Tutorial letter 201/0/2017

Control Systems III (Theory) CSY3601

Year Module

Department of Electrical and Mining Engineering

IMPORTANT INFORMATION:

The examination will be a partial open book examination paper.

ONLY THE PRESCRIBED BOOK IS ALLOWED IN THE EXAMINATION VENUE

848 CODE

Learn without limits.

CSY3601 2017: Assignment memo

It should be noted that the method to solve the questions is not unique.

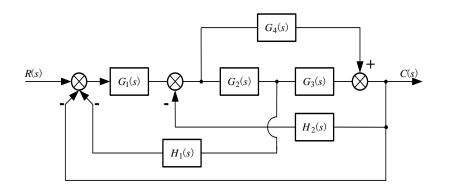
ASSIGNMENT 1

- Question 1, Answer: 4).
- Question 2, Answer: 2)
- Question 3, Answer: 2)
- Question 4, Answer: 4)
- Question 5, Answer: 1)
- Question 6, Answer: 2)
- Question 7, Answer: 1)
- Question 8, Answer: 3)
- Question 9, Answer: 3)
- **Question 10, Answer: 3)**

ASSIGNMENT 2

Question 1

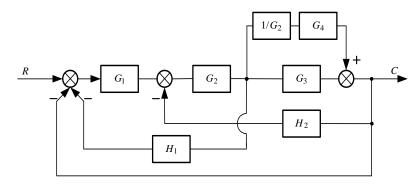
Use block-diagram-reduction techniques to find the transfer function $T(s) = \frac{C(s)}{R(s)}$ of the system represented by the following block diagram.



[20]

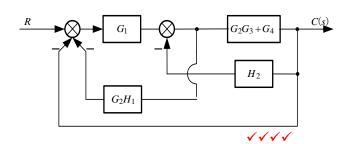
Answer:

Step 1 Move G2 to the left side of the pickoff point



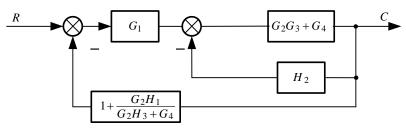
~~~

Step 2 Move G2 block to the right side of pickoff point



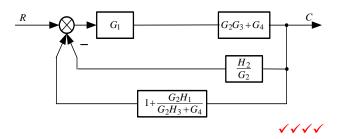
Step 3

Move G2G3 +G4 to the left side of the pickoff point and combine the two feedback paths



~~~~

Step 4 Move block G1 to the right side of the summing junction



Step 5 The final result
$$\frac{C(s)}{R(s)} = \frac{G_1(G_2G_3 + G_4)}{1 + (G_2G_3 + G_4)H_2 + G_1(G_2H_1 + G_2G_3 + G_4)}$$

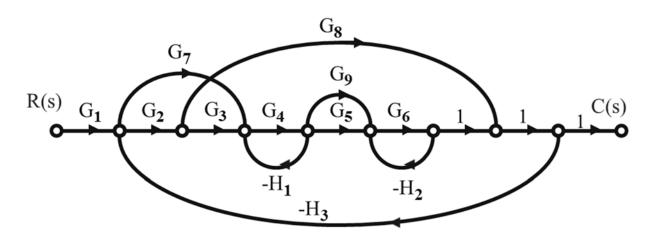
~~~

Question 2

Use Mason's gain formula to calculate the close-loop transfer function of the following figure.

Hint: use the website materials to find how you can use Mason's gain formula.

[30]



Solution:

Forward paths:

 $T_1=G_1 G_2 G_3 G_4 G_5 G_6 \checkmark \checkmark$

 $T_2=G_1 G_2 G_8 \checkmark \checkmark$

 $T_3=G_1 G_7 G_4 G_5 G_6 \checkmark \checkmark$

 $T_4=G_1 G_2 G_3 G_4 G_9 G_6 \checkmark \checkmark$

 $T_5=G_1 G_7 G_4 G_9 G_6 \checkmark \checkmark$

Loops:

 $\begin{array}{l} L_1 = & - G_4 H_1 \\ L_1 = & - G_6 H_2 \\ L_3 = & - G_2 G_3 G_4 G_5 G_6 H_3 \\ L_4 = & - G_2 G_3 G_4 G_9 G_6 H_3 \\ L_5 = & - G_7 G_4 G_5 G_6 H_3 \\ L_6 = & - G_7 G_4 G_9 G_6 H_3 \\ L_7 = & - G_2 G_8 H_3 \end{array}$

 $\checkmark\checkmark\checkmark\checkmark\checkmark\checkmark\checkmark\checkmark$

There are three non-touching loops taken two at a time:

```
\begin{split} & L_1 L_2 = G_4 \, G_6 \, H_1 \, H_2 \\ & L_1 L_7 = G_2 \, G_4 \, G_8 \, H_1 \, H_3 \\ & L_2 L_7 = G_2 \, G_6 \, G_8 \, H_2 \, H_3 \end{split}
```

√√√

There is one non-touching loops taken three at a time:

```
L_1 L_2 L_7 = - G_2 G_4 G_6 G_8 H_1 H_2 H_3
```

```
✓
```

 $\Delta = 1 - (L_1 + L_2 + L_3 + L_4 + L_5 + L_6 + L_7) + L_1 L_2 + L_1 L_7 + L_2 L_7 - L_1 L_2 L_7$

 $= 1 + G_4 H_1 + G_6 H_2 + G_2 G_3 G_4 G_5 G_6 H_3 + G_2 G_3 G_4 G_9 G_6 H_3$

+ G7 G4 G5 G6 H3 + G7 G4 G9 G6 H3 + G2 G8 H3 + G4 G6 H1 H2

 $+ \ G_2 \ G_4 \ G_8 \ H_1 \ H_3 + \ G_2 \ G_6 \ G_8 \ H_2 \ H_3 + \ G_2 \ G_4 \ G_6 \ G_8 \ H_1 \ H_2 \ H_3$

√ √

Moreover,

∆1**=1**,

 Δ_2 =1- (L₁+L₂) +L₁L₂=1+ G₄ H₁ + G₆ H₂+G₄ G₆ H₁ H₂

∆3**=1**

 $\Delta_4=1$

∆5**=1**

~~~

$$T = \frac{1}{\Delta} \sum_{k=1}^{5} T_k \Delta_k$$

√√

Question 3

A system is described by the following differential equation:

$$\frac{d^3y}{dt^3} + 3\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + y = \frac{d^3x}{dt^3} + 4\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 8x$$

Find the expression for the transfer function of the system Y(s)/X(s).

[10]

Answer:

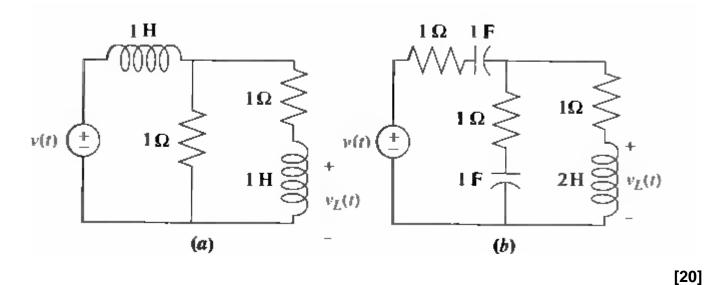
The Laplace transform of the differential equation, assuming zero initial conditions, is,

$$(s^{3}+3s^{2}+5s+1)Y(s) = (s^{3}+4s^{2}+6s+8)X(s).$$

Solving for the transfer function, $\frac{Y(s)}{X(s)} = \frac{s^{3}+4s^{2}+6s+8}{s^{3}+3s^{2}+5s+1}.$

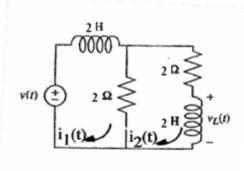
Question 4

Find the transfer functions, $V_L(s)/V(s)$, for the following circuits.



Answer:

a.



Writing mesh equations

But from the second equation, $I_1(s) = (s+2)I_2(s)$. Substituting this in the first equation yields,

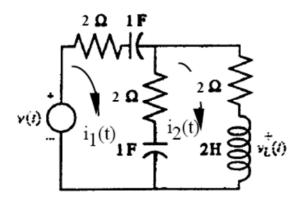
or

$$(2s+2)(s+2)I_2(s) - 2I_2(s) = V_i(s)$$

 $I_2(s)/V_i(s) = 1/(2s^2 + 6s + 2)$

But, $V_L(s) = 2sI_2(s)$. Therefore, $V_L(s)/V_i(s) = s/(s^2 + 3s + 1)$.

~~~



$$(4 + \frac{2}{s})I_1(s) - (2 + \frac{1}{s})I_2(s) = V(s)$$
$$-(2 + \frac{1}{s})I_1(s) + (4 + \frac{1}{s} + 2s) = 0$$

Solving for $I_2(s)$:

$$I_{2}(s) = \frac{\begin{vmatrix} \frac{4s+2}{s} & V(s) \\ \frac{-(2s+1)}{s} & 0 \end{vmatrix}}{\begin{vmatrix} \frac{4s+2}{s} & \frac{-(2s+1)}{s} \\ \frac{-(2s+1)}{s} & \frac{(2s^{2}+4s+1)}{s} \end{vmatrix}} = \frac{sV(s)}{4s^{2}+6s+1}$$

Therefore,
$$\frac{V_L(s)}{V(s)} = \frac{2sI_2(s)}{V(s)} = \frac{2s^2}{4s^2 + 6s + 1}$$

**\ \ \ \ \ \ **

Question 5

Given the following differential equation,
$$\frac{d^2 y(t)}{dt^2} + 4 \frac{dy(t)}{dt} + 3y(t) = 2u(t)$$

Calculate y(t) if all initial conditions are zero using the Laplace transform method.

[20]

Total: 100

Answer:

The Laplace transform is $s^2Y(s) + 4sY(s) + 3Y(s) = \frac{2}{s}, \checkmark \checkmark \checkmark$

Solving for the response, Y(s), yields $Y(s) = \frac{2}{s(s^2+4s+3)} = \frac{2}{s(s+3)(s+1)}$, \checkmark

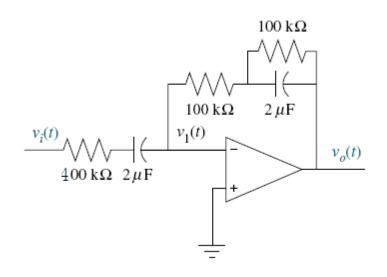
$$Y(s) = \frac{2}{s(s+3)(s+1)} = \frac{K_1}{s} + \frac{K_2}{s+3} + \frac{K_3}{s+1} , \quad \checkmark \checkmark \checkmark \checkmark \checkmark$$
$$K_1 = \frac{2}{(s+3)(s+1)} \bigg|_{s \to 0} = \frac{2}{3} \cdot K_2 = \frac{2}{s(s+1)} \bigg|_{s \to -3} = \frac{1}{3} \cdot K_3 = \frac{2}{s(s+3)} \bigg|_{s \to -1} = -1 \checkmark \checkmark \checkmark$$

$$Y(s) = \frac{\frac{2}{3}}{s} + \frac{\frac{1}{3}}{s+3} + \frac{-1}{s+1} \checkmark \checkmark \checkmark$$
$$y(t) = \frac{2}{3} + \frac{1}{3}e^{-3t} - e^{-t} \checkmark \checkmark \checkmark$$

ASSIGNMENT 3

Question 1

Find the transfer function, $G(s) = V_o(s)/V_i(s)$, for the operational amplifier circuits as shown in the following figure.



[12]

Answer:

$$Z_{1}(s) = 10^{5}(\frac{5}{s} + 4) \quad \checkmark \checkmark \checkmark \checkmark$$
$$Z_{2}(s) = 10^{5}(1 + \frac{5}{s+5}) = 10^{5}(\frac{s+10}{s+5}), \checkmark \checkmark \checkmark$$
$$\text{Therefore, } -\frac{Z_{2}(s)}{Z_{1}(s)} = -\frac{s(s+10)}{(s+5)(4s+5)} \checkmark \checkmark \checkmark$$

Question 2

Assume that the motor, whose transfer functions is shown in the following figures, is used as the forward path of a closed-loop, unity feedback system.

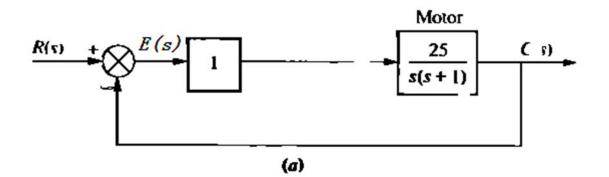
a. Calculate the percent overshoot and settling time that could be expected.

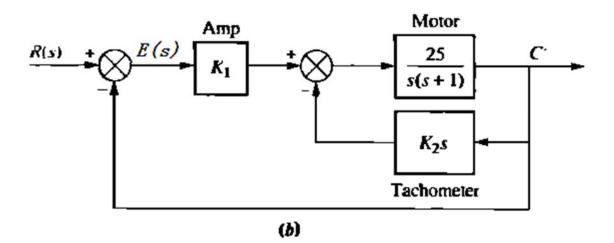
(15)

b. Find the values of K_1 and K_2 to yield a 16% overshoot and a settling time of 0.2 second.

(17)

[32]





Answer:

a. $T(s) = \frac{25}{s^2 + s + 25}$; from which, $2\zeta \omega_n = 1$ and $\omega_n = 5$. Hence, $\zeta = 0.1$. Therefore, %OS = $e^{-\zeta \pi / \sqrt{1 - \zeta^2}} x 100 = 72.92\%$; $T_s = \frac{4}{\zeta \omega_n} = 8$. **b.** $T(s) = \frac{25K_1}{s^2 + (1 + 25K_2)s + 25K_1}$; from which, $2\zeta \omega_n = 1 + 25K_2$ and $\omega_n = 5\sqrt{K_1}$. Hence, $\zeta = \frac{-\ln(\frac{\% OS}{100})}{\sqrt{\pi^2 + \ln^2(\frac{\% OS}{100})}} = 0.504$. Also, $T_s = \frac{4}{\zeta \omega_n} = 0.2$, Thus, $\zeta \omega_n = 20$; from which $K_2 = \frac{39}{25}$ and $\omega_n = 39.68$. Hence, $K_1 = 62.98$.

Question 3

For the unity negative feedback system with open loop transfer function

$$G(s) = \frac{2}{2s^4 + s^3 + s^2 + 2s}$$

Determine the closed-loop system is stable or not based on Routh's stability criterion.

Answer:

The closed-loop transfer function is

$$T(s) = \frac{2}{2s^4 + s^3 + s^2 + 2s + 2}$$

$\checkmark\checkmark\checkmark\checkmark$

The routh array is

s ⁴	2	1	1
s ³	5	2	0
s ²	1	5	
s ¹	-23	0	
s ⁰	5		

~~~~~~~~~~

Hence this closed-loop system is unstable.

Question 4

For the unity negative feedback system with open loop transfer function

$$G(s) = K \frac{(s+2)}{s(s-1)(s+3)}$$

Find the range of K for closed-loop stability based on Routh's stability criterion.

[17]

[16]

Answer:

The characteristic equation is:

$$1 + K \frac{(s+2)}{s(s-1)(s+3)} = 0 \text{ or}$$

$$s(s-1)(s+3) + K(s+2) = 0 \text{ or}$$

$$s^{3} + 2s^{2} + (K-3)s + 2K = 0$$

The Routh array is:

s ³	1	K – 3
s ²	2	2K
s	-3	
1	2K	

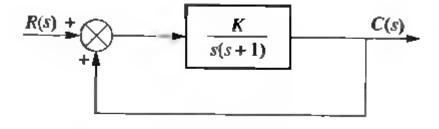
The first column will always have a sign change regardless of the value of K. There is no value of

K that will stabilize this system.

~~~~~~~~~~~~~

Question 5

Sketch the root locus for the **positive-feedback** control system shown in the following figure.

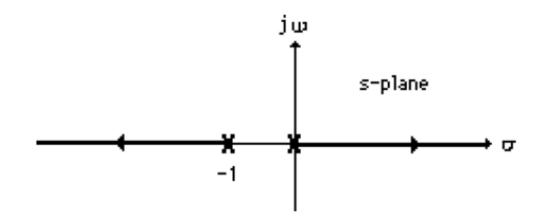


[8]

Answer:

Poles: s1=0, s2=-1

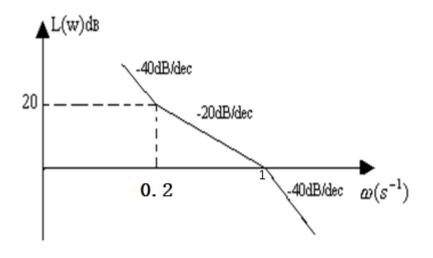
The root loci exit on the real axis is (-inf, -1) and [0, +inf)



Question 6

The Bode diagram of a minimum phase system is given in the following figure.

Find the open loop transfer function of the system;



[15] Total:100

Answer:

II-type sytem;

Open loop zero: s=-0.2; </

Open loop pole: s=-1.

Must have the form of $G(s)H(s) = \frac{K(5s+1)}{s^2(s+1)} \checkmark \checkmark \checkmark$

$$20 \log |G(j\omega)H(j\omega)|_{\omega=0.2} = 20$$

$$20 \log \left(\frac{K(j\omega 5+1)}{-\omega^2(j\omega+1)} \right|_{\omega=0.2} \right) = 20$$

$$\left| \frac{K(j\omega 5+1)}{-\omega^2(j\omega+1)} \right|_{\omega=0.2} = 10$$

$$K = 0.29 \checkmark \checkmark \checkmark$$

So $G(s)H(s) = \frac{0.29(5s+1)}{s^2(s+1)} \checkmark \checkmark$