This paper consists of 21 pages including paper for rough work plus instructions for completing a mark-reading sheet. The paper comprises 30 questions that count a total of 100 marks.

Please complete the attendance register on the back page, tear it off and hand it to the invigilator.

Answer ALL questions on the mark-reading sheet supplied. Carefully follow the instructions for completing the mark-reading sheet. Also pay attention to the following:

- Only one option (indicated as [1] [2] [3] [4] [5]) per question is correct. Do not mark more than one option per question on the mark-reading sheet.
- Marks will not be deducted for incorrect answers.

You are strongly advised to write your name on the mark-reading sheet. Then, if you have entered your student number incorrectly, we will still be able to link you to the mark-reading sheet.
Questions 1 and 2 are based on the following information:

The demand and supply functions for accommodation at a B&B are given by

\[P_d = 952 - 8Q \quad \text{and} \quad P_s = 400 + 4Q, \]

where \(P \) is the price per room and \(Q \) is the number of rooms occupied.

The following graph represents these functions.

![Graph of demand and supply functions]

Question 1

The coordinates of the intercepts at A, B and C are

1. \(A = (0, 95,2), \) \(B = (0, 40), \) \(C = (11,9; 0). \)
2. \(A = (0, 100), \) \(B = (0; 119), \) \(C = (952, 0). \)
3. \(A = (0, 119), \) \(B = (0, 100), \) \(C = (400; 0) \)
4. \(A = (0, 952), \) \(B = (0, 400), \) \(C = (119; 0) \)
5. none of the above

Question 2

What does point D represent? Provide the coordinates at point D

1. Break-even, \(D = (46,67; 586,68) \)
2. Equilibrium, \(D = (46, 584) \)
3. Equilibrium, \(D = (587; 47) \)
4. Break-even, \(D = (47, 587) \)
5. None of the above

Question 3

Consider the demand function \(P = 100 - 5Q, \)

with \(P \) being price and \(Q \) quantity. Find the price elasticity of demand when \(Q = 8 \), Is demand elastic or inelastic? Justify your answer.

1. \(\varepsilon_d = -1,5, \) demand is elastic, \(\varepsilon_d < -1 \)
2. \(\varepsilon_d = -0,03; \) demand is inelastic; \(|\varepsilon_d| < 0 \)
3. \(\varepsilon_d = 0,5, \) demand is elastic, \(|\varepsilon_d| > 0 \)
4. \(\varepsilon_d = 1,5, \) demand is inelastic; \(\varepsilon_d > 1 \)
5. None of the above
Rough work
Question 4
The demand function of a certain product is given by

\[P = 100 - 20Q, \]

where \(P \) is price per item and \(Q \) is the number of units produced (in thousands). The daily fixed costs amount to R40 and the production cost per unit is R10. How many units should be produced per day to break even?

[1] 0,5 or 4
[2] 200
[3] 4000
[4] 500 or 4000
[5] None of the above

Question 5
Workers at a building site have the option to eat lunch provided by an outside company. When the price per lunch is R40, there is a demand for 80 lunches. It is known that for each R5 increase in price, demand decreases by three lunches. Determine the demand function for lunches with quantity demanded \(Q \) as a function of price \(P \)

[1] \(Q = 104 - 0,6P \)
[2] \(Q = 136,67 - 1,67P \)
[3] \(Q = 56 + 0,6P \)
[4] \(Q = 40 - \frac{3}{5}P \)
[5] None of the above

Question 6
John manufactures wooden toys for a flea market. His marginal cost function is given by

\[MC = 2Q^2 - 8Q + 10, \]

where \(Q \) is the number of units manufactured. It is known that his fixed costs amount to R100. John’s total cost function is

[1] \(TC = 4Q + 92 \)
[2] \(TC = \frac{2}{3}Q^3 - 4Q^2 + 100. \)
[3] \(TC = \frac{2}{3}Q^3 - 4Q^2 + 10Q + 100. \)
[4] \(TC = 2Q^2 - 8Q + 110 \)
[5] None of the above
Rough work
Question 7
Find the derivative of the function
\[f(x) = \frac{x^2 + 6}{2x + 5}. \]
Simplify your answer

[1] \(-\frac{2(x+5)(x-1)}{(2x+5)^2}\)
[2] \(\frac{2(x+5)(x-1)}{(2x+5)^2}\)
[3] \(\frac{2x-12}{(2x+5)^2}\)
[4] \(-\frac{2(x+6)}{(2x+5)^2}\)
[5] None of the above

Question 8
A firm has the following total revenue and cost functions:
\[TR = 40Q - 8Q^2 \quad \text{and} \quad TC = 8 + 16Q - Q^2, \]
where \(Q\) is the number of units produced and sold (in thousands).
How many units should be produced to maximize profit?

[1] 1,714
[2] 3,111
[3] 1,714
[4] 3,111
[5] None of the above

Question 9
Demand for a certain type of bicycle is modelled by the function
\[P = 850 - 8Q^2, \]
where \(P\) is the price per bicycle and \(Q\) the number of bicycles demanded.
Find the consumer surplus when six bicycles are demanded. What does this value mean?

[1] \(CS = 562\); consumers are willing to pay R562 more per bicycle than they actually pay
[2] \(CS = -4,250\); consumers pay R4,250 more for six bicycles than they should
[3] \(CS = -1,152\); consumers are willing to pay R1,152 less than they actually pay
[4] \(CS = 1,152\); consumers are willing to pay R1,152 more for 6 bicycles than they actually pay.
[5] None of the above.
Rough work
Question 10
Bongi supplies trays of fresh sandwiches to offices daily. Her daily fixed costs amount to R744, while her variable cost is R17 per tray. Bongi’s total cost and marginal cost functions (in terms of the number of trays supplied, Q) are given by

[1] \(TC = 17 + 744Q, \quad MC = 744 \)
[2] \(TC = 744 + 17Q, \quad MC = 17 \)
[3] \(TC = 761Q, \quad MC = 761Q \)
[4] \(TC = 744Q - 17, \quad MC = -17 \)
[5] none of the above

Question 11
The demand and supply functions for a product are given by

\[P_d = 136 - 4Q \quad \text{and} \quad P_s = 14 + 5Q, \]

where \(P \) is price and \(Q \) is quantity. By working throughout with values rounded to two decimals, the producer surplus at equilibrium is

[1] 459.41
[2] 461.09
[3] 474.46
[4] 649.25
[5] none of the above

Question 12
Integrate the function

\[f(t) = \frac{t^{10} - \sqrt{t}}{t^3} \]

[1] \(0.125t^8 - 0.67t^{1.5} + c \)
[2] \(7t^6 + 2.5t^{-3.5} \)
[3] \(\frac{t^8}{8} + \frac{2}{3\sqrt{3}} + C \)
[4] \(\frac{10t^{0.5} - 0.5t^{-0.5}}{3t} \)
[5] None of the above

Question 13
Use the rules of logarithms to solve the equation

\[\ln(3x + 1) - \ln(5 + x) = \ln(2) \]

[1] \(x = 1.5 \)
[2] \(x = 1.8 \)
[3] \(x = 9 \)
[4] \(x = 11 \)
[5] None of the above
Rough work
Question 14
The consumer price index (CPI) of a country is approximated by the function

\[C(t) = 170.63e^{0.03t}, \]

where \(t \) is the number of years from now \((t = 0)\). Approximately how long will it take for the CPI to reach 220?

1. 4.5 years
2. 8.5 years
3. 130 years
4. 351 years
5. None of the above

Question 15
Solve the following system of simultaneous equations

\[\begin{align*}
 x + y + z &= 5 \\
 2x + y - z &= 2 \\
 x - y + z &= -2
\end{align*} \]

1. \(x = 0; \ y = 7; \ z = -3.5 \)
2. \(x = 0; \ y = 3.5; \ z = 1.5 \)
3. \(x = 1.33; \ y = 1.5; \ z = 2.17 \)
4. \(x = 21; \ y = 16; \ z = -7 \)
5. No solution exists.

Question 16
An animal feed is to be made from corn, soybean and cottonseed. The feed should supply 1800 units of fiber, 2800 units of fat and 2200 units of protein. The number of units of fiber, fat and protein that one unit of each ingredient provides, is shown in the following table.

<table>
<thead>
<tr>
<th>Units of</th>
<th>Corn</th>
<th>Soybean</th>
<th>Cottonseed</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>1800</td>
</tr>
<tr>
<td>Fat</td>
<td>30</td>
<td>20</td>
<td>40</td>
<td>2800</td>
</tr>
<tr>
<td>Protein</td>
<td>20</td>
<td>40</td>
<td>25</td>
<td>2200</td>
</tr>
</tbody>
</table>

If \(X, Y \) and \(Z \) are the number of units of corn, soybean and cottonseed required, respectively, then the system of equations representing the constraints on making the feed with these requirements is

1. \(X + 2Y + 3Z = 18; \ 3X + 4Y + 2.5Z = 28; \ 2X + 4Y + 2.5Z = 22 \)
2. \(X + 3Y + 2Z = 180; \ 2X + 2Y + 4Z = 280; \ 3X + 4Y + 2.5Z = 220 \)
3. \(10X + 20Y + 30Z = 1800; \ 30X + 20Y + 40Z = 2800; \ 20X + 40Y + 25Z = 2200 \)
4. \(10X + 30Y + 20Z = 1800; \ 20X + 20Y + 40Z = 2800; \ 30X + 40Y + 25Z = 2200 \)
5. None of the above.
Rough work
Questions 17 and 18 are based on the following LP model:

Minimise \(Z = 1.8x + 1.2y \)
subject to \(2x + 6y \geq 30 \)
\(4x + 2y \geq 20 \)
\(y \geq 2 \)
\(x \geq 0 \)

Question 17
The feasible region for this model is given by

[5] none of the above
Rough work
Question 18
The optimal solution is

[1] \(x = 5, \ y = 0; \ Z = 9,00\)
[2] \(x = 3, \ y = 4; \ Z = 10,20\)
[3] \(x = 0, \ y = 10; \ Z = 12,00\)
[4] \(x = 9; \ y = 2; \ Z = 18,60\).
[5] none of the above

Question 19
The demand and supply functions for a certain commodity are

\[P_d = 150 - 6Q^2 \quad \text{and} \quad P_s = 10Q^2 + 2Q, \]

where \(P\) is price and \(Q\) is quantity. The equilibrium quantity and price are

[1] \(Q_e = 3.125, \ P_e = R91.41\)
[2] \(Q_e = 3; \ P_e = R96.00\)
[3] \(Q_e = 6; \ P_e = R66.00\)
[4] \(Q_e = 13, \ P_e = R864.\)
[5] none of the above

Question 20
Consider the following graph:

![Graph](image)

The quadratic function graphed here, is

[1] \(f(x) = -x^2 + 4x + 3\)
[2] \(f(x) = -2x^2 + 2x - 3\)
[3] \(f(x) = x^2 - 4x + 3\).
[4] \(f(x) = x^2 + 4x + 3\)
[5] none of the above
Rough work
Question 21
The annual revenue (in millions of rand) generated by a television company can be approximated by the function

\[f(t) = 5.78 + 8.59 \ln t, \]

where \(t \) is the number of years since the company started. The rate of change in revenue 15 years after the company started, is

[1] R0.57 per annum
[2] R6.35 per annum
[3] R572.667 per year

Question 22
Find the derivative of the function \(f(x) = e^{x^2-3x} \).

[1] \((2x-3)e^{x^2-3x}\)
[2] \(e^{x^2-3x}\)
[3] \(\frac{e^{x^2-3x}}{2x-3}\)
[4] \(2xe^{x^2-3x} + 3e^{x^2-3x}\)
[5] None of the above

Question 23
The demand for seats at a mini soccer match is given by

\[Q = 192 - P^2, \]

where \(Q \) is the number of seats and \(P \) is the price per seat. Find the price elasticity of demand if seats cost R6 each. What does this value mean?

[1] \(\varepsilon_d = -0.46 \); inelastic since \(|\varepsilon| < 1 \), a 1% price increase will result in 0.46% less seats to be sold
[2] \(\varepsilon_d = 0.46 \); elastic since \(|\varepsilon| > 0 \), a 1% price increase will result in 0.46% more seats to be sold
[3] \(|\varepsilon_d| = -0.5 < 0 \), demand is inelastic
[4] \(\varepsilon_d = -\frac{P}{Q} \); which is always < 0, demand is always elastic
[5] None of the above

Question 24
Find the derivative of the function \(f(x) = 3x^3 - \frac{1}{x} + e^{2x} \).

[1] \(9x^2 - \frac{1}{x} + 2e^{2x}\)
[2] \(9x^2 + \frac{1}{x} + e^{2x}\)
[3] \(9x^2 + \frac{1}{x} + 2e^{2x}\)
[4] \(\frac{3x^3}{x} - \ln x + \frac{e^{2x}}{2}\)
[5] None of the above
Rough work
Question 25
Customers of a hardware store are willing to buy

$$Q = 80 - P^2$$

boxes of nails at P rand per box. Find the marginal revenue if the price per box is R3.

[1] -6
[2] 53
[3] 71
[4] 213
[5] None of the above

Question 26
Evaluate the definite integral

$$\int_{-1}^{2} (9x^2 - 4x + 1) \, dx$$

[1] 11
[2] 17
[3] 24
[4] 51
[5] None of the above

Questions 27 and 28 are based on the following function:

$$f(x) = x^3 - 6x^2 + 1$$

Question 27

The second derivative of f is

[1] $\frac{d^2 f}{dx^2} = -24$
[2] $f''(x) = 3x(x - 4)$
[4] $f''(x) = 6x - 12$
[5] None of the above

Question 28

The turning points of f and the nature of each are

[1] $x = 0$ (maximum) and $x = 4$ (minimum)
[2] $x = 0$ (maximum) and $x = 1,33$ (minimum).
[3] $x = 0$ (minimum) and $x = 4$ (maximum)
[4] $x = 2$ (minimum)
[5] None of the above
Rough work
Question 29
If the slope of the function f is given by
$$6x^2 - 4x - 3,$$
and it is known that f goes through the point $(0,1)$, then

1. $f(x) = 12x - 4$
2. $f(x) = 6x^2 - 4x^2 - 3x - 1$
3. $f(x) = 3x^3 - 2x^2 - 3x + 1$
4. $f(x) = 2x^3 - 2x^2 - 3x + 1$
5. none of the above

Question 30
Find the integral
$$\int x^2 \sqrt{x^3 + 5} \, dx$$

1. $\frac{1}{3} \sqrt{(x^3 + 5)^3} + C$
2. $\frac{2}{3} \sqrt{(x^3 + 5)^3} + C$
3. $\frac{1}{3} (x^3 + 5)^{\frac{3}{2}} + C$
4. $\frac{2}{3\sqrt{x^3+5}} + C$
5. None of the above

TOTAL: [100]
Rough work
PART 1 (GENERAL/ALGEMEEN) DEEL 1

1. **STUDYユニバーシティ**
2. **PAPER NUMBER**
3. **INITIALS AND SURNAME**
4. **DATE OF EXAMINATION**
5. **EXAMINATION CENTRE (e.g. PRETORIA)**

<table>
<thead>
<tr>
<th>STUDENT NUMBER</th>
<th>UNIQUE PAPER NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>123456</td>
<td>789012</td>
</tr>
<tr>
<td>234567</td>
<td>234567</td>
</tr>
</tbody>
</table>

IMPORTANT
1. Use only an HB pencil to complete this sheet.
2. Mark like this:
3. Check that your initial and surname has been filled in correctly.
4. Enter your student number from left to right.
5. Check that your student number has been filled in correctly.
6. Check that the unique number has been filled in correctly.
7. Check that only one answer per question has been marked.
8. Do not fold.

BELANGRIJK
1. Gebruik slechts een HB-potlood om hierop te werk.
2. Markeer zoals hiernaast staat.
3. Controleer dat uw voornaam en achternaam correct is ingevuld.
4. Stel uw studentnummer in van links naar rechts.
5. controleer dat u dit korrekte studentnummer verstrekt hebt.
6. controleer dat u dit unieke nummer regelmatig gebruikt.
7. Make sure that only one answer per question has been marked.
8. Moenie vou nie.

PART 2 (ANSWERS/ANTWOORDE) DEEL 2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

Poortberig

This is a specimen only.
MARK READING SHEET INSTRUCTIONS

Your mark reading sheet is marked by computer and should therefore be filled in thoroughly and correctly

USE ONLY AN HB PENCIL TO COMPLETE YOUR MARK READING SHEET

PLEASE DO NOT FOLD OR DAMAGE YOUR MARK READING SHEET

Consult the illustration of a mark reading sheet on the reverse of this page and follow the instructions step by step when working on your sheet.

Instruction numbers 1 to 10 refer to spaces on your mark reading sheet which you should fill in as follows:

1. Write your paper code in these eight squares, for instance

```
  P S Y 1 0 0 - X
```

2. The paper number pertains only to first-level courses consisting of two papers

WRITE 0 1 for the first paper and 0 2 for the second. If only one paper, then leave blank.

3. Fill in your initials and surname

4. Fill in the date of the examination

5. Fill in the name of the examination centre

6. WRITE the digits of your student number HORIZONTALLY (from left to right) Begin by filling in the first digit of your student number in the first square on the left, then fill in the other digits, each one in a separate square

7. In each vertical column mark the digit that corresponds to the digit in your student number as follows:

8. WRITE your unique paper number HORIZONTALLY:

NB Your unique paper number appears at the top of your examination paper and consists only of digits (e.g. 403326)

9. In each vertical column mark the digit that corresponds to the digit number in your unique paper number as follows:

10. Question numbers 1 to 140 indicate corresponding question numbers in your examination paper. The five spaces with digits 1 to 5 next to each question number indicate an alternative answer to each question. The spaces of which the number correspond to the answer you have chosen for each question and should be marked as follows:

◆ For official use by the invigilator. Do not fill in any information here.