimination with partial pivoting and back—substitution.

up = 29.4371 uy = 22.6047
uz = 31.6497 uy = 24.7259
us = 38.0855 ue = 31.7254
u7 = 42.0096 ug = 35.8675

The difference equation based on the 9—point formula (7.13) [(7.8)] is
2 1 4 1
1 4 1

1.e.

(Byj +20) u;j — 4 (uim1,; + uit1,j + i j41 +uij—1)

— (o1, j1 F Ui, j1 F Ui j—1 F Uiz j—1) = 36. (**)

19



In order to apply (**) at u; and u7, the value of u at the two additional fictitious points, u, at (0, 4)

and u s at (0, —1), must first be found. As in (b) we have

—-60 0
o _oul s =0
2 oy |*=
y=3
On the other hand, the condition # = 60 at x = 0 implies that
0 — 60
A o=0 s T 0w =60
oy |*= 2
y=3

(13)

(14)

Hence the two boundary conditions are inconsistent. As a compromise we use the average of the values

(13) and (14) (or equivalently, g—; = % at (0, 3)):
U, = 65

An analogous argument yields
yr=35

The applications of (**), (9) — (12) and (15) — (16) produces the following system of equations:

29 —4 -8 =2 uj
-8 29 —4 -8 up
-4 -1 26 -4 —4 -1 u3
-2 —4 -8 26 -2 —4 Uy

—4 -1 23 —4 -4 -1 us
—2 —4 -8 23 =2 —4 || ue
—8 =2 20 —4 || us
—4 —8 —8 20 ug

The solution is
u1; = 29.0340 up = 22.4585

uz = 31.4853 uy = 24.6353
us = 38.3708 ue = 31.9979
u7 = 42.8835 ug = 36.4267

Question 5

[ 451

96
396
36
396
36
341
—24

(15)

(16)

We have a plate of 12 x 15 cm and the temperatures on the edges are held as shown in the sketch below. Take
Ax = Ay = 3 cm and use the S.O.R. method (successive overrelaxation method) to find the temperatures
at all the gridpoints. First calculate the optimal value of w and then use this value in the algorithm. Start with

20
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all grid values equal to the arithmetic average of the given boundary values.

100 Q0 70 50 0
120 0
150 (Not to scale!) 0
150 0
120 0
0
100 70 50 30
SOLUTION
According to section 7.6 [7.2] of Gerald, steady—state heat flow is modelled by Laplace’s equation:
Viu =0 (1)
The iteration formula for S.O.R. can be written as
(k+1)  _ (k) (k) (k+1) (k) (k+1) )
ul] - +4[l+1]+uz 1]+ulj+1+u ij] (2)
(1)
_ (k) (k+1) (k+1) (k) u®
- (1 w)ulj +4[l] 1+ul 1]+ul+l] l]-‘r-l]

where u(;‘) denotes the k — th approximation of u(x;, y,;) and w is the overrelaxation factor.

Since u( +1) and u(k+ ) must be available for the calculation of u(J+ ), formula (2) must always be applied

at pomts (xl, Vji- 1) and (xi—1,y;) before it is applied at (x;, y;). For the conventional numbering of the
coordinates, where i increases from left to right and j increases in the upward direction, there are two
possible orderings of the mesh points that will ensure this: (a) column—wise, starting at the left most column
and moving upwards in every column, or (b) row—wise, starting at the bottom row and moving to the right in
every row — as in the following sketch:

100 90 70 50 0
120 0
Y 1] Y
150 0
u Y u
150 0
Y [ M
120 0
u u u
0
100 70 50 30
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Applying (2) in this order, we obtain the following iteration scheme:

W= (1 — ) 4 —[70—|—120—|—u(k) u{]

ung) = (l—a))ugk) jj[SO—i—ung)-l-u(k)-l-ugk)
a0 = (- o) + 230+ uf Y 0+ u)
T = (1—a))u§k)+4[ WY 4150 + 1l + ul?)
ugk+1) _— —w)ugk)+—[u(k+l)+ (k+1)+u(k)+u(k)]
uékﬂ) = (l—a))uék) [u(k+1) (k+1)+0+u(k)]
WD (1 —pu® [ WD 4150 44 4
u§k+1) — _m)u(k) 4[u(k+1)+u(k+1)+ugk)+u§kl)]
ugk+1) = a _w)ugk)+ 4[ (k+1)+u(k+1)+0+ (k)]
uf§) = (1 -0l + Zf + 1204+ ) +90]
WD = ou® 1Y 4[ WD D 4y ® 4 gy

ug’;—i—l) — _a))u(k) 4[ (k+1)+ (k+1)+0+50]

Observe that the boundary values prescribed at the corners of the plate do not appear in any of the equations;
in other words the S.0.R. method does not permit us to prescribe these values. This is due to the fact that (2)
is based on the five—point formula for the Laplace operator.

In the program below the solution is represented as a matrix u[i, j], so that (2) can be applied directly. Hence
it is not really necessary to copy out the equations above. The average of the boundary values at all the points
excluding the corners is used as the initial estimate of u.

An estimate of the optimum w is given by

4
Wopt = ————,
P Va2

where p and g are the number of mesh divisions on each side of the rectangular domain. Thus p = 4 and
g =5, so that w,,; ~ 1.2105. For the sake of interest we verified this by executing the following program

c= cos(z) + cos(z)
p q
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with different values of w :

W iterations / iterasies
1.0 26
1.1 21
1.2 15
1.2105 14
1.3 15
1.4 19
1.5 25
1.6 33
1.7 47
1.8 70
1.9 153
PROGRAM AS(01 5 2 (output);
CONST
nx = 3; (* number of nodes in x-direction *)
ny = 4 (x oy *)
tolerance = 1.0E-5;
itermax = 100;
TYPE

idim = 0..(nx + 1);

jdim = 0..(ny + 1);

solution = array([idim, jdim] of real;
VAR

i : didim; 3 : Jdim;

k : 0..itermax;

omega : real;

old u, u : solution;

f : text;

FUNCTION MaxDif (u,v : solution) : real;
VAR
d : real;
i : idim; J : Jdim;
BEGIN
d := 0.0;
FOR 1 := 1 to nx DO
FOR j := 1 to ny DO
IF abs(uli,j] - vI[i,Jj]) > d THEN
d := abs(uli,j] - vI[i,J1);
MaxDif := d;
END; {MaxDif}

PROCEDURE Initialize (VAR omega : real;
VAR old u, u : solution);
VAR

APM3711/202
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c, sum : real;

i : didim; 3 : Jjdim;
BEGIN
c := cos(pi/(nx + 1)) + cos(pi/(ny + 1));
omega := 4/(2 + sqrt(4 - c*c));
FOR 1 := 0 to nx + 1 DO
FOR j := 0 to ny + 1 DO
uli,j] := 0.0;
(* Nonzero boundary values: ¥*)
ull,0] = 70.0;, uf[2,0] := 50.0;
ul3,0] := 30.0;, ufll,5] := 90.0;
ul2,5] = 70.0;, ul[3,5] := 50.0;
ul0,1] := 120.0;, wul[0,2] := 150.0;
ul0,3] := 150.0; wul[0,4] := 120.0;
(* Find the sum of the boundary values: *)
sum := 0.0;
FOR 1 := 1 to nx DO
sum := sum + ul[i,0] + ul[i,ny + 11];
FOR j := 1 to ny DO
sum := sum + u[0,3j] + ulnx + 1,31,
(* Define u at the interior points: *)
FOR 1 := 1 to nx DO
FOR j := 1 to ny DO
uli,j] := sum/ (2*nx + 2*ny);
FOR 1 := 0 to nx + 1 DO
FOR j := 0 to ny + 1 DO
old uli,j] := uli,jl;

END; {Initialize}

BEGIN {Program}

24

assign(f, "AS0l 5 2.DAT’");

rewrite (f);

Initialize (omega,old u,u);

writeln (f);

writeln (f,’ *xkx%k%k%k*k*  ASSIGNMENT 5, ',
' QUESTION 2 ********l);

writeln (f);

writeln(f,’ S.0.R. Method for the Laplace’,
" equation:’);

writeln (f,’ omega = ',omega:6:4);

writeln(f,”’ tolerance = ’,tolerance:8:6);

writeln(f,”’ max. iterations = ’,itermax:3);

k := 0;
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REPEAT
k =k + 1;
FOR 1 := 1 to nx DO
FOR j := 1 to ny DO
old uli,J] := uli,J];
FOR 1 := 1 to nx DO
FOR j := 1 to ny DO
uli,j] := (1 - omega)*old uli,]]
+ omega*(ufi,j - 1] + uli - 1,7]
+ old uli + 1,3] + old uli,j + 11)/4;
UNTIL (MaxDif (u,o0ld u) < tolerance) OR
(k >= itermax);

writeln (f);

writeln(f,’ Solution and boundary values:’);
writeln (f);

write (f,’ ")

FOR i := 1 to nx DO

write(f,’” ’,uli,ny + 1]:9:4);
writeln (f);

FOR j := ny downto 1 DO
BEGIN
write (f,”’ ")
FOR 1 := 0 to nx + 1 DO

write(f,’ ",uli,jl1:9:4);
writeln (f);
END; {for j}

write(f,’ "y
FOR i := 1 to nx DO

write(f,’” ’,ul[i,0]1:9:4);
writeln(f); writeln(f);
writeln(f,’ iterations = ’,k:3);
writeln (f,’ max |[u - old u| = ',

MaxDif (u,o0ld u):10:6);
close(f);
END.

*xkxkkxkxk  ASSTGNMENT 5, QUESTION 2  *xkxxkskx
S.0.R. Method for the Laplace equation:

omega = 1.2105

tolerance = 0.000010

max. iterations = 100

Solution and boundary values:

25



90.0000 70.0000 50.0000

120.0000 95.3613 67.7965 38.0886 0.0000
150.0000 103.6489 67.7359 34.5580 0.0000
150.0000 101.4984 64.9402 32.4074 0.0000
120.0000 87.4043 58.1190 30.1316 0.0000

70.0000 50.0000 30.0000

iterations = 14
max |u - old u| = 0.000004

Question 6

Solve the problem in question 5 by using the A.D.I method (alternating-direction-implicit method) without
overrelaxation.

SOLUTION

The A.D.I. method for solving Laplace’s equation is discussed in section 7.8 [7.10] of Gerald. The iteration
formulas are

(k+1) 1 k+1) D) (k) 1 * )
(k+2) 1 *k+2) (k42 (k4D 1 k+1) | (k+1)
—u; ;) + (; + 2) wp U U = Uiy + (/—) + 2) u; + Uity 4)

Here ul(k; denotes the k—th estimate of u (xl- , ) j) . Note that the terms in the left hand side of (4) correspond
to points in the same column, while the terms in the right hand side of (4) correspond to points in the same
row. In (3) it is the other way round. It will be convenient to use u for the temperatures when ordering the
points row—wise and v for the temperatures when ordering the points column—wise, as shown below:

100 90 70 50 0
120 a a Y 0
v y y
150 Y W Y 0
y y %
150 H a Y 0
y v A
120 Y U u 0
y y I
0
100 70 50 30
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Let us choose the acceleration factor p = 1; then if we apply equation (3) at every mesh point, proceeding
row—wise, we obtain

(ur) —1204+3u;—u; = 90—0; + 02
(uz) —u1+3u —us = 70 —0v5+ vg
(u3) —uy+3u3—0 = 50—09+ 05
(ug) — 150+ 3ug4 —us = v; —ovy+03
(us) —us+3us —ug = v5—06+07
(u6) —us+3us—0 = v9—vipo+01
(u7) — 1504+ 3u7 —ug = vy —v3+04
(ug) —u7+3ug —uy9 = ve—07+0g
(u9) —ug+3ug—0 = ov190—011+012
(u10) —12043ujo—uyn = v3—0v4+70
(u11) —uo+3ui—upp = v7—03+50
(ui2)  —wun+3up—0 = vy —012+30

Similarly, by applying equation (4) at each of the interior mesh points, proceeding column—wise. We get

(v1) —904+30;—vy = 120—u; +uy
(1)2) —v14+3vp—0v3 = 150 —ug +us
(v3) —02+303—0v4 = 150 —u7+ ug
(v4) —03+304—70 = 120 —ujo + u1
(vs) — 704305 —vg = u; —us+us
(v6) —0s5+306—07 = us—us—+us
(v7) —v6+307—vg = u7—ug+uy
(vg) —07+308 =50 = wujo—ui+up
(v9) — 504309 —0v19g = ur—u3z+0
(10) —wv9+3vo—v11 = us—uc+0
(11)  vo+3v11—vp = ug—u9+0

(®12) —o11+3012—-30 = wuyy—up+0

Observe that the boundary values given at the corners of the plate do not appear in any of the equations; in
other words the A.D.I. method does not permit us to prescribe these values. This is due to the fact that the
iteration formulas are based on the five-point formula.

The algorithm is as follows:

1. Define ¢ and max k.
2. Let k = 0 and define the initial estimate ugo), i=1,2,...,12.

Repeat 3 — 6 until 7 is satisfied:
3. Letk :=k+2.

4. Useu ug/;—z) to define the right hand sides of equations (v1), ..., (v12), then solve for

(k=1) (k=1)
1)1 ,...,012 .

(k=2)
1

9 e ooy

27



(k=1)

5. Use v%k_l), ...,0), ~ to define the right hand sides of equations (u1), ... (u12), then solve for
(k) (k)
Uy o, Upy
6. Print ugk), e, ugg)
7. max ufk) —u% 2| < OR Kk > max k.

1
1

The program and results follow. Note that in the program, the values of the function at the boundary are
given, and the program will then derive the necessary equations to be solved. The following table shows the
effect of varying p :

p iterations
0,5 26
0,6 22
0,7 20
0,8 20
0,9 20
1,0 20
1,1 22
1,2 22
1,3 24
1,4 26
1,5 28
PROGRAM AS01 5 3 (output);
CONST
rho = 1.0;
rows = 4;
cols = 3;
size = rows*cols;
tol = 1.0E-5;
itermax = 100;
c =1.0/rho - 2.0;
TYPE
vector = arrayl[l..size] of real;
matrix = array([l..size,1..3] of real;
rowvector = array[l..cols] of real;
colvector = array[l..rows] of real;
VAR
u coef, v coef matrix;
u, v, old u, u bcnd, v _bend vector;
top, bottom : rowvector;
left, right colvector;
i, 3, k, 1 integer;
sum real;
f :  text;
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FUNCTION MaxDif(x, y : vector) : real;
VAR
i : integer;
d : real;
BEGIN
d := 0.0;
FOR 1 := 1 to size DO
IF abs(x[i] - y[i]) > d THEN
d := abs(x[i] - yI[i]);
MaxDif := d;
END; {MaxDif}

PROCEDURE Solve (coef : matrix;
bcnd, y :  vector;
m, n : integer;
VAR x : vector),

(* Solves (coef)x = b with the LU form of coef
given in coef, b determined by bcnd and y.

VAR
i, 3, k : integer;
BEGIN
(* Compute r.h.s. vector b, store it in x:
FOR 1 := 1 to n DO BEGIN
J o= (1 - 1)*m + 1;
x[1] := c*yI[j] + yv[J + 1] + bcend[i];
k := size - n + i,
Joi= i*m;
x[k] = y[]J - 1] + c*y[]J] + bcnd[k];
END; {for i}
FOR 1 := 2 to (m - 1) DO
FOR j := 1 to n DO BEGIN
k := (i - 1)*n + 7,
1l =1+ (3 - 1)*m
x[k] = y[1l - 1] + c*y[1] + y[1 + 1]
+ bcnd[k];

END; {for j}

(* Forward substitution to get z = L(-1)b:

x[1] := x[1]/coef[l,2];
FOR i := 2 to size DO

x[1] := (x[1] - coef[i,1]*x[1-1])/coef[i,2];
(* Backward substitution to get x = U(-1)z:
FOR j := (size - 1) downto 1 DO

x[j] := x[3j] - coef[j,31*x[]j + 1];

END; {Solve}

*)

APM3711/202
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BEGIN

30

(* Define the boundary values: *)
top[l] = 90.0;, topl[2] := 70.0;
top[3] := 50.0;
bottom[1l] := 70.0;, bottom[2] := 50.0;
bottom[3] := 30.0;
left[1l] := 120.0; left[2] := 150.0;
left[3] := 150.0; 1left[4] := 120.0;
FOR j := 1 to cols DO

right[j] := 0.0;

(* Find the average of the boundary values

and define the initial estimate of u: *)

sum := 0.0;

FOR i := 1 to rows DO
sum := sum + left([i] + right[i];

FOR i := 1 to cols DO
sum := sum + top[i] + bottom[il];

FOR i := 1 to size DO
ufli] := sum/ (2*rows + 2*cols);

(* Establish the coefficient matrices: *)

FOR i := 1 to size DO BEGIN
u coef[i,1] := -1.0;

u coef[i,2] := 1.0/rho + 2.0;

u coef[i,3] := -1.0;

FOR j := 1 to 3 DO
v_coef[i,]] := u coef[i,]];

END; {for i}

FOR 1 := 1 to (rows - 1) DO BEGIN
u coef[i*cols,3] := 0.0;

u coef[i*cols + 1,1] := 0.0;
END; {for i}

u coef[l,1] := 0.0;

u coef[size, 3] := 0.0;

FOR 1 := 1 to (cols - 1) DO BEGIN
v_coef[i*rows,3] := 0.0;
v_coef[i*rows + 1,1] := 0.0;
END; {for i}

v _coef[1,1] := 0.0;

v_coef[size,3] := 0.0;

(* Get boundary values into bcnd vectors:

FOR 1 := 1 to size DO BEGIN
u bend[i] := 0.0;
v_bcnd[i] := 0.0;

END; {for i}
FOR i := 1 to cols DO BEGIN
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u bcnd[i] := topli];
u bcnd[size - cols + 1] := bottom[i];
END; {for i}
FOR i := 1 to rows DO BEGIN
J := (i-1)*cols + 1;
u bcnd[j] := u bend[j] + left[i];
j := i*cols;
u bend[j] := u bend[j] + right[i];
END; {for i}
FOR 1 := 1 to rows DO BEGIN
v_bcnd[i] := left[i];
v_bcnd[size - rows + 1] := right[i];
END; {for i}
FOR i := 1 to cols DO BEGIN
J := (i-1)*rows + 1;
v_bend[J] := v _bend[J] + toplil;
J = i*rows;
v_bcnd[j] := v _bcnd[j] + bottom[i];

END; {for i}

(* Replace the coefficient matrices by their

LU decompositions: *)
FOR i := 2 to size DO BEGIN
u coef[i-1,3] := u_coef[i—1,3]/u_coef[i—1,2];
u coef[i,2] := u coefl[i,?2]
- u coef[i,1l]*u coef[i-1,3];
v_coef[i-1,3] := v _coef[i-1,3]/v_coef[i-1,2];
v _coef[i,2] := v coef[i,2]

- v_coef[i,1]*v coef[i-1,3];
END; {for i}

k := 0;
REPEAT
k =k + 2;
FOR i := 1 to size DO
old u[i] := uli];

Solve(v_coef, v _bend, u, cols, rows, V),
Solve (u _coef, u bcend, v, rows, cols, u);
UNTIL (MaxDif (old u,u) < tol) OR (k >= itermax),

assign(f,"ASO0l 5 3.DAT’);
rewrite (f);
writeln(f);, writeln(f);
writeln(f,’ Fxxxxkxk  ASSIGNMENT 5, 7,
" QUESTION 3 ********I);
writeln (f);
writeln(f,’ A.D.I. Method for the Laplace’,
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equation:’);

writeln(f,”’ rho = ’,rho:4:2);
writeln(f,”’ tolerance = ’,t0l1:10:6);
writeln (f,’ max. 1iterations = ’',itermax);
writeln (f);
writeln(f,’ Solution:’");
writeln (f);
(* Print solution, 3 values per line: *)
FOR 1 := 1 to (size div 3) DO BEGIN
FOR j := 1 to 3 DO BEGIN
1 := (i - 1)*3 + 7;
write (f,”’ u’,1:2,’” = ",ull]:8:4);
END; {for 7}
writeln (f);
END; {for i}
FOR 1 := (size div 3)*3 + 1 to size DO

write(f,’

writeln (f)
writeln (f,
writeln (f,

u’,1:2," = ",ull]:8:4);

2
! iterations =

4

"y k)
max |u - old u| = 7,

MaxDif (old u,u) :8:6);

close (f);

END.
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A.D.I. Method for the Laplace equation:

rho = 1.00

tolerance = 0.000010

max. iterations = 100

Solution:

ul = 095.3613 u = 67.7965 u = 38.
u 4 = 103.6489 ub = 067.7359 u 6 = 34.
u 7 = 101.4984 u 8 = 64.9402 u 9 = 32.
ul0 = 87.4043 11 = 58.1190 12 = 30.
iterations = 20

ASSIGNMENT 5,

*kkhkkhkkkkk Kk

QUESTION 3

max |[u - old u|l = 0.000006

0886
5580
4074
1316



