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Memo for Assignment 4 S2 2017

Question 1

Bob, standing at the rear end of a railroad car, shoots an arrow toward the front end of
the car. The velocity of the arrow as measured by Bob is 1/5c. The length of the car as
measured by Bob is 150 meters. Alice, standing on the station platform observes all of this
as the train passes by her with a velocity of 3/5c. What values does Alice measure for the
following quantities:

(a) The length of the railroad car?

(b) The velocity of the arrow?

(c) The amount of the time the arrow is in the air?

(d) The distance that the arrow travels?

Solution

Part A

Let’s call the frame where Bob is at rest S Õ and the frame where Alice is at rest S. The
Lorentz factor between the two frames are

“ = 1
Ò

1 ≠ V 2

c2

= 1
Ò

1 ≠ 9
25

= 1
Ò

16
25

= 5
4

Since Bob is at rest with respect to the railroad car, he will measure the proper length LP .
The length that Alice measures L will be contracted according to

L = LP

“

1



= 4
5150 m

= 120 m

So Alice will measure the railroad car to be 120 m long.

Part B

To determine the speed of the arrow as measured by Alice v from the speed as measured by
Bob vÕ, we use the velocity transformation equation. The velocity transformation equations
given in the textbook on p30 is given as

vÕ = v ≠ V

1 ≠ vV/c2

where V is the relative speed between the two frames (V = 3/5c in this case) and v is the
speed of the moving object (arrow) as measured in the S frame and vÕ is the the speed of
the moving object as measured in the S Õ frame, where the two frames are in the standard
configuration.

To solve this problem, we are actually looking for the inverse velocity transformation. This
is easily obtained from the given transformation with a little algebra.

vÕ = v ≠ V

1 ≠ vV/c2

vÕ
1
1 ≠ vV/c2

2
= v ≠ V

vÕ ≠ vÕvV/c2 = v ≠ V

v + vÕvV/c2 = V + vÕ

v
1
1 + vÕV/c2

2
= V + vÕ

v = V + vÕ

1 + vÕV/c2

From here it is simple to determine the speed that Alice measures for the arrow by plugging
in the known values

v = V + vÕ

1 + vÕV/c2

= 3c/5 + c/5
1 + (1c/5) (3c/5) /c2
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= 4c/5
28/25

= 4c

5 ◊ 25
28

= 5
7c

So Alice measures the arrow’s speed to be v = 5/7c.

Part C

The important thing to recognise when doing this question is that the arrow is moving in
the same direction as the arrow, so the arrow will travel further than just the length of the
train car. The figure below illustrates this from Alice’s point of view.

The markers at the bottom of each panel in the figure shows the length of the train car. The
arrow will stop travelling once it hits the far wall of the car. As the arrow travels to the
right, the far wall of the car is also moving to the right, so the arrow will eventually travel
further than the lenght of the car.

The total distance that the arrow will travel, will be equal to the length of the car plus the
distance the car has travelled in the in the time the arrow is in the air. We write this as (all
quantities as measured in S)

distance arrow travels = (length of car) + (distance car travels)

�xarrow = L + �xtrain

We use the formula
v = �x

�t

which is always valid in a single frame if the speed is constant. It is important to note that
this formula is only valid for intervals of x and t, not for single coordinates.
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Both of the intervals of distance we are considering is travelled in the same amount of time,
which is the time that the arrow is in the air, �tarrow. Now we can write

varrow�tarrow = L + vtrain�tarrow

varrow�tarrow = L + V �tarrow

�tarrow (varrow ≠ V ) = L

�tarrow = L

varrow ≠ V

= 120 m
5c/7 ≠ 3c/5

= 35 ◊ 120 m
4 ◊ 3 ◊ 108 ms≠1

= 3.5 ◊ 10≠6 s

So, according to Alice, the arrow is in the air for 3.5 ◊ 10≠6 seconds.

Part D

Again we use the definition of speed
v = �x

�t

We have already calculated the speed and the time interval that the arrow is in the air
according to Alice, so we get for the distance the arrow travels

�xarrow = varrow�tarrow

=
35c

7

4 1
3.5 ◊ 10≠6 s

2

=
35

7 ◊ 3 ◊ 108 ms≠1
4 1

3.5 ◊ 10≠6 s
2

= 750 m

Or you could use the formula constructe in Part C:

�xarrow = L + V �tarrow

= 120 m + 3c

5
1
3.5 ◊ 10≠6 s

2

= 120 m + 3
5

1
3 ◊ 108 ms≠1

2 1
3.5 ◊ 10≠6 s

2

= 750 m
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Question 2

Maxwell’s wave equation for an electric field propagating in the x-direction is

ˆ2E

ˆx2 = 1
c2

ˆ2E

ˆt2 ,

where E (x, t) is the amplitude of the electric field. Show that this equation is invariant
under a Lorentz transformation to a reference frame moving with relative speed v along the
x-axis.

Solution

The relevant Lorentz transformations are given by

xÕ = “ (x ≠ vt)

tÕ = “
3

t ≠ vx

c2

4

where “ = (1 ≠ v2/c2)≠1/2.

Note that xÕ = xÕ (x, t) and tÕ = tÕ (x, t), so that we use the chain rule to obtain for a wave
function

ˆE

ˆx
= ˆE

ˆxÕ
ˆxÕ

ˆx
+ ˆE

ˆtÕ
ˆtÕ

ˆx
= “

ˆE

ˆxÕ ≠ “v

c2
ˆe

ˆtÕ

ˆE

ˆt
= ˆE

ˆxÕ
ˆxÕ

ˆt
+ ˆE

ˆtÕ
ˆtÕ

ˆt
= ≠“v

ˆE

ˆxÕ + “
ˆE

ˆtÕ

Therefore we have

ˆ2E

ˆx2 =
A

“
ˆE

ˆxÕ ≠ “v

c2
ˆE

ˆtÕ

B A

“
ˆE

ˆxÕ ≠ “v

c2
ˆE

ˆtÕ

B

= “2 ˆ2E

ˆxÕ2 ≠ 2“2v

c2
ˆE

ˆxÕ
ˆE

ˆtÕ + “2v2

c4
ˆ2E

ˆtÕ2

ˆ2E

ˆt2 =
A

≠“v
ˆE

ˆxÕ + “
ˆE

ˆtÕ

B A

≠“v
ˆE

ˆxÕ + “
ˆE

ˆtÕ

B

= “2v2 ˆ2E

ˆxÕ2 ≠ 2“2v
ˆE

ˆxÕ
ˆE

ˆtÕ + “2 ˆ2E

ˆtÕ2

5



Substituting this into the wave equation

ˆ2E

ˆx2 = 1
c2

ˆ2E

ˆt2

and rearranging gives

“2 ˆ2E

ˆxÕ2 ≠ “2v2

c2
ˆ2E

ˆxÕ2 + “2v2

c4
ˆ2E

ˆtÕ2 ≠ “2

c2
ˆ2E

ˆtÕ2 =
A

2“2v

c2
ˆE

ˆxÕ
ˆE

ˆtÕ ≠ 2“2v

c2
ˆE

ˆxÕ
ˆE

ˆtÕ

B

“2 ˆ2E

ˆxÕ2

A

1 ≠ v2

c2

B

≠ “2

c2
ˆ2E

ˆtÕ2

A

1 ≠ v2

c2

B

= 0

ˆ2E

ˆxÕ2 = 1
c2

ˆ2E

ˆtÕ2

Therefore, the wave equation is invariant under a Lorentz transformation.

Question 3

A physics professor claims in court that the reason he went through the red light (⁄ = 650 nm)
was that, due to his motion, the red color was Doppler shifted to green (⁄ = 550 nm). How
must he have been going for his story to be true? Hint: The relation between frequency f

and wavelength ⁄ of light is given by c = ⁄f .

Solution

We use the relativistic Doppler formula. It is clear from the problem that the pro�essor is
approaching the tra�c light. The receiver in this case is the pro�essor’s eyes and the emitter
is the light of the tra�c light. So for the professor to receive green light when red ligth was
emitted, we have

frec = fem

Û
c + V

c ≠ V

c

⁄rec
= c

⁄em

Û
c + V

c ≠ V

c

550 nm = c

650 nm

Û
c + V

c ≠ V
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650 nm
550 nm =

Û
c + V

c ≠ V
313

11

42
= c + V

c ≠ V
169c

121 ≠ 169
121V = c + V

≠V
3169

121 + 1
4

= c ≠ 169c

121
V = ≠

3121
290

4 3
≠48c

121

4

= 1.7c

The professor must have been travelling at 1.7c for his story to be true.

Question 4

In the context of special relativity, a contravariant four-vector can be constructed from
the charge density fl and the current density j as follows [Jµ] = (cfl, jx, jy, jz) where jx,
jy and jz are the components of j in the x, y and z directions, respectively. Hint: To
answer the questions below, use the properties of four-vectors. Do not try to solve this using
electromagnetism.

(a) Determine the transformation equations of Jµ to a frame S Õ that is moving with a
constant speed V in the positive x-direction.

(b) Construct a quantity using the components of Jµ that is a Lorentz invariant in
Minkowski spacetime.

(c) Imagine you are in a reference frame in which fl = 2/c and jx = jy = jz = 2.
Determine [J Õµ] as measured by someone moving at a velocity V =

Ò
3/4c along the x-

direction with respect to your reference frame.
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Solution

Part A

[Jµ] is a contravariant four-vector and the relative movement of S Õ describes the standard
configuration in special relativity. So it’s components transform as

J Õ0 = “
1
J0 ≠ V J1/c

2

= “ (cfl ≠ V jx/c)

J Õ1 = “
1
J1 ≠ V J0/c

2

= “ (jx ≠ V cfl/c)

J Õ2 = J2 = jy

J Õ3 = J3 = jz

Part B

The quantity
3ÿ

µ=0
JµJµ

will be invariant under a Lorentz transformation. (Can you show this explicitly for each of
its components?)

Part C

First we calculate the Lorentz factor “ for V =
Ò

3/4c

“ = 1
Ò

1 ≠ V 2

c2

= 1
Ò

1 ≠ 3
4

= 1
Ò

1
4
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= 2

We use the transformation equations from Part A and substitute “ = 2, fl = 2/c, jx = jy =
jz = 2 and V =

Ò
3/4c to get

J Õ0 = “ (cfl ≠ V jx/c)

= 2
Q

a2 ≠ 2
Û

3
4

R

b

= 0.54

J Õ1 = “ (jx ≠ V cfl/c)

= 2
Q

a2 ≠ 2
Û

3
4

R

b

= 0.54

J Õ2 = jy = 2

J Õ3 = jz = 2

So that we have [J Õµ] = (0.54, 0.54, 2, 2).

Question 5

An electron e≠ with kinetic energy 1 MeV makes a head-on collision with a positron e+ that
is at rest. (A positron is an antimatter particle that has the same mass as an electron, but
opposite charge.) In the collision the two particles annihilate each other and are replaced by
two photons “ of equal energy. The reaction can be written as

e≠ + e+ æ 2“ .

Determine the energy, momentum and speed of each photon.
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Solution

By conservation of energy, the energy of the system before and after the collison will be the
same.

Ee + Ep = 2E“

The total energy of the electron and positron before the collision is

Ee + Ep = EKe + mec
2 + mpc2

= 1 MeV + 2
1
0.511 MeV/c2

2
c2

= 2.02 MeV

By conservation of energy, we find

E“ = Ee + Ep

2
= 2.02 MeV

2
= 1.01 MeV

The momentum of the photons will then be

p“ = E

c
= 1.01 MeV/c

The speed of both photons will be v“ = c.

Note: It might be tempting to use conservation of momentum to solve this
problem, rather than conservation of energy, i.e.

pe + pp = 2p“

In this case, this approach wouldn’t work, because we only know the directions
of the photons velocities, and therefore their momenta. Since the energies of the
photons are the same, the magnitudes of their momenta will be equal, but not
their momenta in vector form, since they will move in di�erent directions, thus
p“1 ”= p“2.
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Question 6

In special relativity, the energy, momentum and mass of a particle are all closely related to
one another.

(a) Derive the relation E2 = c2p2 + m2c4 by starting from the relativistic definitions of
E and p, i.e. E = “mc2 and p = “mv.

(b) Use the equation derived in part (a) to show that the mass of a particle can be
expressed as

m = c2p2 ≠ E2
k

2Ekc2

where Ek is the kinetic energy of the particle.

Solution

Part A

Squaring the definitions of E and p

E2 = “2m2c4

p2 = “2m2u2

Multiplying the last equation by c2 and subtracting gives

E2 ≠ p2c2 = “2m2
0c

4 ≠ “2m2
0u

2c2

= m2
0c

4
A

“2 ≠ “2 u2

c2

B

Using

“ = 1
Ò

1 ≠ u2/c2

we show that

“2 ≠ “2 u2

c2 = 1
1 ≠ u2/c2 ≠ u2/c2

1 ≠ u2/c2

11



= 1 ≠ u2/c2

1 ≠ u2/c2

= 1

It follows that
E2 = p2c2 + m2

0c
4

Part B

The total energy is equal to the kinetic energy plus the mass energy

E = Ek + mc2

Squaring both sides gives
E2 = E2

k + 2Ekmc2 + m2c4

Using the result from the previous question we get

c2p2 = E2
k + 2Ekmc2

Solving for m gives

m = c2p2 ≠ E2
k

2Ekc2

as required.
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