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Memo for Assignment 7 S2 2018

Chapters 3 & 4

Question 1

The right helicoid can be parametrized as

x (u, v) = u cos v

y (u, v) = u sin v

z (u, v) = av

where a is a constant.

(a) Find the line element for the surface.

(b) What is the metric tensor and the dual metric tensor?

(c) Determine the values of all the Christoffel coefficients of the surface.

(d) What is the value of the component R1
212 of the Riemann curvature tensor?

(e) What is the Ricci tensor for the surface?

(f) What is the curvature scalar R for the surface?

(g) What is the Gaussian curvature of the surface?

(h) Is the surface Euclidean? Explain your answer.

(i) Suppose that the surface is filled with non-interacting particles, or dust. Use the two
dimensional version of the energy-momentum tensor for dust and Einstein’s field equation
to find an expression for the Einstein constant  for this surface.
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Solution

Part A

In Cartesian coordinates, the line element is given by

(dl)2 = (dx)2 + (dy)2 + (dz)2 .

We have

x (u, v) = u cos v

y (u, v) = u sin v

z (u, v) = av

so that

dx =
@x

@u
du+

@x

@v
dv

=
@

@u
(u cos v) du+

@

@v
(u cos v) dv

= cos v du� u sin v dv

Similarly, we get

dy =
@y

@u
du+

@y

@v
dv

=
@

@u
(u sin v) du+

@

@v
(u sin v) dv

= sin v du+ u cos v dv

dz =
@z

@u
du+

@z

@v
dv

=
@

@u
(av) du+

@

@v
(av) dv

= a dv

Substituting this into the Cartesian line element and simplifying gives

(dl)2 = (dx)2 + (dy)2 + (dz)2

= (cos v du� u sin v dv)2 + (sin v du+ u cos v dv)2 + (a dv)2
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= cos2 v du2 � u cos v sin v dudv + u2 sin2 v dv2 + sin2 v du2 + u cos v sin v dudv

+u2 cos2 v dv2 + a2 dv2

=
⇣
cos2 v + sin2 v

⌘
du2 +

h
u2
⇣
sin2 v + cos2 v

⌘
+ a2

i
dv2

= du2 +
⇣
u2 + a2

⌘
dv2

Part B

We know that the line element has the form

dl2 =
nX

i,j=1

gijdx
idxj

If we choose x1 = u and x2 = v, this reduces to

dl2 =
2X

i,j=1

gijdx
idxj

= g11dx
1dx1 + 2g12dx

1dx2 + g22dx
2dx2

= g11 (du)
2 + 2g12dudv + g22 (dv)

2

Above we used the fact that the metric tensor is symmetric gij = gji. Comparing this to the
line element calculated in Part A allows us to identify

g11 = 1, g12 = 0, g22 = u2 + a2

so that the metric tensor for the surface is

[gij] =

0

@ 1 0

0 u2 + a2

1

A

We know that we must have
X

k

gikgkj = �ij

so that the dual metric [gij] is just the matrix inverse of [gij]. We find

h
gij
i
=

0

@ 1 0

0 1
u2+a2

1

A
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Part C

The Christoffel coefficients are defined by

�h
ij =

X

k

1

2
ghk (gki,j + gjk,i � gij,k)

�1
11 =

1

2
g11 (g11,1 + g11,1 � g11,1) +

1

2
g12 (g21,1 + g12,1 � g11,2)

All the gik and gik where i 6= k will be zero, so their derivatives will also be zero. Remem-
bering this will reduce the calculations a lot. So we have

v�1
11 =

1

2
g11 (g11,1 + g11,1 � g11,1) +

1

2
g12 (g21,1 + g12,1 � g11,2)

=
1

2
g11g11,1

=
1

2
(1)

d

du
(1)

= 0

Using the symmetric property of the Christoffel coefficients �h
ij = �h

ji will also cut down on
calculations

�1
12 = �1

21 =
1

2
g11 (g11,2 + g21,1 � g12,1) +

1

2
g12 (g21,2 + g22,1 � g12,2)

=
1

2
g11g11,2

=
1

2
(1)

@

@v

⇣
u2 + a2

⌘

= 0

�1
22 =

1

2
g11 (g12,2 + g21,2 � g22,1) +

1

2
g12 (g22,2 + g22,2 � g22,2)

= �1

2
g11g22,1

= �1

2
(1)

@

@u

⇣
u2 + a2

⌘

= �u
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�2
11 =

1

2
g21 (g11,1 + g11,1 � g11,1) +

1

2
g22 (g21,1 + g12,1 � g11,2)

= �1

2
g22g11,2

= �1

2

✓
1

u2 + a2

◆
@

@v

⇣
u2 + a2

⌘

= 0

�2
12 = �2

21 =
1

2
g21 (g12,1 + g11,2 � g21,1) +

1

2
g22 (g22,1 + g12,2 � g21,2)

=
1

2
g22g22,1

=
1

2

✓
1

u2 + a2

◆
@

@u

⇣
u2 + a2

⌘

=
u

u2 + a2

�2
22 =

1

2
g21 (g12,2 + g21,2 � g22,1) +

1

2
g22 (g22,2 + g22,2 � g22,2)

=
1

2
g22g22,2

=
1

2

✓
1

u2 + a2

◆
@

@v

⇣
u2 + a2

⌘

= 0

In summary, the only non-zero Christoffel coefficients that we have are �1
22 = �u and

�2
12 = �2

21 = u/ (u2 + a2).

Part D

The Riemann Curvature tensor is defined by

Rl
ijk ⌘

@�l
ik

@xj
�

@�l
ij

@xk
+
X

m

�m
ik�

l
mj �

X

m

�m
ij�

l
mk
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since we are dealing with a two dimensional surface, the only independent entry will be R1
212,

so it will be sufficient to only calculate this. We have

R1
212 =

@�1
22

@x1
� @�1

21

@x2
+
X

m

�m
22�

1
m1 �

X

m

�m
21�

1
m2

=
@�1

22

@u
� @�1

21

@v
+ �1

22�
1
11 + �2

22�
1
21 � �1

21�
1
12 � �2

21�
1
22

=
@�1

22

@u
� �2

21�
1
22

=
@

@u
(�u)�

✓
u

u2 + a2

◆
(�u)

= �1 +
u2

u2 + a2

=
�u2 � a2 + u2

u2 + a2

=
�a2

u2 + a2

For the Riemann curvature tensor we have

R1
212 = R2

121 =
�a2

u2 + a2

R1
221 = R2

112 =
a2

u2 + a2

With all other entries equal to zero.

Part E

The Ricci tensor is defined by
Rij ⌘

X

k

Rk
ijk

Using the fact that the Ricci tensor is symmetric we find the 4 entries of the Ricci tensor

R11 = R1
111 +R2

112

=
a2

u2 + a2

R12 = R21 = R1
121 +R2

122

= 0
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R22 = R1
221 +R2

222

=
a2

u2 + a2

Part F

The Ricci scalar is defined by
R ⌘

X

i, j

gijRij

So we have for the helicoid

R = g11R11 + g12R12 + g21R21 + g22R22

= g11R11 + g22R22

= (1)

 
�a2

u2 + a2

!

+
✓

1

u2 + a2

◆ �a2

u2 + a2

!

=
�a2u2 � a4 � a2

(u2 + a2)2

=
�a2 (u2 + a2 + 1)

(u2 + a2)2

Part G

The Gaussian curvature of a two dimensional surface is given by

K =
R1212

g

where g = det [gij] (see Exercise 3.16 p105).

The determinant of a diagonal matrix is just the product of its diagonal entries so that

g =
Y

i

gii

= (1)
⇣
u2 + a2

⌘

= u2 + a2

R1212 is the element of the Riemann curvature tensor with an index lowered, i.e.

R1212 =
X

i

gi1R
i
212
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= g11R
1
212 + g21R

2
212

= (1)

 
�a2

u2 + a2

!

=
�a2

u2 + a2

So we have for the Gaussian curvature

K =
R1212

g

=

 
�a2

u2 + a2

!✓
1

u2 + a2

◆

=
�a2

(u2 + a2)2

Part H

No, the helicoid is not Euclidean (flat). The necessary and sufficient condition for a surface
to be flat is that the Riemann curvature tensor (all its components) should vanish (be equal
to zero) at all points on the surface. This is not true for all values of u and v.

Part I

Einstein’s field equation for two dimensions is

Rij �
1

2
Rgij = �Tij

where i and j can take the values of 1 or 2, as with the rest of the calculations regarding the
surface above. The only non-zero component of the energy-momentum tensor [T ij] for dust
is T 11 = ⇢c2.

[T ij] is related to [Tij] by

Tij =
X

m,n

gimgjnT
mn

8
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Clearly, the only non-zero component of [Tij] will be T11. We find

T11 =
X

m,n

g1mg1nT
mn

= g11g11T
11 + g11g12T

12 + g12g11T
21 + g12g12T

22

= g11g11T
11

= ⇢c2

Now all the quantities in the Einstein field equation are known. We substitute and solve for


R11 �
1

2
Rg11 = �T11

�a2

u2 + a2
� 1

2

 
�a2 (u2 + a2 + 1)

(u2 + a2)2

!

(1) = �⇢c2

�2a2u2 � 2a4 + a2u2 + a4 + a2

2 (u2 + a2)2
= �⇢c2

�a2u2 � a4 + a2

2 (u2 + a2)2
= �⇢c2

 =
a2 (u2 + a2 � 1)

2⇢c2 (u2 + a2)2

Question 2

Show that the contracted Christoffel symbol
P

i �
i
ik is given by

X

i

�i
ik =

X

i

X

m

gim

2

@gmi

@xk
.

Solution

The Christoffel coefficients are defined by

�i
jk =

X

m

1

2
gim (gmj,k + gkm,j � gjk,m)
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If we contract the Christoffel coefficients we have

X

i

�i
ik =

X

i

X

m

1

2
gim (gmi,k + gkm,i � gik,m)

Since i and m are just dummy indices being summed over the same range, they can be
interchanged without changing the meaning of the expression. We interchange them in the
last term in brackets to get

X

i

�i
ik =

X

i

X

m

1

2
gim (gmi,k + gkm,i � gmk,i)

The metric is symmetric, so that gkm = gmk,

X

i

�i
ik =

X

i

X

m

1

2
gim (gmi,k + gkm,i � gkm,i)

=
X

i

X

m

1

2
gimgmi,k

=
X

i

X

m

gim

2

@gmi

@xk

Question 3

Verify that if a tensor is symmetric in one frame, it will be symmetric in all coordinate
frames. That is, show that if it is given that X ij = Xji in frame S, then it will be true that
X̄ ij = X̄ji in a coordinate frame S̄.

Solution

If X ij = Xji, then

Since X ij is a tensor, we know that it transforms as follows

X̄ab =
X

i

X

j

@x̄a

@xi

@x̄b

@xj
X ij

10
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On the RHS both i and j are just dummy indices, i.e. they are being summed over. This
means that the two indices can be replaced by any other indices without changing the
meaning of the expression, since they are just counters to be summed over, i.e.

X

i

X

j

@x̄a

@xi

@x̄b

@xj
X ij =

X

↵

X

�

@x̄a

@x↵

@x̄b

@x�
X↵� =

X

r

X

s

@x̄a

@xr

@x̄b

@xs
Xrs

In particular, we can replace j with i and i with j, so that

X̄ab =
X

i

X

j

@x̄a

@xi

@x̄b

@xj
X ij

=
X

j

X

i

@x̄a

@xj

@x̄b

@xi
Xji

=
X

j

X

i

@x̄a

@xj

@x̄b

@xi
X ij

In the last step we used the symmetry of property X ij = Xji. This is the transformation
expression for a second order contravariant tensor where xi ! x̄b and xj ! x̄a so we have

X̄ab =
X

j

X

i

@x̄a

@xj

@x̄b

@xi
X ij

= X̄ba

Thus we have shown that if a tensor is symmetric in one coordinate frame, i.e. X ij = Xji

in S, then it is also symmetric in any other arbitrary coordinate frame S̄.

Question 4

Suppose that Riklm = K (gilgkm � gimgkl) on some four dimensional Riemannian space. Show
that for the curvature scalar we have R = �12K.

11
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Solution

From tensor contraction we can write

Rkl =
X

i

X

m

gimRiklm

=
X

i

X

m

Kgim (gilgkm � gimgkl)

=
X

i

X

m

K
⇣
gimgilgkm � gimgimgkl

⌘

Remember that tensors are not commutative, so be mindful of the order of the multiplication.
We use the property of the metric tensor

P
i g

imgin = �mn to get

Rkl =
X

m

K (�ml gkm � �mmgkl)

= K (gkl � 4gkl)

= �3Kgkl

In the second step above we used the definition the Kronecker delta. If we have

X

m

�ml gkm

all the terms in the sum where m 6= l, will be zero, where the term where m = l will be
equal to gkl, i.e.

X

m

�ml gkm = �0lgk0 + �1lgk1 + . . .+ �llgkl + . . .+ �Nl gkN

= (0) gk0 + (0) gk1 + . . .+ (1) gkl + . . .+ (0) gkN

= gkl

So the Kronecker delta can effectively be used to replace one index with another. On the
other hand, if the two indices of the Kronecker delta are the same, i.e.

P
m �mm, the result is

not equal to one because of the summation. Then we have

X

m

�mmgkl = �00gkl + �11gkl + . . .+ �mmgkl + . . .+ �NNgkl

12
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= (1) gk0 + (1) gk1 + . . .+ (1) gkl + . . .+ (1) gkN

= Ngkl

In this case we are working in a 4 dimensional space, so that N = 4 and
P

m �mmgkl = 4gkl

For the curvature scalar, we contract our result for Rkl

R =
X

k

X

l

gklRkl

= �3K
X

k

X

l

gklgkl

= �3K
X

k

�kk

= �12K

Question 5

Two N -dimensional Riemann spaces M and M̄ have the metric tensors gij and ḡij respec-
tively, and

ḡij = kgij

where k is a constant. What are the relationships between the curvature tensors, Ricci
tensors, curvature scalar and Einstein tensors of the two spaces?

Solution

We have
ḡij = kgij

and therefore
ḡij =

1

k
gij

The transformation of an arbitrary Christoffel symbol from M to M̄ gives

�h
ij =

X

k

1

2
ghk (gki,j + gjk,i � gij,k)

13
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=
X

k

k

2
ḡhk

✓
1

k
ḡki,j +

1

k
ḡjk,i �

1

k
ḡij,k

◆

=
X

k

1

2
ḡhk (ḡki,j + ḡjk,i � ḡij,k)

= �̄h
ij

Using this we get for the curvature tensor

Ri
jhk = �i

jh,k � �i
jk,h +

X

m

�i
mk�

m
jh �

X

m

�i
mh�

m
jk

= �̄i
jh,k � �̄i

jk,h +
X

m

�̄i
mk�̄

m
jh �

X

m

�̄i
mh�̄

m
jk

= R̄i
jhk

Then Ricci tensor becomes

Rjk =
X

h

X

i

X

m

gmhgimR
i
jhk

=
X

h

X

i

X

m

⇣
kḡmh

⌘ ✓1
k
ḡim

◆
R̄i

jhk

= R̄jk

For the Curvature scalar

R =
X

i

X

j

gijRij

=
X

i

X

j

kḡijR̄ij

= kR̄

And the relationship between the Einstein tensors is

Gij = Rij �
1

2
gijR

= R̄ij �
1

2

1

k
ḡijkR̄

= R̄ij �
1

2
ḡijR̄

= Ḡij
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