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ECONOMETRICS TOPICS 

 

Chapter 1: An Overview of Regression Analysis 

 

What is econometrics? 

 Econometrics: economic measurement 

 Uses of econometrics: 

1. Describing economic reality 

2. Testing hypothesis about economic theory 

3. Forecasting future economic activity 

Alternative economic approaches  

 Steps necessary for any kind of quantitative research: 

1. Specifying the models or relationships to be studied 

2. Collecting the data needed to quantify the models 

3. Quantifying the models with the data 

Single-equation linear regression analysis is one particular economic 

approach that is the focus of this book. 

 

What is regression analysis? 

 Dependent variables, independent variables, and causality 

Regression analysis: a statistical technique that attempts to explain 

movements in one variable, the dependent variable, as a function of 

movements in a set of other variables, called the independent (or 

explanatory) variables, through the quantification of a single equation.  

A regression result, no matter how statistically significant, cannot prove 

causality. All regression analysis can do is test whether a significant 

quantitative relationship exists.  

  Single-equation linear models  

Betas: the coefficients that determine the coordinates of the straight line at 

any point. 

Beta-null: the constant or intercept term; it indicates the value of Y when 

X equals zero. 

Beta-one: the slope coefficient; it indicates the amount that Y will change 

when X increases by one unit. 

An equation is linear in the variables if plotting the function in terms of X 

and Y generates a straight line.  

An equation is linear in the coefficients only if the coefficients appear in 

the simplest form – they are not raised to any powers are not multiplied or 

divided by other coefficients, and do not themselves include some sort of 

function.  

  The stochastic error term 

Stochastic error term: a term that is added to a regression equation to 

introduce all of the variation in Y that cannot be explained by the included 

X’s.  
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The deterministic component: B0 + B1X; can be thought of as the expected 

value of Y given X, the mean value of the Ys associated with a particular 

value of X. 

The stochastic error term must be present in a regression equation because 

there are at least four sources of variation in Y other than the variation in 

the included Xs: 

1. Many minor influences on Y are omitted from the equation (for 

example, because data are unavailable). 

2. It is virtually impossible to avoid some sort of measurement 

error in at least one of the equation’s variables.  

3. The underlying theoretical equation might have a different 

functional form than the one chosen for the regression. For 

example, the underlying equation might be nonlinear in the 

variables for a linear regression.  

4. All attempts to generalize human behavior must contain at least 

some amount of unpredictable or purely random variation.  

Extending the notation 

The meaning of the regression coefficient beta-one: the impact of a one 

unit increase in X-one on the dependent variable Y, holding constant the 

other included independent variables.  

Multivariate regression coefficients: serve to isolate the impact on Y of a 

change in one variable from the impact on y of the changes in the other 

variables.  

 

The estimated regression equation 

Estimated regression equation: a quantified version of the theoretical regression 

equation 

Estimated regression coefficients: empirical best guesses of the true regression 

coefficients and are obtained from a sample of the Xs and Ys; denoted by beta-

hats 

 

A simple example of regression analysis 

 

Using regression to explain housing prices 

 

Chapter 2: Ordinary Least Squares 

 

Estimating single-independent-variable models with OLS 

Ordinary least squares (OLS): a regression estimation technique that calculates 

the beta-hats so as to minimize the sum of the squared residuals.  

Why use ordinary least squares? 

1. OLS is relatively easy to use. 

2. The goal of minimizing the sum of the squared residuals is quite 

appropriate fro a theoretical point of view.  

3. OLS estimates have a number of useful characteristics: 
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a. The estimated regression line goes through the means of Y and 

X. That is, if you substitute Y-bar and X-bar into the equation 

it holds exactly.  

b. The sum of the residuals is exactly zero.  

c. OLS can be shown to be the best estimator possible under a set 

of fairly restrictive assumptions.  

Estimator: a mathematical technique that is applied to a sample of data to 

produce real-world numerical estimates of the true population regression 

coefficients (or other parameters). OLS is an estimator.  

  How does OLS work? 

   Regression model equation 

   Estimate equations of beta-one and beta-null 

  Total, unexplained, and residual sum of squares 

Total sum of squares (TSS): the squared variations of Y around its mean 

as a measure of the amount of variation to be explained by the regression.  

Explained sum of squares (ESS): measures the amount of the squared 

deviation of Yi from its mean that is explained by the regression line.  

Residual sum of squares (RSS): the unexplained portion of the total sum 

of squares. 

OLS minimizes the RSS and therefore maximizes the ESS.  

  An illustration of OLS estimation 

 

Estimating multivariate regression models with OLS 

 The meaning of multivariate regression coefficients 

Multivariate regression coefficient: indicates the change in the dependent 

variable associated with a one-unit increase in the independent variable in 

question holding constant the other independent variables in the equation.  

  OLS estimate of multivariate regression models 

   Estimate equations for multivariate regression coefficients 

  An example of a multivariate regression model 

 

Evaluating the quality of a regression equation 

1. Is the equation supported by sound theory? 

2. How well does the estimated regression as a whole fit the data? 

3. Is the data set reasonably large and accurate? 

4. Is OLS the best estimator to be used for this equation? 

5. How well do the estimated coefficients correspond to the expectations 

developed by the researcher before the data were collected? 

6. Are all the obviously important variables included in the equation? 

7. Has the most theoretically logical functional form been used? 

8. Does the regression appear to be free of major econometric problems? 

 

Describing the overall fit of the estimated model 

 R-squared, the coefficient of determination 

  Coefficient of determination: the ratio of the ESS to the TSS 

  Equation for R-squared 
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 R-bar-squared, the adjusted R-squared 

Degrees of freedom: the excess of the number of observations over the 

number of coefficients estimated 

  R-bar-squared: R-squared adjusted for degrees of freedom 

  Equation for R-bar-squared 

 

An example of the misuse of the adjusted R
2
, the R-bar-squared  

Do not use R-bar-squared as the sole measure of the quality of an equation at the 

expense of economic theory or statistical significance.   

 

Chapter 3: Learning to Use Regression Analysis 

 

Steps in applied regression analysis 

1. Review the literature and develop the theoretical model.  

2. Specify the model: select the independent variables and the functional form. 

The following components should be specified: 

a. The independent variables and how they should be measured. 

b. The functional (mathematical) form of the variables. 

c. The type of stochastic error term.  

A mistake in any of the three elements results in a specification error.  

Dummy variable: takes on the values of one or zero depending on whether 

a specified condition holds.  

3. Hypothesize the expected signs of the coefficients.  

4. Collect the data. 

5. Estimate and evaluate the equation. 

a. Are there errors in the variables? 

6. Document the results. 

a. Recognize the difference between the number of digits computed and 

the number of significant figures. 

 

Using regression analysis to pick restaurant locations 

 

Chapter 4: The Classical Model 

 

The classical assumptions 

The classical assumptions must be met in order for OLS estimators to be the best 

available.  

The Classical Assumptions: 

1. The regression model is linear in the coefficients, is correctly 

specified, and has an additive error term. 

2. The error term has a zero population mean. 

3. All explanatory variables are uncorrelated with the error term. 

4. Observations of the error term are uncorrelated with each other (no 

serial correlation or autocorrelation). 

5. The error term has a constant variance (no heteroskedasticity).  
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6. No explanatory variable is a perfect linear function of any other 

explanatory variable(s) (no perfect multicollinearity).  

a. Perfect collinearity between two independent variables implies 

that they are really the same variable, or that one is a multiple 

of the other, and/or that a constant has been added to one of the 

variables.  

b. Multicollinearity occurs when more than two independent 

variables are involved.  

7. The error term is normally distributed (this assumption is optional but 

usually is invoked).  

a. Its major use is in hypothesis testing, which uses the estimated 

regression statistics to accept or reject hypothesis about 

economic behavior.  

An error term satisfying assumptions 1-5 is called a classical error term 

and if assumption 7 is added, the error term is called a classical normal 

error term. 

 

The normal distribution of the error term 

1. The error term can be thought of as the composite of a number of minor 

influences or errors. As the number of these minor influences gets 

larger, the distribution of the error term tends to approach the normal 

distribution. This tendency is called the Central Limit Theorem.  

2. The t-statistic and the F-statistic are not truly applicable unless the error 

term is normally distributed.  

The normal distribution 

Standard normal distribution: a normal distribution with a mean equal to 

zero and a variance equal to one: N(0,1) 

  The Central Limit Theorem and the normality of the error term 

The Central Limit Theorem: the mean (or sum) of a number of 

independent, identically distributed random variables will tend to be 

normally distributed, regardless of their distribution, if the number of 

different random variables is large enough.  

 

The sampling distribution of beta-hat 

The probability distribution of the beta-hats is called a sampling distribution 

because it is based on a number of sample drawings of the error term.  

Sampling distributions of estimators 

 Properties of the mean 

A desirable property of a distribution of estimates is that its mean 

equals the true mean of the variable being estimated. An estimator 

that yields such estimates is called an unbiased estimator. An 

unbiased estimator is an estimator whose sampling distribution has 

as its expected value the true value of beta.  

If an estimator produces beta-hats that are not centered around the 

true beta, the estimator is referred to as a biased estimator.  

   Properties of variance 
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The variance that is the most narrow is the most desirable. The 

variance can be decreased by increasing the size of the sample.  

   Properties of the standard error 

The standard error of the estimated coefficient is the square root of 

the estimated variance of the beta-hats and it is affected by the size 

of the sample and other factors.  

Equation for the standard error of an estimated coefficient 

Impact of changes in the terms of the standard error equation 

  A demonstration that the beta-hats are normally distributed 

1. The distribution of beta-hats appears to be a symmetrical, bell-shaped 

distribution that is approaching a continuous normal distribution as the 

number of samples of beta-hats increases. 

2. The distribution of the beta-hats is unbiased but shows surprising 

variations. 

Monte Carlo experiments 

1. Assume a “true” model with specific coefficient values and an 

error term distribution.  

2. Select values for the independent variables. 

3. Select an estimating technique (usually OLS). 

4. Create various samples of values of the dependent variable, 

using the assumed model, by randomly generating error terms 

from the assumed distribution. 

5. Compute the estimates of the betas from the various samples 

using the estimating technique.  

6. Evaluate the results. 

7. Return to step 1 and choose other values for the coefficients, 

independent variables, or error term variance; compare these 

results with the first set. (This step is optional and is called 

sensitivity analysis.) 

 

The Gauss-Markov theorem and the properties of OLS estimators 

The Gauss-Markov Theorem states that given Classical Assumptions 1-6 

(assumption 7, normality, is not needed for this theorem), the ordinary least 

squares estimator of beta-k is the minimum variance estimator from among the set 

of all linear unbiased estimators of beta-k for k = 0,1,2,…,k.  

An easy way to remember this is by stating that OLS is BLUE where BLUE 

stands for best (meaning minimum variance), linear, unbiased, estimator.  

Efficient: an unbiased estimator with the smallest variance; that estimator is said 

to have the property of efficiency.  

Given all seven classical assumptions, the OLS coefficient estimators can be 

shown to have the following properties: 

1. They are unbiased.  

2. They are minimum variance. 

3. They are consistent. 

4. They are normally distributed.  
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Standard econometric notation 

 

Chapter 5: Hypothesis Testing 

Bayesian statistics: an alternative to hypothesis testing; adds prior information to the 

sample to draw statistical inferences.  

 

What is hypothesis testing? 

 Three topics central to the application of hypothesis testing to regression analysis: 

1. The specification of the hypothesis to be tested. 

2. The decision rule to use in deciding whether to reject the hypothesis in 

question. 

3. The kinds of errors that might be encountered if the application of the 

decision rule to the appropriate statistics yields an incorrect inference.  

Classical null and alternative hypothesis 

Null hypothesis: a statement of the range of values of the regression 

coefficient that would be expected to occur if the researcher’s theory were 

not correct.  

Alternative hypothesis: used to specify the range of values of the 

coefficient that would be expected to occur if the researcher’s theory were 

correct.  

Two-sided test (two-tailed test): when the alternative hypothesis has 

values on both sides of the null hypothesis 

One-sided test: the alternative hypothesis is only on one side of the null 

hypothesis 

  Type I and type II errors 

   Type I: rejecting a true null hypothesis 

   Type II: not rejecting a false null hypothesis 

  Decision rules of hypothesis testing  

Decision rule: the testing of a hypothesis by comparing the magnitude of 

the sample statistic with a preselected critical value 

Critical value: a value that divides the acceptance region from the 

rejection region when testing a null hypothesis. 

 

The t-test 

 The t-statistic 

  Equation for the t-statistic 

 The critical t-value and the t-test decision rule 

 Choosing a level of significance 

The level of significance indicates the probability of observing an 

estimated t-value greater than the critical t-value if the null hypothesis 

were correct. It measures the amount of Type I error implied by a 

particular critical t-value. 

  Confidence Intervals 

Confidence interval: a range within which the true value of an item is 

likely to fall a specified percentage of the time; this percentage is the level 
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of confidence associated with the level of significance used to choose the 

critical t-value in the interval 

 

Examples of the t-test 

 Examples of one-sided t-tests 

  Four steps to use when working with t-tests: 

1. Set up the null and alternative hypotheses. 

2. Choose a level of significance and therefore a critical t-value.  

3. Run the regression and obtain an estimated t-value (or t-score).  

4. Apply the decision rule by comparing the calculated t-value 

with the critical t-value in order to reject or “accept” the null 

hypothesis.  

Examples of two-sided t-tests 

The kinds of circumstances that call for a two-sided test fall into two 

categories: 

1. Two-sided tests of whether an estimated coefficient is 

significantly different than zero. 

2. Two-sided tests of whether an estimated coefficient is 

significantly different from a specific nonzero value. 

The t-test of the simple correlation coefficient, r 

The simple correlation coefficient, r: a measure of the strength and 

direction of the linear relationship between two variables.  

Equation for the simple correlation coefficient 

Equation for the t-statistic using r  

 

Limitations of the t-test 

 The t-test does not test theoretical validity 

 The t-test does not test “importance” 

The t-test is not intended for tests of the entire population, as the standard error 

will approach zero as the sample size approaches infinity so the t-score will 

eventually be equal to infinity.  

 

The F-test of overall significance 

The F-test is a method of testing a null hypothesis that includes more than one 

coefficient; it works by determining whether the overall fit of an equation is 

significantly reduced by constraining the equation to conform to the null 

hypothesis.  

 Equation for the F-test 

 

Chapter 6: Specification – Choosing the Independent Variables 

A specification error results when choices, such as choosing the correct independent 

variables, the correct functional form, and the correct form of the stochastic error term, 

are made incorrectly. 

 

Omitted variables 
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Omitted variable: an important explanatory variable that has been left out of a 

regression equation. 

Omitted variable bias: the bias caused by leaving a variable out of an equation (or, 

more generally, specification bias) 

The consequences of an omitted variable 

 The expected value of the coefficients does not equal the true value 

 Equation for the amount of bias for the slope coefficients 

 Bias exists unless: 

1. The true coefficient equals zero. 

2. The included and omitted variables are uncorrelated. 

An example of specification bias 

Correcting for an omitted variable 

Expected bias: the likely bias that omitting a particular variable would 

have caused in the estimated coefficient of one of the included variables. 

Uses of the expected bias equation 

 

Irrelevant variables 

Irrelevant variables: the converse of omitted variables; a variable that is included 

in an equation that doesn’t belong there 

Impact of irrelevant variables 

 Impact on the error term 

 Impact on the variance of the coefficients 

  An example of an irrelevant variable 

  Four important specification criteria 

1. Theory: Is the variable’s place in the equation unambiguous and 

theoretically sound? 

2. t-test: Is the variable’s estimated coefficient significant in the expected 

direction? 

3. R-bar-squared: Does the overall fit of the equation (adjusted for 

degrees of freedom) improve when the variable is added to the 

equation? 

4. Bias: Do other variables’ coefficients change significantly when the 

variable is added to the equation? 

 

An illustration of the misuse of specification criteria 

 

Specification searches 

 Data mining 

 Stepwise regression procedures 

Stepwise regression: involves the use of a computer program to choose the 

independent variables to be included in the estimation of a particular 

equation. 

  Sequential specification searches  

Sequential specification search technique: allows a researcher to estimate 

an undisclosed number of regressions and then present a final choice 

(which is based upon an unspecified set of expectations about the signs 
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and significance of the coefficients) as if it were the only specification 

estimated.  

Such a method misstates the statistical validity of the regression results for 

two reasons: 

1. The statistical significance of the results is overestimated 

because the estimations of the previous regressions are ignored.  

2. The set of expectations used by the researcher to choose 

between various regression results is rarely if ever disclosed. 

This the reader has no way of knowing whether or not all the 

other regression results had opposite signs or insignificant 

coefficients for the important variables. 

Bias caused by relying on the t-test to choose variables 

Scanning and sensitivity analysis 

Scanning: involves analyzing a data set not for the purpose of testing a 

hypothesis but for the purpose of developing a testable theory or 

hypothesis  

Sensitivity analysis: consists of purposely running a number of alternative 

specifications to determine whether particular results are robust (not 

statistical flukes) 

 

Lagged independent variables 

 Lag: the length of time between cause and effect  

 Lagged independent variables 

 Distributed lags 

 

An example of choosing independent variables 

 

Appendix: additional specification criteria 

 

Chapter 7: Specification – Choosing a Functional Form 

 

The use and interpretation of the constant term 

 Do not suppress the constant term 

 Do not rely on estimates of the constant term 

 

Alternative functional forms 

 Linear form 

Elasticity of Y with respect to X: the percentage change in the dependent 

variable caused by a one percent increase in the independent variable, 

holding the other variables in the equation constant 

In the linear form the slope is constant so the elasticity is not constant 

  Double-log form  

In a double-log functional form, the natural log of Y is the dependent 

variable and the natural log of X is the independent variable. 

Exponential functional form: the proper form given the assumption of 

constant elasticity 
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In a double-log equation, an individual regression coefficient can be 

interpreted as an elasticity.  

  Semilog form 

Semilog functional form: a variant of the double-log equation in which 

some but not all of the variables (dependent and independent) are 

expressed in terms of their natural logs. 

  Polynomial form 

Polynomial functional form: expresses Y as a function of independent 

variables, some of which are raised to powers other than one. 

  Inverse form 

Inverse functional form: expresses Y as a function of the reciprocal (or 

inverse) of one or more of the independent variables 

 

Problems with incorrect functional forms 

R-bar-squareds are difficult to compare when the dependent variable is 

transformed 

Incorrect functional forms outside the range of the sample 

An incorrect functional form may provide a reasonable fit within the 

sample but have the potential to make large forecast errors when used 

outside the range of the sample.  

 

Using dummy variables 

Intercept dummy: a dummy variable that changes the constant or intercept term, 

depending on whether the qualitative condition is met 

The omitted condition: the event not explicitly represented by a dummy variable; 

forms the basis against which the included conditions are compared 

 

Slope dummy variables 

Interaction term: an independent variable in a regression equation that is the 

multiple of two or more other independent variables. 

Slope dummy variable: allows the slope of the relationship between the dependent 

and variable and an independent variable to be different depending on whether the 

condition specified by a dummy variable is met.  

 

Appendix: more uses for the F-test 

 

Chapter 8: Multicollinearity 

 For violations of the classical assumptions, the following questions are addressed: 

1. What is the nature of the problem? 

2. What are the consequences of the problem? 

3. How is the problem diagnosed? 

4. What remedies for the problem are available? 

 

Perfect versus imperfect multicollinearity  

Perfect multicollinearity 
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Perfect multicollinearity: the violation of the assumption that no 

independent variable is a perfect linear function of one or more other 

independent variables (classical assumption 6). 

Equation for perfectly linearly related variables 

  Imperfect multicollinearity 

Imperfect multicollinearity: a linear functional relationship between two or 

more independent variables that is so strong that it can significantly effect 

the estimation of the coefficients of the variables. 

Equation for imperfectly linearly related variables 

 

The consequences of multicollinearity 

 What are the consequences of multicollinearity? 

1. Estimates will remain unbiased. 

2. The variances and standard errors of the estimates will increase. 

3. The computed t-scores will fall.  

4. Estimates will become very sensitive to changes in specification. 

5. The overall fit of the equation and the estimation of nonmulticollinear 

variables will be largely unaffected.  

Two examples of the consequences of multicollinearity 

 

The detection of multicollinearity 

 High simple correlation coefficients 

 High variance inflation factors (VIFs) 

Variance inflation factor (VIF): a method of detecting the severity of 

multicollinearity by looking at the extent to which a given explanatory 

variable can be explained by all the other explanatory variables in the 

equation; an estimate of how much multicollinearity has increased the 

variance of the estimated coefficient. 

Calculating the VIF for a given Xi involves three steps: 

1. Run an OLS regression that has Xi as a function of all the other 

explanatory variables in the equation. 

2. Calculate the variance inflation factor for beta-hat-i 

a. Equation for the VIF of beta-hat-i 

3. Analyze the degree of multicollinearity by evaluating the size 

of the VIF of beta-hat-i. 

a. A VIF greater than 5 is most commonly used to 

determine that multicollinearity is severe, but there no 

table of formal critical VIF values. 

 

Remedies for multicollinearity 

 Do nothing 

 Drop a redundant variable 

Redundant variable: only one variable is needed to represent the effect on 

the dependent variable that all of the multicollinear variables currently 

represent. 

  Transform the multicollinear variables 
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   Two most common transformations: 

1. Form a combination of the multicollinear variables. 

a. The technique of forming a combination of two or more 

of the multicollinear variables consists of creating a 

new variable that is a function of the multicollinear 

variables and using the new variable to replace the old 

ones in the regression equation. 

b. General equation for a combination transformation 

2. Transform the equation into first differences. 

a. A fist difference is nothing more than the change in a 

variable from the previous time period to the current 

time period. 

b. General equation for a first difference transformation 

Increase the size of the sample 

 

Choosing the proper remedy 

 Why multicollinearity often should be left unadjusted 

 A more complete example of dealing with multicollinearity 

 

Appendix: the SAT interactive regression learning exercise 

 

Chapter 16: Statistical Principles 

 

Describing data 

 Median 

Median: the middle value when the data are arranged in numerical order 

from the smallest value to the largest value 

 Mean 

  Mean: the simple arithmetic average value of the data 

Outlier: a value very different from the other observations 

Histogram: a diagram in which the relative frequency of the observations 

in each interval is shown by the height of the bar spanning the interval (for 

equal intervals) 

  Variance and standard deviation 

Variance: the average squared deviation of the observations about their 

mean 

Standard deviation: the square root of variance 

 

Probability distributions 

 Probability 

A random variable X: a variable whose numerical value is determined by 

chance, the outcome of a random phenomenon 

Discrete random variable: has a countable number of possible values 

Continuous random variables: can take on any value in an interval, such as 

time and distance 
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A probability distribution for a discrete random variable X assigns 

probabilities to the possible values of X 

  Mean, variance, and standard deviation 

   Mean: the expected value of a discrete random variable X 

    Equation for the expected value of the random variable X 

   Finding the expected value of X: 

1. Determine the possible outcomes (the possible values of X). 

2. Determine the probability of each possible outcome. 

3. The expected value is equal to the sum of the possible 

outcomes multiplied by their respective probabilities. 

Equations for the variance and standard deviation of a discrete random 

variable X 

Finding the variance and standard deviation of a discrete random variable 

X: 

1. Determine the expected value of X. 

2. For each possible value of X, determine the size of the squared 

deviation from the expected value of the true population mean. 

3. The variance is equal to the sum of the squared deviations of 

Xi from the true population mean, multiplied by their 

respective probabilities. 

4. The standard deviation is the square root of the variance. 

Continuous random variables 

Continuous probability density curve: the probability that the outcome is 

in a specified interval is given by the corresponding area under the curve 

  Standardized variables 

   Equation for the z-score 

No matter what the initial units of X, the standardized random variable Z 

has a mean of zero and a standard deviation of one. 

  The normal distribution 

The central limit theorem: if Z is a standardized sum of n independent, 

identically distributed (discrete or continuous) random variables with a 

finite, nonzero standard deviation, then the probability distribution of Z 

approaches the normal distribution as n increases. 

 

Sampling 

 Selection bias 

Selection bias: occurs when the selection of the sample systematically 

excludes or underrepresents certain groups. 

Convenience sample: consists of data that are easily collected 

  Survivor bias 

Retrospective study: looking at past data for a contemporaneously selected 

sample 

Prospective study: selects a sample and then tracks the members over time 

Survivor bias: when a sample is chosen from a current population in order 

to draw inferences about a past population, it necessarily excludes 



 - 15 - 

members of the past population who are no longer around; only looking at 

survivors 

  Nonresponse bias 

Nonresponse bias: the systematic refusal of some groups to participate in 

an experiment or to respond to a poll  

  The power of random selection 

 

Estimation 

 Parameter: the unknown true values that describe the population 

Estimator: a sample statistic that is used to estimate the value of a population 

parameter 

Estimate: the specific value of the estimator that is obtained in a particular sample 

Sampling distributions 

Sampling error: the difference between the value of one particular sample 

mean and the average of the means of all possible samples of this size 

Systematic error or bias: cause the sample means to differ, on average, 

from the population parameter being estimated 

Sampling distribution of a statistic: the probability distribution or density 

curve that describes the population of all possible values of this statistic 

  The mean of the sampling distribution 

Unbiased estimator: a sampling statistic is an unbiased estimator of a 

population parameter if the mean of the sampling distribution of this 

statistic is equal to the value of the population parameter. 

  The standard deviation of the sampling distribution 

  The t-distribution 

   Equation for the standard error 

Equation for the z-statistic with n number of observations and a known 

standard deviation 

Equation for the t-statistic 

Equation for the degrees of freedom 

  Confidence intervals 

   Equation for confidence intervals 

   Confidence level 

General procedure for determining a confidence interval for a population 

mean: 

1. Calculate the sample mean. 

2. Calculate the standard error of the sample mean by dividing the 

sample standard deviation s by the square root of the sample 

size n. 

3. Select a confidence level and look up the t-value t* that 

corresponds to its probability. 

4. A confidence interval for the population mean is equal to the 

sample mean plus or minus t* standard errors of the sample 

mean. 

Sampling from finite populations 
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Hypothesis tests 

 A general framework for hypothesis tests 

 The null and alternative hypotheses 

  Null hypothesis: used for a proof by statistical contradiction 

 The test statistic and statistical significance 

  Test statistic: the estimator that is used to test the null hypothesis 

Statistically significant: the probability that the value of the test statistic 

would be so far from its expected value were the null hypothesis true is 

less than this specified significance level 

  P-values 

P-value: for a test of a null hypothesis about the population mean is the 

probability, if the null hypothesis is in fact true, that a random sample of 

this size would yield a sample mean that is this far (or further) from the 

value of the population mean assumed by the null hypothesis; a small P-

value casts doubt on the null hypothesis 

  Using confidence intervals 

  Is it important? 

  An overview of hypothesis testing 

   The general procedure can be summarized as follows: 

1. Specify the null hypothesis and whether the alternative 

hypothesis is one sided or two sided. 

2. Use the sample data to estimate the value of the population 

parameter whose value is specified by the null hypothesis. 

3. If this sample statistic is approximately normally distributed, 

calculate the t-value, which measure how many standard errors 

the estimate is from the null hypothesis. For testing a null 

hypothesis about the value of the population mean, the sample 

mean is used as the test statistic and the t-value is calculated.  

4. Determine the critical values of t corresponding to the test’s 

selected significance level, and see if the t-value for this 

sample is outside this range. 

5. Report a confidence interval in order to assess the practical 

importance of the results. 

 

 


