## BASIC NUMERACY BNU1501

## ASSIGNMENT 2 POSSIBLE SOLUTIONS-SEMESTER 1/2018

## Question 1

Perimeter of any given shape is the total distance around the boundaries or edges of that shape.
Of all the sides of the given shape, only the perimeter (or circumference) of the semi-circle BC needs to be calculated. The other sides are given.

Perimeter of semi-circle BC is given by:
$\boldsymbol{C}=\frac{1}{2} \times \mathbf{2 \pi r}$, where $r$ is the radius of the semi-circle
$C=\frac{1}{2} \times 2 \times \pi \times 9=28.2743$
Total perimeter is therefore:
$P=A B+B C+C D+D E+E A=12+28.2743+12+16.1+8.1$
$P=76.4743=76.47 \mathbf{c m}$ to 2 decimal digits

## Question 2

Area of shaded region
$=$ Area of triangle $A E D+$ Area of rectangle $A B C D-$ Area of semi

- circle BC
$=\left(\frac{1}{2} \times\right.$ base $\times$ height $)+($ length $\times$ width $)-\left(\frac{1}{2} \times \pi r^{2}\right)$
$=\left(\frac{1}{2} \times 18 \times 6\right)+(18 \times 12)-\left(\frac{1}{2} \times \pi \times 9^{2}\right)$
$=54+216-127.2345=142.7655=142.77 \mathrm{~cm}^{2}$


## ROYAL ACADEMY

## Empowering you to conguer your morld

## Question 3

Volume of water $=$ Volume of rectangular container - Volume of 12 cans
$=($ length $\times$ breadth $\times$ height $)-\left(12 \times \pi r^{2} h\right)$
$=(40 \times 30 \times 10)-\left(12 \times \pi \times 5^{2} \times 10\right)$
$=12000-9424.777961=2575.222 \mathrm{~cm}^{3}$
Convert the volume to litres by dividing by 1000 since
1 litre $=1000 \mathrm{~cm}^{3}$
Capacity of water $=\frac{2575.222}{1000}=2.575 l=2.58 l$

## Question 4

Change in volume in the tank = Volume of cylindrical piece
Assume that the volume in tank rises by a height of $\boldsymbol{x}$ after the cylindrical piece has been dropped.

Change in volume $=$ length $\times$ breadth $\times$ height $=25 \times 20 \times x=500 x$
Volume of cylinder $=\pi r^{2} h=\pi \times 3^{2} \times 10=90 \pi$
But
Change in volume in the tank $=$ Volume of cylindrical piece
Thus
$500 x=90 \pi$
$x=\frac{90 \pi}{500}=0.5655 \mathrm{~cm}=0.57 \mathrm{~cm}$

## Question 5

Total area to be sealed is given by:
A $=$ Area of curved sides + Area of circular floor
$A=(2 \pi r \times$ depth $)+\left(\pi r^{2}\right)$
$A=2 \times \pi \times 1.5 \times 1.5)+\left(\pi \times 1.5^{2}\right)$
$A=14.13717+7.06858=21.2 m^{2}$
If 1 litre covers 3 sq. metres, find how many litres are required to complete the job.
Number of litres required $=\frac{21.2 \mathrm{~m}^{2}}{3 \mathrm{~m}^{2} / \text { litre }}=7.067$ litres
Given that the sealer comes in two-litre tins, find how many of these are required to complete the sealing job.

Number of two - litre tins required $=\frac{7.067}{2}=3.53$ tins
Therefore 4 tins have to be purchased to complete the job.

## Question 6

Area of shaded region is given by:
A = Area of circle - Area of triangle
The base and height of the triangle are equal to the radius of the circle of 40 mm .
Since the area is required in square centimetres, convert the millimetres to centimetres before calculating the area.

$$
\begin{align*}
& A=\left(\boldsymbol{\pi} \boldsymbol{r}^{2}\right)-\left(\frac{1}{2} \boldsymbol{b} \boldsymbol{h}\right) \\
& A=\left(\pi \times 4^{2}\right)-\left(\frac{1}{2} \times 4 \times 4\right) \\
& \boldsymbol{A}=\mathbf{1 6 \pi}-\mathbf{8}=\mathbf{4 2 . 2 6 5}=42.3 \mathrm{~cm}^{2} \tag{3}
\end{align*}
$$

## Question 7

Solve the following equation

$$
2(2 y-1)-3 y=4-y
$$

Remove brackets and group like terms.

$$
\begin{aligned}
& 4 y-2-3 y=4-y \\
& 4 y-3 y+y=4+2 \\
& 2 y=6 \\
& \frac{2 y}{2}=\frac{6}{2}
\end{aligned}
$$

$$
y=3
$$

[2]

## Question 8

Solve for x in the following equation

$$
\frac{2 x}{5}-\frac{1}{2}=\frac{x}{5}
$$

Remove fractions by multiplying every term by the LCM of 2 and 5 which is 10 .
$10\left(\frac{2 x}{5}\right)-10\left(\frac{1}{2}\right)=10\left(\frac{x}{5}\right)$
$2(2 x)-5(1)=2(x)$
$4 x-5=2 x$
$4 x-2 x=5$
$2 x=5$
$\frac{2 x}{2}=\frac{5}{2}$
$x=2 \frac{1}{2}$
[1]

## Question 9

If $\boldsymbol{F}=\frac{9}{5} \boldsymbol{C}+32$, make $\boldsymbol{C}$ the subject of the formula.
Start by removing fractions by multiplying every term by 5 .
$5(F)=5\left(\frac{9}{5} C\right)+5(32)$
$5 F=9 C+160$
Isolate the term with the subject, $C$.
$5 F-160=9 C$
$\frac{5 F-160}{9}=\frac{9 C}{9}$
$\frac{5 F-160}{9}=C$
Express as separate fractions.
$C=\frac{5}{9} F-\frac{160}{9}$

## Question 10

If $V=l \times b \times h$, make $h$ the subject of the formula.
$V=l \times b \times h$
$\frac{V}{l \times b}=\frac{l \times b \times h}{l \times b}$
$\frac{V}{l \times b}=h$
$h=\frac{V}{l \times b}$

## Question 11

Determine the equation of the straight line that passes through points $(3 ;-2)$ and $(5 ;-6)$
Equation of straight line is given by:
$y-y_{1}=m\left(x-x_{1}\right)$ where $m=$ slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{-6-(-2)}{5-3}=\frac{-4}{2}=-2$
Therefore the equation of the straight line is
$y-(-2)=-2(x-3)$
$y+2=-2 x+6$
$y=-2 x+6-2$
$y=-2 x+4$
Question 12
$\mathrm{P}=8350$
$S=12859$
$\mathrm{t}=6$
$\mathrm{r}=$ ?
$S=P(1+r t)$
Make $r$ the subject in the above formula.
$S=P+P r t$
$S-P=P r t$
$\frac{S-P}{P t}=\frac{P r t}{P t}$
$\frac{S-P}{P t}=r=\frac{12859-8350}{8350 \times 6}=0.09=9 \%$

## Question 13

$S=10000$
$\mathrm{t}=8 / 12$
$\mathrm{r}=9.75 \%=0.0975$
$\mathrm{P}=$ ?
$S=P(1+r t)$
$\frac{S}{(1+r t)}=\frac{P(1+r t)}{(1+r t)}$
$\frac{S}{1+r t}=P=\frac{10000}{1+0.0975 \times \frac{8}{12}}=R 9389.67$
[1]

## Question 14

$\mathrm{P} / \mathrm{Y}=4$
$\mathrm{FV}=20000$
$\mathrm{I} / \mathrm{Y}=15$
$\mathrm{N}=3 \times \mathrm{P} / \mathrm{Y}=12$
$\mathrm{PV}=$ ?
The last computation for N can be avoided by using the $\mathrm{xP} / \mathrm{Y}$ key on the financial calculator. For the sake of those who will be using formulas I will pre-multiply the number of years by the P/Y value on the given information, but on the actual computation I will employ the $\mathrm{xP} / \mathrm{Y}$ key.

2ndF CA
2ndF P/Y 4 ENT ON/C
+/- 20000 FV
15 I/Y
$32 \mathrm{ndF} \mathrm{xP} / \mathrm{Y} \mathrm{N}$
COMP PV: PV = R12 $857.98=\mathbf{R 1 2} 858$ to the nearest rand.

## Question 15

$\mathrm{P} / \mathrm{Y}=4$
$P M T=2000$
$\mathrm{I} / \mathrm{Y}=18$
$\mathrm{N}=10 \times 4=40$
$\mathrm{PV}=$ ?
2ndF CA
2ndF P/Y 4 ENT ON/C
+/-2 000 PMT
18 I/Y
10 2ndF xP/Y N
COMP PV:
$\mathbf{P V}=\mathbf{R 3 6} 803.17=\mathbf{R 3 6} 803$ to the nearest rand.

## Question 16

$\mathrm{P} / \mathrm{Y}=12$
$\mathrm{PV}=125000-15 \%=106250$
$\mathrm{I} / \mathrm{Y}=12.5$
$\mathrm{N}=6 \times 12=72$
PMT $=$ ?
2ndF CA
2ndF P/Y 12 ENT ON/C
+/-106 250 PV
$12.5 \mathrm{I} / \mathrm{Y}$
6 2ndF xP/Y N
COMP PMT
PMT = R2 104.94

## Question 17

Without clearing the calculation for Q16 from the financial calculator and bearing in mind that after 3 years, Sam has actually made $(3 \times 12=36)$ payments.

| KEY | SCREEN DISPLAY |
| :---: | :---: |
| AMRT | AMRT P1 $=1.00$ |
| DOWN ARROW | AMRT P2 $=1.00$ |
| 36 ENT | AMRT P2 $=36.00$ |
| DOWN ARROW | BALANCE $=\mathbf{- 6 2 9 9 2 0 . 9 9}$ |

Ignore the sign and choose the closest answer which is R62 921.07

## Question 18

Draw up an amortisation schedule for the given options and draw the appropriate conclusion thereof.

| Payment <br> made <br> (monthly <br> period) | Outstanding <br> principal <br> (Balance in <br> rand) | Interest <br> (rand) | Payment <br> (rand) | Principal <br> repaid (rand) |
| :--- | ---: | :--- | ---: | ---: |
| 1 | 106250.00 | 1106.77 | 2104.94 | 998.17 |
| 6 | 100102.84 | 1053.69 | 2104.94 | 1051.25 |
| 7 | $\mathbf{9 9} 040.64$ | $\mathbf{1 0 4 2 . 7 4}$ | $\mathbf{2 1 0 4 . 9 4}$ | $\mathbf{1 0 6 2 . 2 0}$ |
| 12 | 93561.33 | 986.25 | 2104.94 | 1118.69 |
| 36 | 62920.99 | 670.37 | 2104.94 | 1434.57 |

According to the above table, the principal repaid will for the first time be more than the principal from the $7^{\text {th }}$ month. Month 6 has also been included in the table for verification purposes.

## Question 19

$\mathrm{P} / \mathrm{Y}=12$
$P V=106250$
PMT $=2500$
$\mathrm{I} / \mathrm{Y}=12.5$
$\mathrm{N}=$ ?
2ndF CA
2ndF P/Y 12 ENT ON/C
+/-106 250 PV
2500 PMT

## $12.5 \mathrm{I} / \mathrm{Y}$

COMP N
$\mathrm{N}=56.42$ monthly payments
Therefore, number of years is given by $\frac{N}{P / Y}=\frac{56.42}{12}=4.70$ years
[1]

## Question 20

$\mathrm{P} / \mathrm{Y}=52$
PMT $=500$
$\mathrm{I} / \mathrm{Y}=8$
$\mathrm{N}=9 \times 52=468$
$\mathrm{FV}=$ ?
2ndF CA
+/-500 PMT
8 I/Y
9 2ndF xP/Y N
COMP FV
$\mathbf{F V}=\mathbf{R} 342321.48$
[4]

For queries please contact 0834275621 or 0812153817
All rights reserved
$\boldsymbol{E} \& \boldsymbol{O E}$

