Tutorial Letter 207/2/2017

Special Relativity and Riemannian Geometry APM3713

Semester 2

Department of Mathematical Sciences

IMPORTANT INFORMATION:

This tutorial letter contains the solutions to Assignment 07.

BAR CODE

Learn without limits.

Tutonial Letter 101/3/2017

Special Relativity And Riemannian Geometry
Semester 2
Assignment T
1)
$$x' = x = a \cos v$$
, $x' = y = a \sin v$, $x^2 = z = u$
a) $ds^2 = \int_{ab} dx^2 dx^2$
 $= dx^2 dx a$
 $= dx^2 dx a$
 $= dx' dx i + dx^2 dx z + dx^2 dx z$
 $= (-a \sin v dv^2 + (a \cos v dv^2 + du^2)^2 + (du)^2)^2$
 $= a^2 \sin^2 v dv^2 + a^2 \cos^2 v dv^2 + du^2$
 $ds^2 = a^2 dv^2 + du^2$
b) The metric tensor. $\int_{av}^{av} = \begin{pmatrix} a^2 & 0 \\ 0 & 1 \end{pmatrix}^2$
The obust under bensor. $\int_{av}^{av} = \begin{pmatrix} a^2 & 0 \\ 0 & 1 \end{pmatrix}^2$
() The only non-zero components of the matrix tensor
 $are, g_{11}, g_{12}, g_{13}^2, g_{13}^2$.
The Christoffel coefficients of the surface are
 $jiven b_3$, $\Gamma_{pr}^{w} = \frac{1}{2}g^{us}(\partial_p g_{sr} + \partial_r g_{ps} - \partial_s g_{pr})$

3.)
$$\chi^{ij} = \chi^{ji}$$
 in S
in $\overline{5}$, $\overline{\chi}^{ij} = \partial_{\kappa}\overline{z}^{i} \partial_{\ell}\overline{z}^{j} \chi^{\ell \kappa}$
 $\overline{\chi}^{ij} = \partial_{\kappa}\overline{z}^{i} \partial_{\ell}\overline{z}^{j} \chi^{\ell \kappa}$ - - - \mathcal{O}
then Also $\overline{\chi}^{ii} = \partial_{\kappa}\overline{z}^{i} \partial_{\ell}\overline{z}^{i} \chi^{\ell \kappa}$
 $\overline{\chi}^{i} = \partial_{\kappa}\overline{z}^{i} \partial_{\ell}\overline{z}^{i} \chi^{\ell \kappa}$ - - \mathcal{O}
replace j with i , there $\overline{\chi}^{ij} = \overline{\chi}^{ii}$
4.) Rikelm = $K(g_{i\ell}g_{\kappa n} - g_{in}g_{\kappa \ell})$
 $R_{\kappa m} = R^{\ell}\kappa_{\ell m}$
 $= K(4g_{\kappa m} - g_{m \kappa})$
 $= 3Kg_{\kappa m}$
 $R = R^{m} = 12K$ or $-12K$
5.) $\overline{g}_{ij} = Kg_{ij}$, $K\overline{g}^{ij} = g^{ij}$
 $\Gamma^{i}_{j\kappa} = \frac{1}{2}K\overline{g}^{i\ell}(\frac{1}{\kappa}\partial_{j}\overline{g}_{\ell \kappa} + \frac{1}{2}\sqrt{g}_{k}\overline{g}_{\ell j} - \frac{1}{\kappa}\partial_{\ell}\overline{g}_{in}}) = \overline{\Gamma}^{i}_{j\kappa}$
This means that the Curvature tensors are the same.
 $\overline{g}^{ij}\overline{g}_{i\kappa} = \overline{\delta}^{i}_{\kappa} = \frac{1}{\kappa}g^{ij}\kappa g_{i\kappa} = \overline{\delta}^{i}_{i}$

$$R^{\alpha} p N S = R p N S \Rightarrow K \alpha p = K \alpha p , R = R K$$

$$G \alpha p = R \alpha p - \frac{1}{2} R G \alpha p$$

$$= R \alpha p - \frac{1}{2} R G \alpha p$$

$$= R \alpha p - \frac{1}{2} R G \alpha p$$

$$= G \alpha p$$

$$Total = 22$$

$$= 100\%$$