SHARP

BUSINESS/FINANCIAL CALCULATOR

OPERATION MANUAL

For warranty information please see www.sharp.net.au

has expired, or any other cause. battery replacement, use after the specified battery life

 səunsse dy甘ل

 SHARP strongly recommends that separate permanent from the use of this product and any of its functions, the
loss of or alteration of stored data, etc. for financial losses or claims from third persons resulting SHARP assumes no responsibility, directly or indirectly,

 ou səunsse dy甘HS 'pu! у Kue до Кұиедем до ио!̣еұиәs - The material in this manual is supplied without repre-

 or consequential economic or property damage caused SHARP will not be liable nor responsible for any incidental to applicable rules and regulations. or not the results produced by this product conform is the consumer's responsibility to determine whether
 -эе Клел ио!џॄן mercial or otherwise. manual is suitable or accurate for any purpose, com-- SHARP makes no guarantee that this product or this

NOTICE

 Sұuөұu0っ
grading without prior notice.
This product, including accessories, may change due to upKeep batteries out of the reach of children. Never dispose of batteries in a fire. - Do not drop the calculator or apply excessive force.
Clean with a soft, dry cloth. Do not use solvents or a wet cloth. cause malfunction.
water spray, juice, coffee, steam, perspiration, etc. will also where fluids, for example water, can splash onto it. Raindrops,
Since this product is not waterproof, do not use it or store it sively humid or dusty environments. dashboard or near a heater, and avoid exposing it to exces-- Keep the calculator away from extreme heat such as on a car and is particularly fragile. may break when you sit down. The display is made of glass

- Do not carry the calculator around in your back pocket, as it

Operational Notes

 - All company and/or product names are trademarks and/orregistered trademarks of their respective holders. explanation of each particular calculation. screen examples will show only the symbols necessary for actly the same as what is seen on the product. For instance, - Display reference.
After reading this manual, store it in a convenient location for Thank you for purchasing a SHARP Business/Financial Calcula-
tor.

Introduction

(1) Functions that are printed in orange above the key require
2ndF to be pressed first before the key.
(2) Number entry examples are shown with ordinary numbers
(i.e., "100" will be indicated instead of "
(3) To specify a memory function (printed in green on/above the
key), press (ALPHA first.
(4) Functions that are printed in black adjacent to the keys are
effective in specific modes.

Key operations are described in this manual as follows:
Key Notations in This Manual

$$
\begin{aligned}
& \text { Note: Pressing } 2 \text { 2ndF } M-C L R \text { and } 1=\Rightarrow \text { will also erase all } \\
& \text { data stored in memory and restore the calculator's default } \\
& \text { setting. }
\end{aligned}
$$

See the above procedure.
Resetting the calculator
In rare cases, all the keys may cease to function if the calculator
is subjected to strong electrical noise or heavy shock during use.
If pressing any of the keys (including ON/C) has no effect, reset
the calculator.

Press the RESET switch located on
the back of the calculator with the tip
of a ball-point pen or similar object.
not use an object with a breakable or
sharp tip.
Resetting the calculator
(initialize) it.

Before using your calculator for the first time, you must reset
Preparing to Use the Calculator

ұnoкеן лоұеןпэן
Calculator and Display Layout

 INョ Buisn əqe, re^
 dar. not displayed, date calculations use the actual calen-360-day year (12 months with 30 days). When 360 is

 BGN is not displayed, calculations are ordinary annuat the beginning of each interval) calculations. When Indicates that calculations are annuity due (payment
 and storing or recalling memory values or TVM solvIndicates that (ALPHA, STO or RCL has been pressed hyperbolic functions are enabled. Indicates that 2ndF hyp has been pressed and the functions shown in orange are enabled. Appears when 2ndF is pressed, indicating that the low the screen. Press $\boldsymbol{\Delta} / \square$ to scroll up/down.
 Press \quad / \square to see the remaining (hidden) part. : Appears when the entire equation cannot be displayed are shown in the screen examples of this manual. - Only the symbols required for the operation being explained -əய!!

- During actual use, not all symbols are displayed at the same łuəuodxヨ Ess!!uew

places
Selecting the display notation and number of decimal - Press ON/C to exit the SET UP menu. view the previous/next part of the menu.
- If $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ is displayed on the screen, press $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ to

Press (SETUP to display the SET UP menu.

 DEG / RAD / GRAD : Indicates which angular units are in use.It can be changed in the SET UP menu.
STAT : Appears when statistics mode is selected.
M $\quad \begin{aligned} & \text { : Indicates that a numerical value is stored in the inde- } \\ & \text { pendent memory (M). }\end{aligned}$
C $\quad \begin{aligned} & \text { : Indicates that the value of the displayed variable has } \\ & \text { not been calculated yet (for variables that can be cal- } \\ & \text { culated). }\end{aligned}$

- FLO_B SETUP 0 O: $0.01 \leq|X| \leq 9,999,999,999$
 outside the following preset ranges: ting, a number is automatically displayed in scientific notation FLO_A (FLOAT A) and FLO_B (FLOAT B). In each display setnumber:
The calculator has two settings for displaying a floating point
tific notation
Selecting the floating point number system in scien-
Selecting the date format (see page 44)
The following methods of clearing the calculator（restoring de－
fault settings）are available：
Clearing the Entry and Memories

000000521		
0006－		$=0$ L＋（ G^{-}）\timesで
¢ ¢ ¢	¢ +8 －sı	$=\frac{8-9 t}{9+8 t}$
0007		$=\varepsilon \div \varsigma 8 \%+¢ \downarrow$
¡nsəy	uo！̣eגədo Кәу	әोduex

calculator performs the calculation according to the priority
When you enter a series of operations in one sequence，the
inner parts of expressions．The closing parenthesis \square just
before \square or $M+$ may be omitted．
Use the \square and \square keys to place parentheses around
 standard arithmetic calculations of addition，subtraction，multi－ Use the Exp key to enter a value in scientific notation． Use the number keys 0 to \square ，decimal point key \square ，
suo！̣еләdo э！！әшч！！ıе pue sıəqunu бu！！әәиヨ
Basic Calculations

chanerer coneral

 Кәя әృəəəવ ting it turn itself off automatically), it will resume wherever you
left off when you turn it on again. If you turn off the calculator (by pressing 2ndF OFF or by let-
ting it turn itself off automatically), it will resume wherever you
 ло ‘етер мо! чseo ‘sə
 'Kıошәш әчł К!!əәds uәчł pue O1S J/NO $* 8$ Are cleared when changing between sub-modes in STAT mode.
Notes:
 Press 2ndF CA when a cash flow value is displayed. 'sбu!!
sharing common memory with listed financial variables are restored to their default settings. Note that TVM variables pressed, all the variables in the listed group are cleared or used in bond calculations) displayed, when 2ndF $C A$ is *5 With one of the variables of a listed group (such as those same holds true for YEAR when you press (DEPR. When you press (AMRT to enter a financial calculation, AMRT
P1 and AMRT P2 both revert to their default values. The (I/Y)," etc.) including P/Y and C/Y ${ }^{* 3}$ Listed variables used in financial calculations (such as "RATE
 puoq u! pəsn "(\perp Wd) NOdnOO„, se чכns ‘səןqe!ue^ W $\wedge \perp$ प!! M *2 Note that listed financial variables sharing common memory ${ }^{* 1} \mathrm{~N}, \mathrm{I} / \mathrm{Y}, \mathrm{PV}, \mathrm{PMT}$, and FV (P/Y and C/Y are not included.) O : Cleared or restored to the default setting \times : Retained

Operation	$\begin{gathered} \text { Entry } \\ \text { (display) } \end{gathered}$	$\begin{gathered} \text { A-H, } \\ \text { M, X-Z } \end{gathered}$	ANS	$\begin{gathered} \text { TVM } \\ \text { variables*1 } \end{gathered}$	Listed financial variables *	Cash flow data	STAT*7
ON/C	\bigcirc	\times	\times	\times	\times	\times	\times
2ndF $C A$	\bigcirc	x	\bigcirc	$\bigcirc * 2$	$\bigcirc * 5$	$\bigcirc * 6$	\bigcirc
MODE (Mode selection)	\bigcirc	\times	\bigcirc	\times	\times	\times	X*8
2ndF M-CLR 0 (MEM)	\bigcirc						
2ndF M-CLR 1 (RESET)	T) \bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
RESET switch	\bigcirc	place immediately after where you wish to insert，then make －To insert a number in the insert mode，move the cursor to the existing data will be overwritten as you make entries． inserted at the cursor，while the rectangular cursor indicates the two modes．A triangular cursor indicates an entry will be					

equation．
2ndF \square to jump the cursor to the beginning or end of the Press \square or \square to move the cursor．Press 2 ndF \square or

 Playback function ∇ or $\boldsymbol{\Delta}$ to move through the variables（items）． －In financial calculations，such as bond calculations，press select a number（the selected number will blink），then press
If you need to scroll up or down the screen，use
\square
In a menu，such as the SET UP menu，use \square or \square to

Cursor keys

Editing and Correcting an Entry

> restore the calculator's default settings. The RESET operation erases all data stored in memory，and
－To RESET the calculator，press 10 or $\square \square$ ．
variables，cash flow data，and STAT），press $0 \square 0$ or ן！！⿱亠䒑eu！！pəıs！！‘sə｜qe！иe＾W $\wedge \perp$
 menu．

әІqе!!елеип : \times әqе!!елн : 0

	A-H, Mode	X-Z	M	ANS	TVM	Listed financial varial $* 1$		
variables $* 2$							\quad	Statistical
:---:								
variables ${ }_{* 3}$								

This calculator has 11 temporary memories (A-H and X-Z), one
independent memory (M) and one last answer memory (ANS).
It also has various variables for use in financial calculations and
statistical calculations.
Memory use in each mode for memory calculations
suo!̣еןnэןеэ КıошәW
An error will occur if an operation exceeds the calculation
ranges, or if a mathematically illegal operation is attempted.
When an error occurs, pressing $\mathbf{4}$ or \square automatically
moves the cursor to the place in the equation/number where the
error occurred. Edit the equation/number or press ON/C to clear
the equation. For details, see page 76 .
Errors

$26 l=\varepsilon l \div 52$	\Rightarrow l	әฆецпэюэ рие
$\varepsilon \div 52$	SNI Hpuz	дәзu! оt әбиечว
$\varepsilon \div ¢ 2$	44	
$\varepsilon \div 51$	SNI GPuz	әрош
$\varepsilon \div 51$	4	uoproun
$O O \subseteq=\varepsilon \div \varsigma$	$\square \mathrm{¢} \div \mathrm{SL} \mathrm{ONO}$	$=\varepsilon \div \mathrm{g}+$
Kelds!a	uo!!eגədo イәу	2.npeosodd

Example Changing " $15 \div 3=$ " into " $25 \div 13=$ " from the screen), and press ALPHA ANS to bring up the value exit the calculation (the listed financial variables will disappear is automatically entered into last answer memory. Press ON/C to play the variable and value that you wish to carry over. The value type of calculation, use one of the following methods: you want to carry a value from a variable over into a different
type of calculation, use one of the following methods: solver but not to discounted cash flow analysis calculations. If are used in. For example, the variable N is available to the TVM Financial variables are specific

Listed financial variables

temporary memories. It is not necessary to press sTO to store
a value.
TVM variables can be recalled using RCL in the same way as TVM variables
answer memory by displaying the variable and the value

- Listed financial variables are automatically stored in the last operations) is automatically stored in the last answer memory. calculation ending instruction (including storing and recalling
- The calculation result obtained by pressing \square or any other
Last answer memory (ANS)
Press ON/C STO M to clear the independent memory (M). value.
value can be added to or subtracted from an existing memory In addition to all the other features of temporary memories, a Independent memory (M)
To place a variable in an equation, press \triangle ALPHA and the variable key. memory. Press $R C L$ and the variable key to recall a value from the Press STO and the variable key to store a value in memory. Temporary memories (A-H, X-Z)
$* 2$ All financial variables, except for TVM variables
${ }^{* 3} \bar{x}, s x, \sigma x, n, \Sigma x, \Sigma x^{2}, \bar{y}, s y, \sigma y, \Sigma y, \Sigma y^{2}, \Sigma x y, r, a, b$,
*1 N, I/Y, PV, PMT, FV

Example	Key operation	Result
$\begin{aligned} & 24 \div(8 \times 2)= \\ & \underline{(8 \times 2) \times 5=}= \end{aligned}$		$\begin{array}{r} 1600 \\ 1.50 \\ 80.00 \end{array}$
$\begin{aligned} & \$ 150 \times 3: M_{1} \\ & +) \$ 250: M_{2}=M_{1}+250 \\ & -) M_{2} \times 5 \% \\ & \hline \mathrm{M} \end{aligned}$		$\begin{array}{r} 0.00 \\ 450.00 \\ 250.00 \\ 35.00 \\ 665.00 \end{array}$
$\begin{aligned} & \$ 1=¥ 110 \\ & ¥ 26,510=\$? \\ & \$ 2,750=\neq ? \end{aligned}$		$\begin{array}{r} 110.00 \\ 241.00 \\ 302500.00 \end{array}$
$\begin{aligned} & \mathrm{r}=3 \mathrm{~cm}(\mathrm{r} \rightarrow \mathrm{Y}) \\ & \pi \mathrm{r}^{2}=? \end{aligned}$	$\begin{array}{l\|l\|l\|} 3 \text { STO } & Y & \\ \hline \text { 2ndF } & \pi & \\ \text { (2ndF) } & x^{2} & = \\ & \end{array}$	3.00 28.27
$\begin{aligned} & \frac{24}{4+6}=2.4 \ldots(A) \\ & 3 \times(A)+60 \div(A)= \end{aligned}$		2.40 32.20

 calculation, however, you can use the values held in statistical
variables in subsequent calculations. you cannot enter values directly into statistical variables. After are the results of the calculation of statistical data. Therefore, Statistical data is not entered into variables. Statistical variables Statistical variables
switching calculation types and bringing up the variable. solver use the variable I / Y), you can retrieve the value simply by
of calculation (for example, both bond calculations and the TVM
 Breakeven calculations: Calculate breakeven points (quantity) price and margin/markup. Cost/Sell/Margin/Markup calculations: Calculate cost, selling rates. percent change (increase or decrease) and compound interest Percent change/Compound interest calculations: Calculate days between dates.

Day and date calculations: Calculate dates and the number of and EFF (effective interest rate). converted between APR (annual, or nominal percentage rate) Conversion between APR and EFF: Interest rates can be using three types of calculation methods. Depreciation calculations: Obtain depreciation base values accrued interest.

Bond calculations: Solve bond prices or yields to maturity with return). and calculate NPV (net present value) and IRR (internal rate of Discounted cash flow analysis: Analyze unequal cash flows schedules using values stored in the TVM solver.

Amortization calculations: Calculate and create amortization regular payments leases, savings, annuities and contracts or investments with cash flows. These include calculations for mortgages, loans, TVM (Time Value of Money) solver: Analyze equal and regular mode to perform financial calculations.

The following financial functions are available. Use NORMAL
Financial calculations General Information

Chapter 3 Financia

TVM solver	Discounted cash flow analysis	Bond calculations	Depreciation calculations	Percent change/ Compound inter- est calculations	Day and date calculations
N	-	CPN/Y (N)	LIFE (N)	PERIODS (N)	-
I / Y	RATE (I/Y)	YIELD (I/Y)	DB (I/Y)	\% (I/Y)	-
PV	-	PRICE (PV)	COST (PV)	OLD PRC (PV)	-
PMT	-	COUPON (PMT)	-	-	-
FV	-	REDEMPT (FV)	SALVAGE (FV)	NEW PRC (FV)	-
-	-	M-D-Y 1* D-M-Y 1	-	-	M-D-Y 1* D-M-Y 1
-	-	M-D-Y 2* D-M-Y 2	-	-	M-D-Y 2* D-M-Y 2
*The variable names vary according to the data format settings.					

calculations. While calculating, be aware of the values stored in
these variables.
 calculation, the value will change in all the other calculations among calculations. If you change the value of a variable in one as required. Some variables are shared (in the memory area)

Financial variables are specific to the type of calculation they
suo!ןeןnэןеэ бuощe рәлецs sәןqеıел variable. each calculation. P/Y and C/Y in the TVM solver are of this type of variables can be accessed using the $\boldsymbol{\Delta} / \nabla$ cursor keys in Variables that are organized into lists in different categories. These :səןqе!̣ел ן!!̣ueu!! pəəs! directly using the corresponding keys. I/Y, PV, PMT and FV. You can store, recall or calculate values
 TVM variables: two types, depending on the entry method used in financial calculations are categorized into the following values into variables, you can obtain unknown values. Variables Financial calculations use multiple variables. By entering known

Basic variable operations

Listed financial variables are categorized by whether they are known or unknown. When the variable is selected (displayed), the "ENT" and/or "COMP" symbols will appear to indicate that the current variable may be entered (known variable) and/or calculated (unknown variable), respectively. For details, refer to the explanations or examples for each financial function.		
Note: TVM variables ($\mathrm{N}, \mathrm{I} / \mathrm{Y}, \mathrm{PV}, \mathrm{PMT}$ and FV) can be entered (known variables) and calculated (unknown variables), however, neither "ENT" nor "COMP" will appear on the display.		
Category	Display symbols	Descriptions
For entry only	ENT	Variable can be used as a known, but not as an unknown.
For calculation only	COMP	Variable can be used as an unknown, but not as
For entry or calculation	ENT COM	Variable can be used as either a known or an unknown.
Calculated automatically		Unknown variable, but the calculator calculates the value automatically.
Notes: - During financial calculation, the word "calculating!" will be displayed on the screen. You can press ON/C at this time to cancel the calculation. - Calculation-only and automatically calculated variables have no default values. - The \mathbf{G} symbol will be displayed if the value of the displayed variable has not been calculated yet (for variables that can be calculated).		

The ENT and COMP symbols

Compound interest

（pəイ́．ds！p łou s！Nפa） 			
1	ィеәК ıəd spo！ıəd 6u！̣punoduoo fo ıəqunN	－ Nd HPUZ	N／O
1		Nd Itpuz	N／d
0	әп！e＾əının」	$\square \pm$	$\wedge \exists$
0	ұиәшイе	IWd	LWd
0	әпן¢＾ґuәsə入d	nd	$\wedge \mathrm{d}$
0		N／I	人／l
1	słuәmKed ı0 ıəqunu ןełol	N	N
$\begin{gathered} \text { әпןел } \\ \text { ןnejəa } \end{gathered}$	uo！̣d！ıosəa	бu！puodsəュ๐๐	әवセ！ue＾

Variables used in the TVM solver

contracts or investments with regular payments．
tions for mortgages，loans，leases，savings，annuities，and
Analyze equal and regular cash flows．These include calcula－

the number of compounding periods per year (C / Y) are both set
to 1 . Set these values before entering TVM variable values.
Default values for the number of payments per year (P / Y) and

riod. Calculate the annual interest rate on the mortgage. monthly payments of $\$ 440$ during its 20 -year amortization peA \$56,000 mortgage loan (compounded monthly) requires Example 1 Calculating basic loan interest
Basic examples for the TVM solver displayed.

Press COMP and the TVM variable key that you wish to solve. and may have values assigned by those calculations. Note that some variables are shared by other calculations

By pressing RCL ANS you can use the result of the prepayments.
calculator automatically calculates the total number of Enter the number of years and press 2 ndF $\times \mathrm{PM}$. The use 2ndF \times PM to enter N (total number of payments).

sбиu! ues entered into P/Y or C/Y must be positive. After entersame value is automatically assigned to C / Y as well. Val-
Press 2 ndF $P /$ and then enter a value for P / Y. The
(N, I/Y, PV, PMT, FV).

- Enter a value and press the appropriate TVM variable key
Enter values into TVM solver variables.
Make sure ordinary annuity is set (BGN is not displayed)

$\begin{array}{r} 98^{\circ} \mathrm{SCl}- \\ =1 \mathrm{Wd} \end{array}$	IWd dwoo	¡иәшイеd
$0 \varsigma 9_{\lambda / I \leqslant S: 9}$	N11 5＊9	
$000 \quad \Lambda \pm=0$	$\triangle \rightarrow 0$	
00000.95 へd $\leqslant 0009$ s	Ad 0009S	†ən｜e＾ұuәsəıd ә૫ł дәəuヨ
0008 $N \in S N \forall$	\cdots Ndx Hpuz 02	N u！әəols pue stuәшKed to дəqunu
000	ONO	－lәs N／O pue N／d әułt tuno
O0＇7＝人 $\%$ ，	\square	－еә人 ıəd spoüəd 6upunodmoo
$00^{\circ} \dagger=\lambda / d^{\circ}$	1Nヨ \downarrow Nd［1puz	－кed Ło дəqunu әપłəəડ

Procedure	Key operation	Display
Set all the variables to default values．	2ndF $C A$	0.00

period． at 6.5% compounded quarterly during its 20 －year amortization Calculate the quarterly payment for a $\$ 56,000$ mortgage loan Example 2 Calculating basic loan payments
N

6l226．$=$＝ 1	（1）dx ${ }^{\text {d }}$	
$O S 9_{\lambda / I \in S} \cdot 9$	（11）5＊9	
$\begin{aligned} & 00002- \\ & 1 W d \in(002-) \end{aligned}$	［1Wd） 002	
$000 \quad \Lambda d \in 0$	$\wedge \mathrm{A} 0$	
$009 \varepsilon_{N \in S N H}$	N Ndx	N ul əiols pue słuәшкеd ңo дәq
000	O／NO	
O0＇\％＝人 $\%$	1N\＃$ワ \triangle$	† 이 деә人 ıəd spoùəd 6u！punod －woo to дəqumu әपł ləS
$002 \mathrm{~L}=1 / \mathrm{d}^{\circ}$	1Nヨ てl Ndd Hpuz	＇Z1 оł деә人 дәd słuәш －रed ı0 дəqunu әЧł łəS
－（pə＾е｜ds！		
000	＊O］Hpuz	sənןел ұппеృәр
Kejds！a	uо！！eләдо Кәу $9 \varepsilon=\operatorname{sıe\partial }\langle\varepsilon \times 乙 1$	$\begin{aligned} & \text { ә.npəoodd } \\ = & \end{aligned}$
$002 \$-=$		

terly．What amount will you have at the end of period if you
continue with the plan？ years into a savings plan that earns 6.5% compounded quar－ You will pay $\$ 200$ at the end of each month for the next three
Example 3 Calculating future value

＇mou 68＇894＇ع\＄ب！sodəp pinous no人 ：ләмsu＊		
$6889 \angle \varepsilon-=\Lambda d$	Ad divoo	
00 S $\lambda / I \in S$	N1 S	
$000 \quad 1 W d \in 0$	IWd） 0	－0．əz ot fuəuイed las
0000001 へ」 $1=00001$	$\wedge \rightarrow 0000 \mathrm{l}$	
$0002 \quad N=02$	NOC ONO	

 | $\begin{array}{l}\text { Set the number of pay－} \\ \text { ments per year to } 1 .\end{array}$ | 2ndF PM 1 ENT | ,$P / Y=1.00$ |
| :--- | :--- | :--- | :--- | Make sure ordinary annuity is set（BGN is not displayed）．

000	＊O GPuz	sənןe＾¡！nejəp
Kelds！a	uou！exədo Кәу	әınрәэо．d

$\% \mathrm{~S}=\lambda / \mathrm{l} \quad i=\Lambda d$
 sıeә人 0Z＝N

of money should you deposit now？ you wish to have $\$ 10,000$ twenty years from now，what amount You open an account that earns 5% compounded annually．If
Example 4 Calculating present value

N

suming the account will earn 3.6% interest compounded monthly? monthly investment be in order to reach the savings objective, assavings account with an investment dealer. What should the each month, a fixed amount will be invested in a money market next 18 months in order to open a second location. At the end of Your company wishes to accumulate a fund of $\$ 300,000$ over the

Note: The above selection only affects the TVM solver.
To toggle between ordinary annuity and annuity due, press
2ndF BGNEVD. received at the beginning of each payment period. Often applied
to the finance lease of an asset. BGN appears on the display. A regular cash flow (payment) is Annuity due (BGN):
each payment period. Often applied to loan calculations, etc. displayed. A regular cash flow (payment) is received at end of This is the default setting for financial calculations. BGN is not Ordinary annuity (END): pending on the regular cash flow (payment) conditions.
This calculator can select ordinary annuity or annuity due de-

－əuo әseyound
cost－effective to lease a computer system than to interest rate on a two－year loan，so it would be more

$80^{\circ} \mathrm{L} \quad=\mathrm{N} / \mathrm{I}$	N／I dWOO	ןenuue әપł әғеןnэן๐
$00.966 \underbrace{}_{\substack{1 d \leqslant 5662}}$	Md S662	
$\begin{aligned} & 00 \mathrm{~S} \dagger l- \\ & 1 W d \in\left(\begin{array}{c} \text { S力l-) } \end{array}\right) \end{aligned}$	IWd Sヶし－	
$0566 Z_{\Lambda \pm \leqslant N N}$	$\begin{array}{cc} \\ & \Lambda \pm \\ \hline \pm & \% \\ \hline \\ \hline \end{array}$	＇əпן¢л әınını әપł дәłuヨ
	N N O／NO	＇słuәuked fo ıəqunu ןセł૦ł Әપł 」əłuヨ

[^0]$\mathrm{PV}=$?
If you can afford a monthly payment of $\$ 900$, how much can you
borrow? How much do you need for a down payment? charges a 5.5% APR, compounded monthly, on a 25 -year loan.
You wish to buy a house for $\$ 180,000$. The finance company модоя
Example 4 Calculating down payment and amount to

Enter the total number of payments.	ONC $34 \sim$	34% ®* 34.00
Enter payment.	$\xrightarrow{+} 200$ (PMT)	$\begin{array}{r} (-2000) \Rightarrow P M T \\ -200.00 \end{array}$
Enter the annual interest rate.	18 I/Y	$\begin{array}{ll} 18 \Rightarrow \text { eal } / \text { Y } \\ & \\ \hline \end{array}$
Enter the future value.	+/-1500 FV	$\begin{aligned} & (-15000) \neq F V \\ & -1500.00 \end{aligned}$
Calculate the present value.	COMP PPV	$\text { PV }=\text { हen } 6279.95$

The number of compounding periods per year is automatically set to
12. Press ONCD to exit the P / Y and C / Y settings.

OO'21

-(pəKeIds!̣p S! Nפa) ənp K K !!nuue ol los
default values.

乙6.8GG‘9ャL\$ - 000‘08L\$ =

 The number of compounding periods per year is automatically set to 12 .
Press ON/C to exit the P / Y and C / Y settings. \qquad Set the number of pay- 2 2ndF PI P/ 12 ENT
ments per year to 12 .

default values.		0.00

응

automatically.

$$
\nabla \text { once for each. Each value is calculated }
$$

 and press ENT.

 Refer to page 19 for basic variable operations.

Basic operations - AMRT P1 and AMRT P2 must be between 1 and 9,999. automatically, so no default values are set. - BALANCE, Σ PRINCIPAL and Σ INTEREST are calculated | $\Sigma P R I N C I P A L$ | Principal paid | - |
| :--- | :--- | :--- |
| Σ INTEREST | Interest paid over the specified periods | - |

AMRT P2	End of payment (nth time)	1

Variables used in amortization
Note: Prior to using amortization, you need to enter values into
TVM variables. stored in the TVM solver.

Calculate and create amortization schedules using values
Amortization Calculations

	\pm	－əכuеןeq
$0^{\circ \circ} \mathrm{S}=\text { Zd } 1 \searrow W V^{*}$	INJ ¢ \triangle	łuәшイеd 6u！̣риә әцł
	ING 1 I 1 WV	子иәшкед бu！̣גełs әчł доł（łsnбn
Keןds！！	uo！łeләdo Кәу	əınpesord
леәК ұsı！әцд доц әןпрәцэs uо！！		

Now generate an amortization schedule for the first 5 years of the

$\text { 9与〇9l9- }=1 \mathrm{Wd}$		¡иәшкед

Make sure ordinary annuity is set（BGN is not displayed）

Example 1 Calculating mortgage payments and generat－ ing an amortization schedule		
1．Calculate the monthly payment of a 20－year loan with a loan amount of $\$ 90,000$ and a 5.45% APR．		
Procedure	Key operation	Display
Set all the variables to default values．	2ndF CA	0.00

 әןпрәчэs ио！џez！！лошe иe 6и！

To end amortization calculations，press ON／C．Pressing ON／C
during entry will clear the value entered．
calculated and displayed．
the values for the next period of payment will be automatically
－If you press COMP during＂AMRT P1＂and＂AMRT P2＂entry，
9．Repeat steps 5 to 7 above． schedule．

Press ∇ to calculate the next period of the amortization

4	4	4		

	\square	
	－	
Kelds！a	uо！！exədo Кәу	әınpəэ0ıd

48th payments．
Now generate an amortization schedule from the first to the

$\text { LS゙カ } \ddagger 8 .$ $=1 \mathrm{Wd}$		ұиәшイед

Procedure	Key operation	Display
$\begin{array}{l}\text { Set all the variables to } \\ \text { default values．}\end{array}$	ONNC 2ndF $\square C A$	0.00

ment be？
 payment due，what amount of monthly payment must you make interest rate of 8.5% ．If，after the 48th period，you want a balloon
 ұиәшкеd pə！！！əәds e ләңе әэие

Example 2 Calculating payments，interest，and loan bal－

gram.
 Enter cash flow data according to the following cash flow dia-

 Example Entering cash flow dataON/C to delete the entry and enter the correct value If you wish to correct a value before pressing (DATA, press Frequency values must be integers between 1 and 999.
 data items. A single cash flow value is counted as one data - You can enter a total of up to 100 cash flow and/or statistical shown on the display. Press ON/C to exit. sible to enter cash flow data when listed financial variables are - Press + +- to enter a negative cash flow (outflow). previously entered cash flow data

- Before entering data, press CFi 2ndF CA to clear any Cash flow value ($x, y)$ frequency value DATA
Notes: Repeated cash flows Cash flow value DATA Single cash flows To find NPV and IRR using discounted cash flow analysis, enter
cash flow data, one data item at a time, in the following format: Entering cash flow data
-(ટ乙 əઠ̂ed əəs) s!sイןeue
Note: Use the TVM solver for equal and regular cash flow (NPV) and the internal rate of return (IRR) Analyze unequal cash flows and calculate the net present value
Discounted Cash Flow Analysis

Procedure	Key operation	Display
Bring up the initial display in NORMAL mode	ONC)*	0.00
Enter cash flow data.	+ 25000 (DATA	DATA SET:CF
	7000 (DATA	DATA SET:CF
	9000 (DATA	DATA SET:CF
	5000 (fin) 2 (DATA	DATA SET:CF
	8000 (DATA	DATA SET:CF
*1 If there is cash flow data stored, press clear it. lator display notation settings. \square CFi 2ndF \square to *2 The format of the data set (cash flow and frequency values) number, which is initially set to " 0.00 ," is dependent on calcu-		
Confirming and editing data		
Confirming data Press CFi to display any previously entered cash flow data. The data is displayed in order by data item (identifier, number, and value). Use \square data set. to display a data item from a previously entered		

according to chart B.
Currently the cash flow data is that shown in chart A. Change it Example Correcting cash flow data
inserted. Modify the new data set to include your data.

Deleting data
set is deleted.

- If a frequency value is set to zero, then the associated data enter a new value and press DATA
Editing data
- Display the number value) or CF $\mathrm{N} n=$ (frequency), where n indicates the data set Each data item is displayed in the form CF Dn= (cash flow data item, respectively.
Press 2ndF Δ or 2ndF ∇ to jump to the first or the last
- Make sure the calculator is in NORMAL mode.

Refer to page 19 for basic variable operations
Basic operations
The interest rate that gives a net present value of zero. Internal rate of return (IRR): indicated by a positive NPV value. (outflows) and cash received (inflows). A profitable investment is The total present value of all cash flows, including cash paid out Net present value (NPV):
The calculator solves the following cash flow values:
NPV and IRR

$$
\begin{aligned}
& \text { - The variable RATE }(I / Y) \text { is shared by the variable I/Y. NET_PV } \\
& \text { is for calculation only and has no default value. } \\
& \text { - The BGN/END setting is not available for discounted cash flow } \\
& \text { analysis. }
\end{aligned}
$$

-		$\wedge d^{-} \perp \exists \mathrm{N}$
0		((II) \exists IV
әпјел ұ\|nejəの	uol!d!uэsəa	\|qe!ue^

Variables used in discounted cash flow analysis
data item and press ∇ to browse through each data item.
To confirm the corrections, press 2ndF $\mathbf{\Delta}$ to jump to the first
before 5000 .

OO' Change the frequency \because CF N3=

Change the first cash
flow value from $-25,000$
(+/ 30000 (DATA

000	1* O/NO	-әрош ך \forall WYON u! Ke\|d -s!p ן ן!!!u! ә૫ł dn 反u!̣g
Keןds!	uо!!eıədo Кәу	axpeכodd

year. At what IRR does the net present value of the cash flows
equal zero? $\$ 5,000$ for the second to fourth years, and $\$ 4,000$ for the fifth expects the following annual cash flows: $\$ 3,000$ for the first year, Your company pays $\$ 12,000$ for a new network system, and

Example 1 Solving for unequal cash flows

$$
\text { calculate again in step } 4
$$

another IRR, enter an estimated value into RATE(I/Y) and
Press ComP to calculate IRR (RATE (I/Y)).
Note: If "Error 5 " is displayed in step 4, or
To obtain IRR: press ENT. Move to NET_PV and calculate by pressing \square
and COMP. Enter the interest rate (discounted rate) into RATE (I/Y) and To obtain NPV: ONC to exit and then press 2ndF CASH - If a previously entered cash flow value is displayed, press 3. Press 2ndF CASH to begin discounted cash flow analysis.
 Enter cash flow data.
2.
your company proceed with the product development？ the end of Year 8 is $\$ 20,000$ ．Given a 12% discount rate，should $\$ 80,000$ ．The salvage value of the manufacturing equipment at five－year product life（from Year 4 to Year 8）are projected to be will be purchased at the end of Year 3．Annual profits for the 3 ）will be $\$ 50,000$ ．Manufacturing equipment costing $\$ 100,000$ Development costs for each of the next three years（Years 1 to and operating profits of the next generation of your product． Your company has prepared forecasts for the development costs

 ———0．00

－
（VIVO）000ヶ

Mis
」う： $1 \exists \mathrm{~S}$ VI \quad（ $\because \forall 0$ 000
N．＂
뭄
00°
合：

	dWOO $\mathbf{4}$	（ $\left.\wedge \mathrm{d}^{-} \perp \exists \mathrm{N}\right)$
$\begin{aligned} & 00 \text { 'そl } \\ & =(\Lambda / I) \exists \perp \forall y * \end{aligned}$	INヨ て し	
$\begin{aligned} & 000^{\prime \prime} \\ & =(\lambda / I) \exists \perp \forall y \text { " } \end{aligned}$	\＃O Hpuz HSVO HPuz	＇sənןe＾ IIe łəs pue＇s！̣sイ｜eue molt цseo pəŋunoos！\downarrow łəəəગS
Keןds！0	uo！peләdo Кәу	

$* 1$ If there is cash flow data stored，press CFi 2ndF CA to
clear it．

	60000 （DATA	DATA SET：CF
3.00		
Return to the initial dis－ play in NORMAL mode．	ON／C	0.00
If		

Procedure	Key operation	Display
Bring up the initial dis－ play in NORMAL mode．	ONC）＊	0.00
Enter cash flow data．		data SET：CF 0.00
	＋／－150000（DATA	dATA SET：CF
	80000 （＊＊） 4 （DATA	dATA SET：CF
	60000 （DATA	

[^1]You can toggle between the actual calendar (365 days plus leap
years) and a 360 -day calendar (12 months of 30 days each)
using (2ndF) 360 AcT. The actual calendar is set by default $(360$ is
not displayed). The calendar range is from January 1,1901 to
December 31, 2099 .

әғер uodnoэ łse| әપł

apart. The date on which a coupon payment is made is sцłuou x!s słuәшイed ןenbə омұ u! p!ed s! funoure uodnoo bonds have semi-annual coupons. For these, each year's one payment of the coupon amount each year. Some For bonds that have annual coupons, the owner receives the owner of the bond. a percentage of the bond par value, usually annually, by

 *4 Per $\$ 100$ par value. for semi-annual coupons.
*3 You can only enter " 1 " or "2" - " 1 " for annual coupons and "2" *2 You can change the date format to D-M-Y (see page 10).

suo!̣е|nગןe puoq u! pasn səqе!̣е^ maturity, and accrued interest. Using bond calculations, you can obtain bond prices, yields to
accrued interest is calculated automatically.
the accrued interest (ACCU INT) by pressing $\boldsymbol{\nabla}$. The yield, YIELD (I/Y) and calculate by pressing \triangle COMP. Display \square, entering the value, and pressing ENT. Move to annual Move to PRICE (PV) and enter the bond price by pressing ∇ To obtain yield to maturity (YIELD (I/Y)): calculated automatically. interest (ACCU INT) by pressing ∇. The accrued interest is calculate by pressing ∇ and COMP. Display the accrued ing the value, and pressing ENT. Move to PRICE (PV) and Enter annual yield (\%) into YIELD(I/Y) by pressing ∇, enterTo obtain bond price (PRICE (PV)):
9. To find bond price or yield to maturity, do the following:

8. Enter the number of coupon payments per year into CPN/Y
 pressing ∇, entering the date, and pressing ENT 7. Enter the redemption date into M-D-Y 2 (or D-M-Y 2) by

 6. Enter the date of bond purchase into M-D-Y 1 (or D-M-Y 1)

5. Enter the redemption value into REDEMPT (FV) by pressing the value and pressing ENT.
 IOVHOES -HPUZ
3. Change the day-count setting, if necessary, by pressing cleared

 Select bond calculations by
pressing BOND.

- Make sure the calculator is in NORMAL mode.

1. Press $0 \mathrm{~N} / \mathrm{C}$ to clear the display.

Refer to page 19 for basic variable operations.
Basic operations
yield be?

Calculate bond price.	$\boxed{ }$ comp

(\%).
Enter the annual yield
$(\%)$.

coupon payments per
year.
Enter the annual yield

coupon payments per
year. Enter the number of
ama

Make sure the actual calendar is set ($\mathbf{3 6 0}$ is not displayed).

Procedure	Key operation	Display
Bring up the initial dis- play in NORMAL mode.	ONCC	0.00
Select bond calcula- tions.	BOND	. $\operatorname{COUPON~(PMT)=}$

interest.
what price did the bond sell? Also calculate the accrued coupon purchaser 7.2% compounded semiannually until maturity. At

Example Calculating bond price and accrued interest

backspace key.

 before you pressed ENT. Press (ON/C or DEL, enter the - Press \square / \square to go back to the display that was shown the appropriate date, and press ENT.

Press ON/C to return to the display before the entry, enter In this case, follow either of the following procedures: message (Error 7) will appear immediately after pressing ENT - If an inappropriate date is entered (e.g., February 31), an error 31, 2099. The effective range of dates is: January 1,1901 to December
 day, [TH]: Thursday, [FR]: Friday, [SA]: Saturday. - [SU]: Sunday, [MO]: Monday, [TU]: Tuesday, [WE]: Wednesthe week will be displayed.

After entry, the date will be stored and the abbreviated day of the first " 1 " may be omitted. first " 2 " may be omitted. From 1901 to 1989, the " 9 " following Enter four digits. From 2010 to 2099, the zero following the Year entry

Enter two digits. From 4 to 9 , the preceding zero may be omitted Day entry Enter two digits. From 2 to 9 , the preceding zero may be omitted Month entry following explanation. mat (DD-MM-YYYY). Refer to the previous example and the
 Refer to the following notes for date entry.

Entering dates

 Answer: The yield will be 7.28\%| $\begin{aligned} & 8 Z^{\prime} L \\ & =(\lambda / I) 07 \exists I \lambda^{*} \end{aligned}$ | [1MOO \square | |
| :---: | :---: | :---: |
| | | -09'26\$ 01 әэй puoq әчъ әбиечэ |
| Kejds!a | uо!̣edədo кәу | әınpəoodd |

Basic operations

	(2) 2 dn 198
(poyłəu su!	
	$00^{\text {dn 199 }}$
uo!!d!ıляə	uo!̣exədo Кәу

- Select the depreciation method in the SET UP menu. It is
initially set to SL.

Variable	Description	Default value
DB (I/Y)*1	Interest per year	0
LIFE (N)	Years of depreciation	1
START MONTH	Starting month	1
COST (PV)	Cost of asset	0
SALVAGE (FV)	Salvage value	0
YEAR	Year for calculating depreciation value	1
DEPRECIATE	Depreciation value of above year	-
RBV	Remaining book value	-
RDV	Remaining depreciation value	-
${ }^{* 1}$ DB (I/Y) appears only when you select DB (declining balance		
method) for the depreciation method.		

Variables used in depreciation calculations
the declining balance method.

base values using three types of calculation methods: the
Using depreciation calculations, you can obtain depreciation
Depreciation Calculations

Select depreciation calculations by pressing (DEPR). -When using the declining balance method, DB (I/Y) appears. Enter the number and press ENT. - To end depreciation calculations, press ON/C. If you press ON/C during entry, any entered values will be cleared.		
4. Enter the number of years of depreciation into LIFE (N) by pressing \square , entering the value, and pressing ENT. - When using the straight-line method, the value should be a positive real number, while for the SYD or DB methods, it should be a positive integer.		
5. Enter the starting month into START MONTH by pressing ∇, entering the value, and pressing ENT. - You can enter values between 1 and 13. - Generally, it is not necessary to enter a decimal value. However, if you wish to enter, for example, the middle of July, enter 7.5 ; where the decimal is equal to the number value of the given date divided by the total number of days in the month.		
Enter the cost of asset into COST (PV) by pressing entering the value, and pressing ENT.		
7. Enter the salvage value into SALVAGE (FV) by pressing entering the value, and pressing ENT.		
8. Enter the year for calculating depreciation value into YEAR by pressing \square , entering the value, and pressing ENT. - The year for calculating depreciation value is initially 1 . Pressing COMP increments this number by 1. - This value must be a positive integer.		
9. Calculate depreciation for the year by pressing ∇.10. Calculate the remaining book value by pressing ∇.		
12. To calculate depreciation value for another year, press three times to go back to YEAR, enter a value for the new year, and recalculate.\square		

2. Select the depreciation method (see page 48).

$\begin{gathered} 0000529 \varepsilon_{1}, \\ =\Lambda 0 y \end{gathered}$	－	－әпןел иоџ！е！эәдdәр
	－	əən｜e＾yooq
0000005 ＝ヨ1甘Iうヨydai	\pm	
$O O^{\prime} \mathcal{S}=\forall \forall \exists \lambda^{\wedge}$	INヨ \mathcal{L}－	
$\begin{aligned} & 0000 \\ & =(\Lambda \pm) \exists 9 \forall \wedge 7 \forall S^{\wedge} \end{aligned}$	INB $0 \triangle$	
$\begin{aligned} & 0000000 \mathrm{~S} .1 \\ & =(\Lambda \mathrm{d}) \perp \mathrm{SO}=3 \end{aligned}$	IN3 00000ヶレ	
$\begin{aligned} & \text { OO'ウ } \\ & =H I N O W \text { IYHIS } \end{aligned}$	INヨ $\boldsymbol{\square}$	＇yұиош
$\begin{aligned} & 000 \mathcal{E}_{=(N) \exists \pm I 7^{\star}} \end{aligned}$	INヨ 0 ¢	ృ0 дəqunи әપł ฝəłиヨ
$7 S^{\wedge}$	पydㅋu	‘suo！̣e｜nગןeo
$00^{\circ} 0$		роцłәш uo！+ әЧł $\supseteq ə ə$ әs pue ‘əрош ןセ！！！！u！әપł dn бu！̣g
кеןds！d	uo！̣еләdo Кәу	əınpəoord

using the straight－line depreciation method． book value and remaining depreciable value for the third year costs $\$ 1,500,000$ ．Calculate the depreciation amount，remaining building with a 30－year life and no salvage value．The building In April，your company begins depreciation of a com
Example Calculating straight－line depreciation

$\begin{aligned} & 0081 \\ & y d \forall \leqslant 9 c^{\circ} 6 l=2 l \end{aligned}$		पgd \quad｜eu әાே S！！чł れәлиоつ
	－抽－	＇ $\mathrm{d} d \forall$ \％81 ue पıIM spoüd bu！punodmos
Keןds！d	uo！̣eлədo Кәу	əınpəэ๐лd
＇әрош $7 \forall W$ YON U！		

Basic operations

> nal percentage rate becomes a monthly rate, and the EFF reflects your actual annual rate of return. if your investment compounds monthly，then the stated nomi－ actual amount of return for a given nominal rate．For example， pounding happens more often than once a year．It reflects the
－The EFF is an investment＇s annual rate of interest when com－
on a bond is an example of an APR． pounding happens only once a year．The interest rate printed －The APR is an investment＇s annual rate of interest when com－
nal percentage rate）and EFF（effective interest rate）．
Interest rates can be converted between APR（annual，or nomi－
Conversion between APR and EFF

Refer to page 19 for basic variable operations.	
	ss ON/C to clear the disp
	Select day and date calculations by pressing DATE. - To end day and date calculations, press ON/C. If you press ON/C during entry, any entered values will be cleared.
	Change the day-count method, using 2 ndF 360 ACT , if necesary.
	Enter the values of any two known variables: the first date, the last date, or the number of days. - For date entry, refer to page 47, "Entering dates".
	ove to the variable you wish to calculate, using the \square keys, and press COMP to calculate. If the calculator is set to 360 -day calendar mode ($\mathbf{3 6 0}$ is displayed), it is not possible to obtain either the first or last dates, only the number of days.

suo!̣едәdo э!̣seg

December 31, 2099. not displayed). The calendar range is from January 1, 1901 to using 2ndF 3601 ACT . The actual calendar is set by default ($\mathbf{3 6 0}$ is years) and a 360 -day calendar (12 months of 30 days each) You can toggle between the actual calendar (365 days plus leap рочłәш ұиnoэ-Кер әцъ бu!

*1 You can change the date format to D-M-Y (see page 10). \begin{tabular}{l|l|l}
DAYS \& Number of days \& 0

\hline

M-D-Y 2*1 \& The last date

\hline
\end{tabular}

M-D-Y 1*1	The first date	$1-1-2001$

Variables used in day and date calculations numbers of days between dates.
Using day and date calculations, you can find dates and the
Day and Date Calculations

00001 $=\text { S 人 } \forall 0 \text { V }$	INヨ OOL $\boldsymbol{\square}$	－sイер ґо дәqunu әцł дәł －uә pue SAVO Ol ə＾OW
$\begin{aligned} & 0 l 02-\varepsilon l-l l \\ & {[\forall S]=l \wedge-0-W^{*}} \end{aligned}$	INヨOLてとしレし	－әłер ıS！！！әપł dәłuヨ
$\begin{aligned} & \operatorname{loO}_{2}-l-l \\ & {[0 W]=l \lambda-0-W^{4}} \end{aligned}$	VO－Ipuz	sənןe＾ ॥е łəs pue ‘suo！̣e｜nગןə әұер рие Кер ґәәәऽ
000	J／NO	－әрош 7 $\forall W$ WON u！Keןd
Keןds！a	uo！ұeлədo Кәу	əınpeoodd

Find the date 100 days after November 13， 2010 （using US date
format and the actual calendar）． Example 2 Finding a date
－If the 360－day calendar is selected，the answer will be 225 days． sКер 8乙乙 ：ләмsu甘

$00 \text { O2Z2 }=\text { s사․ }$	dWOO $\mathbf{\square}$	－әұеןпэрэ pue SAVO Ol əлОW
$\begin{aligned} & 6002-0 l-8 \\ & {[0 W]=2 \lambda-0-w:} \end{aligned}$	INヨ 60020L8	
$\begin{aligned} & 8002-\varsigma 2-2 l \\ & {[H 1]=l ~ \lambda-0-W .} \end{aligned}$	［1N3 8002Sててし	

Procedure	Key operation	Display
$\begin{array}{l}\text { Bring up the initial dis－} \\ \text { play in NORMAL mode．}\end{array}$	ON／C	
$\begin{array}{l}\text { Select day and date } \\ \text { calculations，and set all } \\ \text { the variables to default } \\ \text { values．}\end{array}$		DATE 2ndF CA

August 10， 2009 （using US date format and the actual calen－ Example 1 Calculating number of days

1	spouəəd 6u!punodmoə ło дəqumn	(N) SOOIİ ${ }^{\text {dad }}$
0	әбиецว ұиәЈıәд	(N / l \%
0	(әпје^ мәu) әכ!ıd мәл	(\wedge ¢) Эบd M $M \exists \mathrm{~N}$
0	(әп\|ел pıo) әЈ!ıd pıO	(\wedge d) Э४¢d هาO
әпןе^ ఛ!nejəa	uo!!d!ıssəa	әव¢!ı^^

 culations

Percent Change/Compound Interest Cal-

Answer: The last date is February 21, 2011

$\begin{aligned} & 000008 \\ & =(\Lambda d) 3 y d 070 \text { * } \end{aligned}$	[1N] 0008	
$\begin{aligned} & 000 \\ & =(\Lambda d) \text { gyd } 070^{\circ} \end{aligned}$	*D Hpuz \%\% Hpuz	'sənןe^ ॥е łәs pue ‘suo!̣\| ısəıə!u! punoduos
000	O1NO	-s!p ן ן!!!u! əuł dn סu!ug
Kejds!a	uo!̣eגədo Кәу	ә.npeэo.d

Example 2 Calculating compound interest rate

 Answer: The second year's sales increased by 54.67% overthe first year's sales.

Procedure	Key operation	Display
Bring up the initial display in NORMAL mode	ONC	0.00
Select percent change/ compound interest calculations, and set all the variables to default values.	2ndF $\triangle \%$ 2ndF \square	$\begin{array}{r} . O L D ~ P R C(P V)= \\ 0.00 \end{array}$
Enter the old value.	75000 ENT	$\begin{gathered} . O L D \quad \text { PRC (PV) }= \\ 75000.00 \end{gathered}$
Enter the new value.	© 116000 ENT	$\begin{gathered} \because N E W \text { PRC(FV) }= \\ 116000.00 \end{gathered}$
Calculate the percent change.	\checkmark Comp	$\because \%(I / Y)=54.67$

tion. The second year's sales were $\$ 116,000$. What percentage

Example 1 Calculating percent change

Answer: The compound interest rate is 1.13%.

tions
 Variables used in cost/sell/margin/markup calcula-
 costs, selling prices, margins and markup.
 Using cost/sell/margin/markup calculations, you can determine
 Cost/Sell/Margin/Markup Calculations

Procedure	Key operation	Display
Enter the new value.	- 9800 ENT	
Set the number of compound periods to 18.	∇ - 18 ENT	$\begin{array}{r} \cdot \operatorname{PERIODS}(N)= \\ 18.00 \end{array}$
Calculate the compound interest rate.	(C Comp	$\% \%(I / Y)=1.13$

3. Enter the values of any two known variables as follows:

000	O/NO	- əpow $7 \forall W$ VON u! Keןd -s!p ן ן!!!u! әuł dn סu!ug
Kelds!a	uo!̣eגədo Кәу	ә.nperodd
	गeo Ol पS!M noर	¢^
이 Kue ı0 sən!e^ əul dəıu		

-рәлеәן
 -(TNO) ssexd ‘suo!t

$$
\begin{aligned}
& \text { Refer to page } 19 \text { for basic variable operations. } \\
& \text { 1. Press ON/C to clear the display. } \\
& \text { - Make sure the calculator is in NORMAL mode. } \\
& \text { 2. Select breakeven calculations } \\
& \text { by pressing BRKV. }
\end{aligned}
$$

Basic operations

Variable	Description	Default value
FIXED	Fixed cost	0
VARIABLE	Variable cost per unit	0
PRICE	Unit price	0
PROFIT	Profit	0
QUANTITY	Quantity	0

suo!ıеןnગןэ иәләуеәлq u! pəsn səןqе!ле^

Using breakeven calculations, you can calculate fixed cost, vari-
Breakeven Calculations

$\begin{aligned} & \angle \varepsilon 6 \varepsilon \varepsilon \\ & =\text { KIIINHOO } \end{aligned}$	(1000) \triangle	
$00^{\circ} \mathrm{O}=1 \mathrm{sin} 0 \mathrm{yd}^{\circ}$	\triangle	's! se r!jod әлеәา
$0002 \mathrm{l}$	[1N 0 OL	
	[1N3 000s	'1500 pex!! „ətuヨ
$00^{\circ} 0=09 \mathrm{XI} \mathrm{s}^{\circ}$		IIe əəs pue ‘suọ!̣\|nojeo иәләуеәд \downarrow әә\|әS
Kejds!a	uo!̣exədo Кәу	ә.npeэodd

 This calculator has a variety of functions. Press MODE $\quad 0$ to
select NORMAL mode and perform scientific calculations.

- For basic calculations, see page 11 .
- When a listed financial variable is displayed, you can enter
the result of a scientific calculation into it by pressing ENT
immediately after completing the calculation.
- Scientific calculations can also be performed in STAT mode.
- The examples in this chapter are all performed under the SET
UP menu's default settings. Before starting calculation, press

00＇\％		$=18 \Lambda_{\square}-6 \downarrow$ 仡
¢ヶ9		$=\frac{t}{L}(\varepsilon 乙 L)$
86＇サてO2－		$={ }_{2} G \times{ }_{\downarrow} \varepsilon-{ }_{\text {¢ }}-8$
$1 \Sigma^{\circ}$		$=\frac{L}{L}+\frac{9}{L}$
6002		$={ }_{\varepsilon}{ }^{\text {® }}$
2lOS		$={ }_{L \prime}, \mathrm{OL}$
00%	$=0$ U U	＝02 ul
OL＇l	\square OS 601 Hpuz	＝OG Col
060		$=\frac{L}{G}$＿－Yuet
6002		$\begin{aligned} & ={ }_{z}\left(G^{\circ} \vdash\right. \text { पu!s } \\ & +9^{\circ} \vdash \text { पsoo } \end{aligned}$
łnsəəy	uo！̣e．əədo Кәу	ә¢duexヨ

$00 乙>\theta>0$	OOL $>\theta>001-$	ロシУワ
$\Perp>\theta>0$	$\frac{\tau}{x}>\theta>\frac{\tau}{x}-$	QVY
08L $>\theta>0$	$06>\theta>06$	
$x_{\llcorner }$SOO $=\theta$		

$000 \mathrm{O}=1 . \text { Ue7 }$	$\stackrel{=1}{ }$	
		$=\left[\mathrm{pex}_{1}\right] \frac{\mathrm{t}}{12} \mathrm{soo}$
$28^{\circ} 0=09 \mathrm{u} \text { s }$	$09 \square$	$=[\mathrm{l}]^{09} \mathrm{u}$ u！
Kejds！a	uo！pexədo Кәу	әjduexs

Scientific Calculations

 number. Press ON/C to exit.
 To simulate a coin flip, 0 (heads) or 1 (tails) can be randomly

u!̣o mopuey

 әэ!p wopuey notation settings to "floating point" - To display numbers with three significant digits, set the display
 from zero up to 0.999 , can be generated by pressing 2ndF EANDOM A pseudo-random number, consisting of three significant digits

Random numbers

 tion of the - key). This calculator has four kinds of random functions (the 2nd funcsuo!!oun」 mopuey| $\begin{aligned} & 400-(400 \times \\ & 30 \%)= \end{aligned}$ | $400 \square 30$ உ2ndF \square |
| :---: | :---: |

 What
percent
400 is 1 of 500 ?

* 20.56×9

operations.
the displayed value can be used without change in subsequent internal value is converted to match that of the display, so that the modify function (the 2nd function of the ++ key), the
tion and the number of decimal places indicated, a displayed
calculation result may differ from that held internally. By using results are displayed in the form designated by the display notawith a mantissa of up to 14 digits. However, because calculation Calculation results are internally obtained in scientific notation Modify Function

performed.
 - The result will not be the same each time this operation is
 $$
\begin{tabular}{|c|c|c|} \hline Example & Key operation & Display \\ \hline Pick a random number between zero and 9.99. & & RANDOMx10= 5.32 \\ \hline \end{tabular}
$$ ON/C to exit. numbers in succession, press \Rightarrow for each number. Press pressing 2ndF RaANOOM $3=$. To generate further random An integer between 0 and 99 can be generated randomly by from memory by doing either of the following: Note: Before entering data, clear any previously entered data of the same x and y values) x value $\left(x_{x}^{\prime}, y\right) y$ value $\left(x_{i}^{\prime}, y\right)$ frequency (DATA) (To enter multiples x value ($(x, y) y$ value (DATA) For a two-variable data set: value) Value ($\left.x_{x}^{\prime}, y\right)$ frequency (DATA) (To enter multiples of the same For a single-variable data set: Value (DATA) For a single-variable data set: enter your data. In STAT mode, use (x,,) ${ }^{2}$ and DATA (the ENT key) to enter the following: Before you can perform statistical calculations, you will need to - Switch sub-modes within STAT mode. еұер ןеэ!ця!етs бu!̣әдиヨ $$
\begin{tabular}{|c|c|c|} \hline \multicolumn{3}{|l|}{\begin{tabular}{l} Statistical calculations can be performed in STAT mode. The STAII symbol will be visible if you are in STAT mode. \\ There are seven sub-modes within STAT mode, corresponding to each of the functions below: \end{tabular}
$$

\hline Key operation \& Sub-mode \& Display

\hline MODE 10 \& SD: Single-variable statistics \& Stat

\hline MODE 1 \& LINE: Linear regression \& Stat 1

\hline (MODE 112 \& QUAD: Quadratic regression \& tat

\hline MODE 1 \& EXP: Exponential regression \& tat

\hline (MODE 114 \& LOG: Logarithmic regression \& Stat

\hline (MODE 115 \& PWR: Power regression \& Stat 5

\hline (MODE 116 \& INV: Inverse regression \& Stat

\hline
\end{tabular}

Chapter 5
Statistical Functions

Procedure	Key operation	Display
Enter the "Stat 0" submode.	ONO MOODE $\square \square 0$	Stat 00.00
Enter statistical data.**	30 (פata	DATA SET $1.00{ }^{* 2}$
	40 (血 2 (DATA	DATA SET=
	50 (aTA)	dATA SET= 3.00
Return to the "Stat 0" display.	ONC	Stat 00.00
${ }^{* 1}$ If there is data stor STAT mode) to cle ${ }^{* 2}$ The format of the number, which is i lator notation settin	d in memory, press it. ta set (the sample and ially set to " 1.00 ", is s.	CA (within quency values) ndent on calcu-

the "Stat 0" sub-mode.
DEL or ONC to delete the entry, then enter the correct value.
 two data items, while a data set with an assigned frequency is
counted as three data items. variable data, a data set without a frequency is counted as an assigned frequency is counted as two data items. For twofrequency is counted as one data item, and a data set with data items. For single-variable data, a data set without a - You can enter a total of up to 100 statistical and/or cash flow

$$
\begin{aligned}
& \text { Example Entering statistical data } \\
& \text { Enter the data in the table to the right }
\end{aligned}
$$

 dratic regression formula $\left(y=a+b x+c x^{2}\right)$. In quadratic regresSection (1) and (2) results, and coefficients a, b, and c in the qua-
Quadratic regression calculation The estimate of y for a given x (estimate y^{\prime}) and the estimate of
x for a given y (estimate x^{\prime}) can also be found. Section (1) and (2) results, except for coefficients c.

Linear regression calculations

Section (1) results only.

Single-variable statistical calculations
 The following results can be obtained for each statistical calcula- tion (refer to the table below):

Statistical Calculations and Variables

$00^{\prime} \varepsilon_{=1 \exists S} \quad \forall 1 \forall 0$	(V170) 09	'.09, pp ${ }^{\text {a }}$
000		
07875	(0-470 [1PUZ \triangle	‘،OG, 하킴
OO'		‘^c 'st, ol los еұер ،.乙 ‘0t, әңł әбиечэ
OOOE = $=1 \times$	\triangle	
Kelds!a	uо!̣еләdo Кәу	ә.npəoodd

Change the previously entered data from page 65 as follows: Example Editing statistical data

едер рәдәиә coefficients a and b - from converted data rather than from actual calculation takes place, it obtains all statistics - except calculator converts each formula into a linear regression before of x for a given y (estimate x^{\prime}) can also be found. Because the The estimate of y for a given x (estimate y^{\prime}) and the estimate Section (1) and (2) results, except for coefficients c.
Exponential regression, logarithmic regression, pow-
er regression, and inverse regression calculations
switch between x values. are two x values, the COMP symbol will appear. Press comp to of x for a given y (estimate x^{\prime}) can also be found. When there The estimate of y for a given x (estimate y^{\prime}) and the estimate

$29 \% 2$	． $99 t$	x－［1puz 9ヵ	$i=, x \leftarrow 9 \mathrm{t}=\kappa$
¢59	，${ }^{\mathcal{E}}$	\cdots ¢ Hpuz ε	$i=, K \leftarrow \varepsilon=x$
L9＇，	$=i_{S}$	［is 704	$=\kappa S$
\dagger ¢8	$=x_{S}$	$\square{ }^{\text {xS }} 7$	$=$
00°	＝ 1	$\square 1704$	＝${ }^{\text {d }}$
28\％	$=q$	9 700	$=q$
SO＇L	$=D$	$\square \mathrm{B}$ ¢0］	＝${ }^{\text {b }}$
$00^{\circ} \mathrm{S}=13 \mathrm{~S}$			
$00^{\circ} \dagger=13 \mathrm{~S}$			$0+$ 12 $0+$ 12 $0 t$ 12 $0 t$ 12
$00 \mathcal{L}=13 \mathrm{~S}$	$\forall 1 \forall 0$		ちて ट1
$00^{\circ} 2=13 \mathrm{~S}$	$\forall 1 \forall 0$	［170）	G
$00^{\circ} \mathrm{l}=13 \mathrm{~S}$	$\forall \perp \forall 0$		G 乙
	7275	$\square \square$ arom	
		uo！̣edədo Кәу	ә¢duex

Example 2 Linear regression calculation

Example 3 Quadratic regression calculation

иวчł $0=\operatorname{LWd} f I$

PMT, PV, FV, N
$i=\left(\frac{I / Y}{C / Y \times 100}+1\right)^{\frac{C / Y}{P / Y}}-1$
Error
$\quad \frac{I / Y}{C / Y} \leq-100$

$$
\begin{aligned}
& -1<i<0 \text { or } 0<i \\
& \qquad E N D \quad P M T=\frac{i \times\left(F V+P V \times(i+1)^{N}\right)}{1-(i+1)^{N}}
\end{aligned}
$$ $\frac{N}{-1<i<0 \text { or } 0<i}$

$$
E N D \quad P V=-\frac{F V}{(i+1)^{N}}+\frac{P M T \times\left((i+1)^{-N}-1\right)}{i}
$$

$$
\begin{aligned}
& E N D \quad P V=-\frac{i}{(i+1)^{N}}+\frac{P}{i} \\
& B G N \quad P V=-\frac{F V}{(i+1)^{N}}+\frac{P M T \times(i+1) \times\left((i+1)^{-N}-1\right)}{i} \\
& i=0 \\
& \quad P V=-(F V+N \times P M T)
\end{aligned}
$$

 whole number, if necessary).

 $\square d-\square \perp=\square \downarrow$ period described above (in TD) FD: The number of days following the settlement date in the coupon
 The number of days preceding the settlement date in the cou-
 first coupon date after the settlement date. (On the 360-day coupon date previous to the settlement date and ends with the
TD: Total number of days in the coupon period that begins with the
The formulas used for bond calculations are shown using the followcalculations will cause errors.
 All data stored or calculated for bonds are assumed to be posi-

is set to August 29, 30, or 31, coupon payments for February
occur on the 28th (29th for leap years). If coupons are to be paid twice a year and the redemption date and September 30.
 example, if coupon payments are semi-annual and the redempmonth, coupons are also paid on the last days of months. For 1. Whenever the redemption date happens to be the last day of a Bond calculation is based on the following rules: the book titled Standard Securities Calculation Methods, by Jan
Mayle, Securities Industry Association, 1993. In its bond calculations, this calculator conforms to rules set up by

$R D V(1)=R D V(0)-\frac{(C S T-S A L) \times 2}{L I F+1} \times F S T Y R$
$R D V(1)=R D V(0)-\frac{(C S I-S A L) \times 2}{L I F+1} \times F S T Y R$
If $1<n<$ end_year then $R D V(n)=R D V(n-1)$
$\frac{(L I F+2-n-F S T Y R) \times(C S T-S A L) \times 2}{L I F \times(L I F+1)}$
If $n \geq$ end_year then $R D V(n)=$
$D E P R E C I A T E=R O U N D(R D V($ year $))$ - ROUND $($ RDV $($ year -1$))$ $R D V=R D V($ yea $)$
$R B V=S A L+R D V($ year $)$
Declining balance method (DB)
Calculations
If $n=1$ then
$n=1$ then
If $\frac{C S T \times D B}{L I F \times 100}$
n
2
1
i
i RDV $(1)=R D V(0)-\frac{C S T-S A L}{L I F} \times F S T Y R$
If $1<n<$ end_year then
$R D V(n)=R D V(1)-\frac{C S T-S A L}{L I F} \times(n-1)$
If $n \geq$ end_year then $R D V(n)=0$
Results
$D E P R E C I A T E=R O U N D(R D V(y e a r))$
$-R O U N D(R D V(y e a r-1))$
$R D V=R D V(y e a r)$
$R B V=S A L+R D V(y e a r)$ If $n \geq$ end_year then $R D V(n)=0$

²

 $\left(\left(\frac{\frac{A P R}{N}}{100}+1\right)^{N}-1\right) \times 100$
Error

$\frac{A P R}{N} \leq-100$ $\mathbf{N , ~} \underset{(1 P R}{A P R} \rightarrow \mathbf{E F F}$ | $\mathbf{N}, \mathbf{E F F} \rightarrow$ APR |
| :--- |
| $\left(\left(\frac{E F F}{100}+1\right)^{\frac{1}{N}}-1\right) \times N \times 100$ |
| Error |
| $\quad E F F \leq-100$ | Conversion between

APR and EFF $I / Y<0$ (DB only)
Error
$C S T<0$
$S A L<0$
$C S T<S A L$
$L I F:$ when $S L, L I F \leq 0$
\quad when $S Y D$ or $D B$, LIF is not a positive
\quad integer
$R B V=S A L+R D V($ year $)$ $-\operatorname{ROUND}(R D V($ year -1$))$
$R D V=R D V($ year $)$ DEPRECIATE $=\operatorname{ROUND}(R D V($ year $))$
$-\operatorname{ROUND}(R D V($ year -1$))$ If $n \geq$ end_year then $R D V(n)=0$
Results $R D V(n)=R B V(1) \times\left(1-\frac{D B}{L I F \times 100}\right)^{n-1}-S A$
If $n \geq$ end_year then $R D V(n)=0$ If $R B V(1) \times\left(1-\frac{D B}{L I F \times 100}\right)^{n-1}>S A L$ $R D V(n)=0 \quad L I F \times 100$ If $R B V(1) \times\left(1-\frac{D B}{L I F \times 100}\right)^{n-1} \leq S A L$ $R D V(1)=R B V(1)-S A L$ $R B V(1)=C S T-(C S T-S A L) \times F S T Y R$ If $\frac{C S T \times D B}{\text { LIF } \times 100} \geq C S T-S A L$ $R B V(1)=C S T-\frac{C S T \times D B}{L I F \times 100} \times F S T Y R$
V

 Cost/Sell/Margin/Markup
calculations
$0>a 7 O \times$ MAN HO\% $N E W=O L D \times\left(1+\frac{\% C H}{100}\right)^{P D} \quad O L D=\frac{N E W}{\left(1+\frac{\% C H}{100}\right)^{P D}}$
$P D=\frac{\log \frac{N E W}{O L D}}{\log \left(1+\frac{\% C H}{100}\right)} \quad \% C H=\left(\left(\frac{N E W}{O L D}\right)^{\frac{1}{P D}}-1\right) \times 100$
where $N E W=N E W P R C(F V), O L D=O L D$
$P R C(P V), \% C H=\%(I / Y), P D=P E R I O D S(N)$
Error Percent change/Compound
interest calculations sкир ррпит дұрпэрつ $\stackrel{\rightharpoonup}{3}$ Calculate using the following formula:
DAYS $=(Y 2-Y 1) \times 360+(M 2-M 1) \times$
$30+(D 2-D 1)$ (4) If D1 is 31, change D1 to 30 .

 (1) If D2 and D1 are both the last day of
February, change D2 to 30 .
(2) If D1 is the last day of February, 1. Adjust D1 and D2 according to the fol-
lowing rules:
 $30 / 360$
$M-D-Y 1=M 1($ month $) / D 1($ day $) / Y 1($ year $)$ dratic regression calculation. No solution exists for a qua-
 An attempt is made to find than 1×10^{100}. intermediate or calculation
result is equal to or greater

 $u_{\kappa} u^{\prime} x+\cdots+z_{\ell} \ell x+\vdash \kappa t x=\kappa x_{z}$

 $\bar{x}=\frac{\Sigma x}{n}$
$s x=\sqrt{\frac{\Sigma x^{2}-n \overline{x^{2}}}{n-1}}$
$\sigma x=\sqrt{\frac{\Sigma x^{2}-n \overline{x^{2}}}{n}}$
$\Sigma x=x_{1}+x_{2}+\cdots+$
$\Sigma x^{2}=x_{1}^{2}+x_{2}^{2}+\cdots$

Type	Regression formula
Linear	$y=a+b x$
Quadratic	$y=a+b x+c x^{2}$
Exponential	$y=a \bullet e^{b x}$
Logarithmic	$y=a+b \bullet \ln x$
Power	$y=a \bullet x^{b}$
Inverse	$y=a+b \frac{l}{x}$

Error codes and error types

[^2] Syntax error (Error 1):

- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see Syntax error (Error 1):
- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see Syntax error (Error 1):
- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see Syntax error (Error 1):
- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see Syntax error (Error 1):
- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see Syntax error (Error 1):
- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see Syntax error (Error 1):
- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see Syntax error (Error 1):
- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see Syntax error (Error 1):
- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see
- an error listed in "Financial Calculation Formulas" (see
pages $72-75$) occurred - an attempt was made to find I/Y when PV, PMT $\times \mathrm{N}$, and FV contain all negative or all positive values - an attempt was made to find IRR when the cash flow data contains all negative or all positive values - an attempt was made to find YIELD in a bond calculation when any of COUPON, REDEMPT, or PRICE contain Depth error (Error 3): - The available number of buffers was exceeded. (There are
10 buffers for numeric values and 24 buffers for calculation
instructions). - The available number of buffers was exceeded. (There are
10 buffers for numeric values and 24 buffers for calculation
instructions). The number of entered cash flow and statistics data items combined exceeded 100.
 Syntax error (Error 1):
- An attempt was made to perform an invalid operation.
Ex. 2 (2 e
- During the editing or insertion of cash flow or statistical data,
a value was entered but 2ndF CLR-D was pressed before DATA).
Calculation error (Error 2):
- The absolute value of an intermediate or final calculation
result equals or exceeds 10^{100}.
- An attempt was made to divide by zero.
- The calculation ranges were exceeded while performing cal-
culations.
- There was a financial calculation error, such as:
- an error listed in "Financial Calculation Formulas" (see
MONTH

- anything except a positive integer into YEAR久оиәnbәд моן
anything except an integer between 1 and 999 as a cash - anything except 1 or 2 into CPN/Y
 anything except an integer between 1 and 9,999 into AMRT
P1 or AMRT P2
- a negative value or 0 into P / Y or C / Y financial calculation.
n attempt was made to enter an invalid numeric value into a
Ex. February 30th
An attempt was made to enter a nonexistent date. display notation settings to "floating point". Then try again.
Input value error (Error 7):

An attempt was made to display " 9.999×10^{999} " when the dis-
play notation tab number was set to " 2 ". Display error (Error 6):
value into RATE(I/Y) and calculate again.
${ }^{* 1}$ If you get an error while calculating IRR, enter an estimated
- IRR (Discounted cash flow analysis) ${ }^{* 1}$
- YIELD (Bond calculations)
- I/Y (TVM solver)
following values in an overly complex problem:
No solution (Error 5):
An equation must be shorter than 160 characters ters).
- The equation exceeded its maximum input buffer (160 characEquation too long (Error 4):

	$x^{\text {K }}$
${ }_{001}$ Or $>x{ }_{66}$－ 0 人	x ¢0，＇x ul
${ }_{001}$ 아＞｜x｜	$x_{\text {ı－}}$ Ueı
$15\|x\|$	
	uo！poun」

of a calculation is less than 10^{-99} ，the value is considered to be
0 in calculations and in the display．
If the absolute value of an entry or a final or intermediate result

if you＇d like to cancel the calculation while the＂calculating！＂
screen is displayed． interest is low or the number of payments is high．Press ON／C
In financial calculations，a calculation error increases if the Additionally，a calculation error will accumulate and become larger
in the vicinity of inflection points and singular points of functions． calculations are performed internally．） scientific calculations［ $y^{x}, \sqrt[x]{ }, e^{x}$, In，n！，etc．］，where continuous each calculation error．（This is the same for financial calculations， error increases in continuous calculations due to accumulation of of the least significant digit of the mantissa．However，a calculation
－Within the ranges specified，this calculator is accurate to within ± 1

Calculation ranges of functions

Function	Calculation range
$\sqrt[x]{y}$	$\begin{gathered} \cdot y>0:-10^{100}<\frac{1}{x} \log y<100(x \neq 0) \\ \cdot y=0: 0<x<10^{100} \\ \cdot y<0: x=2 n-1 \\ \left.\quad\left(0<1 x \mid<1: \frac{1}{x}=n, x \neq 0\right)\right)^{*} \\ -10^{100}<\frac{1}{x} \log \|y\|<100 \end{gathered}$
e^{x}	$-10^{100}<x \leq 230.2585092$
10^{x}	$-10^{100}<x<100$
$\begin{aligned} & \begin{array}{l} \sinh x, \cosh x, \\ \tanh x \end{array} \end{aligned}$	$\|x\| \leq 230.2585092$
$\sinh ^{-1} x$	$\|x\|<10^{50}$
$\cosh ^{-1} x$	$1 \leq x<10^{50}$
$\tanh ^{-1} x$	$\|x\|<1$
x^{2}	$\|x\|<10^{50}$
\sqrt{x}	$0 \leq x<10^{100}$
1/x	$\|x\|<10^{100}(x \neq 0)$
n!	$0 \leq \mathrm{n} \leq 69^{*}$
nPr	$\begin{aligned} & 0 \leq r \leq n \leq 9,999,999,999^{*} \\ & \frac{n!}{(n-r)!}<10^{100} \end{aligned}$
nCr	$\begin{aligned} & 0 \leq r \leq n \leq 9,999,999,999^{*} \\ & 0 \leq r \leq 69 \\ & \frac{n!}{(n-r)!}<10^{100} \end{aligned}$

uo!!nes screen, even when ON/C is pressed, it is time to replace the bat-
tery. If the display has poor contrast, or if nothing appears on the Кләџеq әцұ әэеןдә» оұ иәчМ

Note on the erasure of memory contents
When the battery is replaced, the memory contents are
erased. Erasure can also occur if the calculator is defective
or when it is repaired. Make a note of all important memory
contents in case accidental erasure occurs.

reaches the service life stated in the specifications.
The factory-installed battery may be exhausted before it calculator.

- When installing, orient the battery correctly, as indicated in the - Make sure the new battery is the correct type.
explosion. Be sure to observe the following handling rules: Improper handling of battery can cause electrolyte leakage or

Notes on battery replacement

Priority Levels in Calculations

pressed for about 10 minutes.
 This calculator will turn its power off automatically if no key is

breakable or sharp tip. (see fig. 4)

- If not, remove the battery, reinstall, and check
the display again.

 pen or similar object. Do not use a mechani
cal pencil or any sharp or pointed object to

3. Remove the used battery using a ball-point
(see fig. 1)
4. Loosen the screw and remove the battery cover.
5. Turn the power off by pressing 2ndF OFF
Replacement procedure
Specifications
http://sharp-world.com/calculator/ Visit us on the Internet at: For more information about business/
financial calculators
Accessories: Battery $\times 1$ (installed), operation (әseo
(including battery but not wallet-type Approx. $98 \mathrm{~g}(0.22 \mathrm{lb}$.)
Weight:
:suo!suәш!
Operating temperature:

 environment and operation method.
6u!̣eıədo әчł иo бu!puәdəр Kıел Kew •
Approx. 5 years (with 1 hour of daily
use)
0.0004 W

:əכınos дәмод
Pending operations: Internal calculations: Calculation method: Scientific calculations
Statistical calculations General arithmetic calculations
Scientific calculations
Calculations:

- Parenthesized operations take precedence over other operations

\forall NIHO Nヨ OSヨydWI／ヨNIHO Nヨ ヨ̣WIपddWI／\forall NIHO NI QヨュNIUd

（ZZHヨ8乌てเヨSNI」）પソ૭90

[^0]: The number of compounding periods per year is automatically set to
 12．Press ON／C to exit the P / Y and C / Y settings．

[^1]: 0
 80
 80
 80

[^2]: Note: If an error occurs during the automatic calculation of a listed financial variable, pressing ON/C, 4 , or \square
 the cursor back to the place in the equation where the error ocan error occurs, pressing 4 or \square automatically moves es, or if a mathematically illegal operation is attempted. When An error will occur if an operation exceeds the calculation rang-
 es, or if a mathematically illegal operation is attempted. When

