DSC1520 ASSIGNMENT 3
POSSIBLE SOLUTIONS

Question 1
Find the derivative of the function: \(G(x) = x(x^2 - 4\sqrt{x} + 4) \)

Replace \(\sqrt{x} \) with \(x^{\frac{1}{2}} \), expand the brackets and simplify before differentiating

\[
G(x) = x(x^2 - 4x^{\frac{1}{2}} + 4)
\]

\[
G(x) = x^3 - 4x^{\frac{3}{2}} + 4x
\]

Apply the “Power Rule” of differentiation.

If \(G(x) = x^n \) then \(G'(x) = nx^{n-1} \)

Also, if \(G(x) = ax^n \) then \(G'(x) = anx^{n-1} \)

Note: The derivative of \(ax \) is \(a \) and the derivative of a constant term \(c \) is \(0 \).

\[
G'(x) = 3x^{3-1} - 4 \left(\frac{3}{2}\right) x^{\frac{3}{2}-1} + 4
\]

\[
G'(x) = 3x^2 - 6x^{\frac{1}{2}} + 4
\]

Replace \(x^{\frac{1}{2}} \) with \(\sqrt{x} \)

\[
G'(x) = 3x^2 - 6\sqrt{x} + 4
\]
Question 2

Differentiate the function

\[f(x) = \frac{x^2 + 6}{2x + 5} \]

Apply the “Quotient rule” of differentiation.

Let \(f(x) = \frac{u}{v} \)

\(u = x^2 + 6; \ du = 2x \) and \(v = 2x + 5; \ dv = 2 \)

\[f'(x) = \frac{vdu - udv}{v^2} \]

\[f'(x) = \frac{(2x + 5)2x - (x^2 + 6)2}{(2x + 5)^2} \]

\[f'(x) = \frac{4x^2 + 10x - 2x^2 - 12}{(2x + 5)^2} \]

\[f'(x) = \frac{4x^2 - 2x^2 + 10x - 12}{(2x + 5)^2} \]

\[f'(x) = \frac{2x^2 + 10x - 12}{(2x + 5)^2} \]

Factor out 2, the common factor on the numerator

\[f'(x) = \frac{2(x^2 + 5x - 6)}{(2x + 5)^2} \]

Now, factorize the bracket on the numerator

\[f'(x) = \frac{2(x + 6)(x - 1)}{(2x + 5)^2} \]
Question 3

Find the derivative of the function

\[P(x) = x^5e^{3x} + \frac{x + 1}{x} \]

Apply the “Product rule” on \(x^5e^{3x} \) and “Quotient rule” on \(\frac{x+1}{x} \)

Let \(P(x) = f(x) + g(x) \) where

\[f(x) = x^5e^{3x} \text{ and } g(x) = \frac{x+1}{x} \]

\[P'(x) = f'(x) + g'(x) \]

\[f(x) = uv \text{ where} \]

\[u = x^5; \ du = 5x^4 \text{ and } v = e^{3x}; \ dv = 3e^{3x} \]

\[f'(x) = u dv + v du \quad \text{[Product rule]} \]

\[f'(x) = x^5 \cdot 3e^{3x} + e^{3x} \cdot 5x^4 \]

\[f'(x) = 3x^5e^{3x} + 5x^4e^{3x} = e^{3x}(3x^5 + 5x^4) \]

\[g(x) = \frac{u}{v} \text{ where} \]

\[u = x + 1; \ du = 1 \text{ and } v = x; \ dv = 1 \]

\[g'(x) = \frac{v du - udv}{v^2} \]

\[g'(x) = \frac{x(1) - (x + 1)1}{x^2} = \frac{x - x - 1}{x^2} = -\frac{1}{x^2} \]

\[\therefore P'(x) = e^{3x}(3x^5 + 5x^4) - \frac{1}{x^2} \]
Question 4

Find the derivative of

$$\frac{d}{dx}(\ln x + 4x^{-2}) = \frac{1}{x} + 4(-2)x^{-2-1} = \frac{1}{x} - 8x^{-3}$$

Question 5

Evaluate

$$\int x^2(1 + \frac{1}{x^2})dx$$

Expand the bracket, simplify and apply the “Power rule” of integration.

$$\int x^2 \left(1 + \frac{1}{x^2}\right)dx = \int x^2 + \frac{x^2}{x^2}dx = \int (x^2 + 1)dx$$

Power rule of integration

$$\int ax^n dx = \frac{ax^{n+1}}{n+1} + c$$

Note: $$\int a dx = ax + c$$, where a is any constant term.

$$\int (x^2 + 1)dx = \frac{x^{2+1}}{2+1} + x + c = \frac{x^3}{3} + x + c = \frac{1}{3}x^3 + x + c$$
Question 6

Evaluate the following definite integral:

\[\int_{-2}^{2} (x^2 - 3) \, dx \]

\[\int_{-2}^{2} (x^2 - 3) \, dx = \left[\frac{x^{2+1}}{2+1} - 3x \right]_{-2}^{2} = \left[\frac{x^3}{3} - 3x \right]_{-2}^{2} \]

Note: There is no constant of integration, c in a definite integral.

\[= \left[\frac{(2)^3}{3} - 3(2) \right] - \left[\frac{(-2)^3}{3} - 3(-2) \right] \]

\[= \left[\frac{8}{3} - 6 \right] - \left[-\frac{8}{3} + 6 \right] \]

\[= \left[-\frac{10}{3} \right] - \left[\frac{10}{3} \right] \]

\[= -\frac{20}{3} \]

\[= -6 \frac{2}{3} \]
Question 7

Evaluate the following integral:

\[\int \sqrt{9x - 5} \, dx. \]

Replace the root sign with an exponent of \(\frac{1}{2} \)

\[\int \sqrt{9x - 5} \, dx = \int (9x - 5)^{\frac{1}{2}} \, dx. \]

Apply the “u” substitution or use standard integrals

The “u” substitution method.

Let \(u = 9x - 5; \frac{du}{dx} = 9; du = 9 \, dx; \frac{du}{9} = dx \)

Now, in the original integral replace \(9x - 5 \) with \(u \).

Also, replace \(dx \) with \(\frac{du}{9} \).

\[\int (9x - 5)^{\frac{1}{2}} \, dx = \int u^{\frac{1}{2}} \cdot \frac{du}{9} \]

\[= \frac{1}{9} \int u^{\frac{1}{2}} \, du = \frac{1}{9} \cdot \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c = \frac{1}{9} \cdot \frac{u^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{2}{27}u^{\frac{3}{2}} + c \]

But \(u = 9x - 5 \)

Replace \(u \) with \(9x - 5 \)

Also, replace the exponent of \(\frac{3}{2} \) with the equivalent root

\[\int \sqrt{9x - 5} \, dx = \frac{2}{27} \sqrt{(9x - 5)^3} + c \]
Question 8

Evaluate the following integral:

\[\int \frac{x^2 + 4}{x^3} \, dx. \]

Express as separate fractions and simplify.

\[
= \int \left(\frac{x^2}{x^3} + \frac{4}{x^3} \right) \, dx \\
= \int \left(\frac{1}{x} + 4x^{-3} \right) \, dx \\
= \ln x + 4 \left(\frac{x^{-3+1}}{-3+1} \right) + c \\
= \ln x + \frac{4x^{-2}}{-2} + c \\
= \ln x - 2x^{-2} + c
\]
Table of derivatives including some standard derivatives

<table>
<thead>
<tr>
<th>Function: $f(x)$</th>
<th>Derivative: $f'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>ax</td>
<td>a</td>
</tr>
<tr>
<td>x^n</td>
<td>nx^{n-1}</td>
</tr>
<tr>
<td>ax^n</td>
<td>anx^{n-1}</td>
</tr>
<tr>
<td>$[f(x)]^n$</td>
<td>$nf'(x)[f(x)]^{n-1}$</td>
</tr>
<tr>
<td>e^x</td>
<td>e^x</td>
</tr>
<tr>
<td>$e^{g(x)}$</td>
<td>$g'(x)e^{g(x)}$</td>
</tr>
<tr>
<td>$\ln x$</td>
<td>$\frac{1}{x}$</td>
</tr>
<tr>
<td>$\ln g(x)$</td>
<td>$\frac{g'(x)}{g(x)}$</td>
</tr>
</tbody>
</table>
Power Rule

\[f(x) = ax^n; \quad f'(x) = anx^{n-1} \]

Product Rule

- Used to differentiate a “product” of two different functions.

\[f(x) = uv: \text{ where } u \text{ and } v \text{ are both functions of } x. \]

\[f'(x) = udv + vdu: \text{ where } du \text{ and } dv \text{ are the derivatives of } u \text{ and } v \text{ with respect to } x, \text{ respectively}. \]

Quotient Rule

- Used to differentiate a “quotient” or a fraction of two functions.

\[f(x) = \frac{u}{v}: \text{ where } u \text{ and } v \text{ are both functions of } x. \]

\[f'(x) = \frac{vdu - udv}{v^2} \]

du and dv are the derivatives of u and v with respect to x, respectively.

The Chain Rule

- Used to differentiate a function of a function or a multiple of these.
- By making the necessary substitutions, a chain of derivatives is used to compute the derivative of the particular function, for example,

If \(y = f(u) \text{ where } u = f(v) \text{ and } v = f(w) \) then

\[y'(w) = \frac{dy}{dw} = \frac{dy}{du} \times \frac{du}{dv} \times \frac{dv}{dw} \]

Notice how the du and dv terms will disappear, by cancelling each other out, to yield the desired derivative, \(\frac{dy}{dw} \).
Table of integrals including standard integrals

<table>
<thead>
<tr>
<th>Integral</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int 0 , dx)</td>
<td>(c)</td>
</tr>
<tr>
<td>(\int a , dx)</td>
<td>(ax + c)</td>
</tr>
<tr>
<td>(\int x^n , dx)</td>
<td>(\frac{x^{n+1}}{n+1} + c)</td>
</tr>
<tr>
<td>(\int ax^n , dx)</td>
<td>(\frac{ax^{n+1}}{n+1} + c)</td>
</tr>
<tr>
<td>(\int f'(x)[f(x)]^n , dx)</td>
<td>(\frac{[f(x)]^{n+1}}{n+1} + c)</td>
</tr>
<tr>
<td>(\int e^x , dx)</td>
<td>(e^x + c)</td>
</tr>
<tr>
<td>(\int f'(x)e^{f(x)} , dx)</td>
<td>(e^{f(x)} + c)</td>
</tr>
<tr>
<td>(\int \frac{1}{x} , dx)</td>
<td>(\ln x + c)</td>
</tr>
<tr>
<td>(\int \frac{f'(x)}{f(x)} , dx)</td>
<td>(\ln f(x) + c)</td>
</tr>
</tbody>
</table>

Definite integrals

\[
\int_{a}^{b} f(x) \, dx = F(b) - F(a)
\]
Question 9

What is the value of maximum revenue if total revenue is given by

\[R(x) = -\frac{1}{5}x^2 + 30x + 81 \]

where \(x \) is the quantity?

Maximum revenue occurs when \(R'(x) = 0 \)

where \(R'(x) \) is the derivative of \(R(x) \), the total revenue.

\[R'(x) = -\frac{1}{5}(2)x^{2-1} + 30 = -\frac{2}{5}x + 30 \]

But \(R'(x) = 0 \) at maximum revenue.

\[-\frac{2}{5}x + 30 = 0 \]

\[30 = \frac{2}{5}x \]

\[\frac{5}{2} \times 30 = \frac{5}{2} \times \frac{2}{5}x \]

\[75 = x \]

Thus the maximum revenue is given by substituting 75 for \(x \) in the total revenue function.

\[R(x) = -\frac{1}{5}(75)^2 + 30(75) + 81 = 1206 \]

OR Since the total revenue function is a quadratic function, the maximum revenue occurs at the turning point where \(x = -\frac{b}{2a} \) where \(a = -\frac{1}{5} \) and \(b = 30 \)

At maximum revenue

\[x = -\frac{b}{2a} = -\frac{30}{2(-\frac{1}{5})} = 75 \]
Question 10

Total revenue is given by

\[TR = 2x^5 - \frac{1}{2}x^2 + 10x + 15, \]

where \(x \) is the number of units sold. What is the marginal revenue when five units are sold?

Marginal revenue is the derivative of total revenue thus:

\[MR = TR' = 2(5)x^{5-1} - \frac{1}{2}(2)x + 10 = 10x^4 - x + 10 \]

Given that \(x = 5 \) units,

\[MR = 10(5)^4 - 5 + 10 = 6255 \]

Question 11

Suppose the total cost (in rand) of manufacturing radios is given by

\[2Q^3 - Q^2 + 80Q + 150 \]

where \(Q \) is the number of radios manufactured. What is the marginal cost if 10 radios are manufactured?

Marginal cost is the derivative of total cost.

\[MC = TC' = 6Q^2 - 2Q + 80 \]

Given \(Q = 10 \)

\[MC = 6(10)^2 - 2(10) + 80 = 660 \]

Therefore, the marginal cost if 10 radios are manufactured is R660.
Question 12

The annual revenue (in millions of rand) generated by a television company can be approximated by the function

\[f(t) = 5.78 + 8.59 \ln t \]

where \(t \) is the number of years since the company started. The rate of change in revenue 15 years after the company started, is given by \(f'(t) \) at \(t = 15 \).

\[f'(t) = 8.59 \left(\frac{1}{t} \right) = \frac{8.59}{t} \]

Given that \(t = 15 \) and revenue being in millions of rand, the rate of change in revenue is therefore

\[f'(15) = \frac{8.59}{15} \times 1\,000\,000 \]

\[= R572\,667 \text{ per annum.} \]
Question 13

The demand for seats at a mini soccer match is given by

\[Q = 192 - P^2 \]

Where \(Q \) is the number of seats and \(P \) is the price per seat. Find the price elasticity of demand if seats cost R6 each. What does this value mean?

First, find \(Q \) when \(P = 6 \)

\[Q = 192 - (6)^2 = 156 \]

Since the demand function is non-linear, the price elasticity of demand is given by

\[\varepsilon_d = \frac{dQ}{dP} \times \frac{P}{Q} \]

\[\frac{dQ}{dP} = -2P = -2(6) = -12 \]

\[\therefore \varepsilon_d = -12 \left(\frac{6}{156} \right) \]

\[\varepsilon_d = -0.46 \]

\[|\varepsilon_d| = 0.46 < 1, \text{ therefore demand is inelastic.} \]
Question 14

Calculate the consumer surplus for the demand function

\[P = \frac{40}{Q + 3} \]

When the market price is \(P = 10 \).

First we find \(Q \) when \(P = 10 = P_0 \)

\[
10 = \frac{40}{Q + 3}
\]

\[10(Q + 3) = 40 \]

\[10Q + 30 = 40 \]

\[10Q = 40 - 30 \]

\[10Q = 10 \]

\[\frac{10Q}{10} = \frac{10}{10} \]

\[Q = 1 = Q_0 \]

Consumer surplus for a non-linear demand function is given by

\[\text{Consumer Surplus} = \int_0^{Q_0} P_d \, dQ - (P_0 \times Q_0) \]

\[C.S. = \int_0^1 \frac{40}{Q + 3} \, dQ - (10 \times 1) \]

\[C.S. = [40 \ln(Q + 3)]_0^1 - 10 \]

\[C.S. = [40 \ln(1 + 3) - 40 \ln(0 + 3)] - 10 \]

\[C.S. = [40 \ln 4 - 40 \ln 3] - 10 \]

\[C.S. = 1.5 \]
Question 15

The marginal cost function for a good is given by

\[MC = 2Q^2 - 1. \]

Find the total cost function if fixed costs are 300.

Since Marginal cost is the “derivative” of Total cost, it follows that:

Total cost is the “integral” of Marginal cost

\[TC = \int MC \, dQ \]

\[TC = \int (2Q^2 - 1) \, dQ \]

\[TC = \frac{2(Q^2+1)}{2+1} - Q + c \]

\[TC = \frac{2Q^3}{3} - Q + c \]

The constant term, c in the Total cost function represents Fixed costs.

\[Total \ cost = \frac{2Q^3}{3} - Q + 300 \]

Refer any queries to 083 427 5621 or 081 215 3817

All rights reserved

E & OE