Tutorial letter 201/2/2012

QUANTITATIVE MODELLING

DSC1520

Semester 2

Department Decision Sciences

IMPORTANT INFORMATION:
This tutorial letter contains Solutions to Assignment 01.
Dear Student

I hope at this stage you have worked through chapter 1 to 2 of the textbook and completed your first assignment. As the assignments contain questions from old examination papers you are already in a way preparing for the examination. Practice makes perfect! Try and do as many examples as possible. The more examples you do, the better you will be able to recognise a problem and know how to solve it.

Remember help is just a phone call or e-mail away. Please contact me if you need any help with the second assignment. My contact details and contact hours are as follows:

08:00 to 13:30 (Mondays to Fridays) (appointments and telephone)
13:30 to 16:00 (Mondays to Thursdays) (telephone only)

Office: Hazelwood Campus, Room 4-37, Unisa
Tel : +27 12 433 4602
E-mail: mabemgv@unisa.ac.za
ASSIGNMENT 1: SOLUTIONS

Question 1

\[\frac{2}{3} \div \frac{5}{6} + \frac{5}{4} \div -1 \times 6 \]

\[\frac{2}{3} \div \frac{5}{6} + \frac{5}{4} \div -1 \times 1 \]

change the mixed fraction to an improper fraction

\[\frac{2 \times 6}{3} + \frac{5 \times 4}{1} - \frac{4 \times 6}{3} \]

\[\frac{a \times c}{b} \div \frac{d}{c} = \frac{a \times d}{bc} \]

\[\frac{12}{15} + \frac{20}{5} - \frac{24}{3} \]

multiply fractions: \(\frac{a \times d}{b} \div \frac{c}{bc} \)

\[\frac{12 + 60 - 120}{15} \]

common denominator

\[-48 \]

simplify by dividing nominator and denominator by 3

\[-16 \]

change the improper fraction to mixed fraction

\[-3 \frac{1}{5} \]

[Option 4]

Question 2

We have to determine which mark out of 20 is equal to 75%. Let the mark be \(x \). Therefore 75% is equal to

\[\frac{x}{20} = \frac{75}{100} \]

\[x = \frac{75}{100} \times 20 \]

\[x = 15 \]

You scored 15 out of 20.

[Option 3]

Question 3

The \(x \)-intercept is where the line cuts the \(x \)-axis. This means where \(y = 0 \). Thus, the coordinate of the \(x \)-intercept of the line is \((20 ; 0)\). The \(y \)-intercept is where the line cuts the \(y \)-axis. This means where \(x = 0 \). Thus, the coordinate of the \(y \)-intercept of the line is \((0 ; 40)\).

We have to find the equation of the line passing through the points \((20 ; 0)\) and \((0 ; 40)\). The equation of a linear line is: \(y = mx + c \)

Let \((x_1 ; y_1) = (20 ; 0)\) and \((x_2 ; y_2) = (0 ; 40)\)
The slope m is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{40 - 0}{0 - 20} = \frac{40}{-20} = -2$$

Therefore $y = -2x + c$.

Substitute any one of the points in the equation of the line to determine c. Let’s choose the point $(0 ; 40)$. Then

$$y = -2x + c$$
$$40 = -2 \times 0 + c$$
$$40 = c$$

The equation of the line is $y = -2x + 40$.

Question 4

The cost y of manufacturing x bicycles is given as:

$$y = 240x + 720$$

Now we have to solve the linear equation when the cost or $y = R30 000$. Thus

$$30 000 = 240x + 720$$
$$30 000 - 720 = 240x$$
$$29 280 = 240x$$
$$\frac{29 280}{240} = x$$
$$122 = x$$

If the cost was R30 000, 122 bicycles have been manufactured.

Question 5

The cost function is defined as the sum of the variable cost and the fixed cost of the operation.

It is given that a company’s fixed cost is R 560 000 and the variable cost is R9 000 per unit. The total cost is thus: $Cost = \text{Variable cost} + \text{Fixed cost}$ or $Cost = 9 000x + 560 000$.

We have to determine the total cost of producing 140 units, which means we have to solve the cost function when x is 140.
\[Cost = 9\,000x + 560\,000 \]
\[Cost = 9\,000(140) + 560\,000 \]
\[Cost = 1260\,000 + 560\,000 \]
\[Cost = 1820\,000 \]

The total cost to produce 140 units is R1 820 000.

[Option 2]

Question 6

We need to determine the price of the jacket in 2010.

Let the price of the jacket be \(x \).

The cost of a jacket is R800 in 2000. The price in 2004 is 21% higher than in 2000, and the price in 2010 is 25% higher than in 2004.

Therefore, in 2004 the price the price of the jacket was:

\[
x = \text{original price in 2000} + \text{increase of 21%} \\
x = 800 + \left(\frac{21}{100} \times 800 \right) \\
= 800 + 168 \\
= R968.
\]

In 2010 the price of the jacket was:

\[
x = \text{original price in 2004} + \text{increase of 25%} \\
x = 968 + \left(\frac{25}{100} \times 968 \right) \\
= 968 + 242 \\
= 1210
\]

The price of the jacket in 2010 was R1 210.

[Option 1]

Question 7

The demand function is given as \(P = 250 - 5Q \).

Now the price elasticity of demand is \(\varepsilon_d = \frac{1}{b} \times \frac{P}{Q} \) with \(a \) and \(b \) the values of the demand function \(P = a - bQ \).
To determine the price elasticity of demand we thus need to determine the values of \(b, Q \) and \(P \). It is given that \(P = 250 - 5Q \) and we have been asked to calculate it in terms of \(P \); thus \(P = P \). Comparing \(P = 250 - 5Q \) with \(P = a - bQ \), we can say that \(a = 250 \) and \(b = 5 \). At this stage \(a, b \) and \(P \) are known and \(Q \) is unknown.

The demand function denotes the relationship between the price \(P \) and the demand \(Q \). Therefore, if \(P \) is given, we can derive \(Q \) by substituting \(P \) into the demand function and solving for \(Q \).

To determine the value of \(Q \), we need to change the equation of the demand function \(P = 250 - 5Q \) so that \(Q \) is the subject of the equation. That means we write \(Q \) in terms of \(P \).

Now

\[
\begin{align*}
P &= 250 - 5Q \\
\frac{P - 250}{-5} &= Q \\
Q &= \frac{P - 250}{-5}.
\end{align*}
\]

As we have determined the values of \(b, P \) and \(Q \) we can now substitute them into the formula for elasticity of demand:

\[
\varepsilon_d = -\frac{1}{5} \times \frac{P}{\frac{P - 250}{-5}} = -\frac{1}{5} \times \frac{P}{\frac{P - 250}{1}} = \frac{P}{P - 250}
\]

Or alternatively,

you can use the given formula of price elasticity of demand in terms of \(P \) of a demand function in the form \(P = a - bQ \), given in the textbook on page 78; equation 2.14 (2nd ed) and on page 89; equation 2.14 (3rd ed).

\[
\varepsilon_d = \frac{P}{P - a}
\]

Now \(a = 250 \) (intercept on the \(y \)-axis of the demand function)

\[
\varepsilon_d = \frac{P}{P - 250}.
\]

[Option 3]

Question 8

In general the slope of a line in standard format \(y = mx + c \) has the value \(m \).
To determine the slope of the given line $2x = 3y - 5$, we first need to change the given function to the general format of a line, namely $y = mx + c$.

We need to change the equation so that y is the subject of the equation. This means we write it on its own on one side of the equation. We start with $2x = 3y - 5$ as given.

Move 5 to the left-hand side by adding 5 on both sides of the equation, then divide by 3 to get the coefficient of y to be 1:

$$2x + 5 = 3y - 5 + 5$$
$$2x + 5 = 3y$$
$$\frac{2x}{3} + \frac{5}{3} = \frac{3y}{3}$$
$$\frac{2x}{3} + \frac{5}{3} = y$$

The slope of the line $2x = 3y - 5$ is thus the value of m in the rewritten equation in the form $y = mx + c$ of the given line. Comparing the rewritten formula $\frac{2x}{3} + \frac{5}{3} = y$ of the line with the standard format of a line $y = mx + c$, we conclude that the slope of the line $2x = 3y - 5$ is equal to $\frac{2}{3}$.

[Option 4]

Question 9

Profit is equal to revenue (sales) minus total cost. The cost to produce x number of sport hats is given as: $c = 200 + 25x$, and the profit as R3 000. Thus

Profit = Sales – cost or $3 000 = 45x - (200 + 25x)$

Now we have to solve x:

$$3 000 = 45x - (200 + 25x)$$
$$3 000 = 45x - 200 - 25x$$
$$3 000 = 20x - 200$$
$$3 000 + 200 = 20x$$
$$3 200 = 20x$$
$$\frac{3 200}{20} = x$$
$$160 = x$$

160 hats were sold to make a profit of R3 000.

[Option 2]
Question 10

The demand function is given as $P = 70 - 0.5Q$. Now the price elasticity of demand is $\varepsilon_d = -\frac{1}{b} \cdot \frac{P}{Q}$ with a and b the values of the demand function $P = a - bQ$.

To determine the price elasticity of demand, we thus need to determine the values of b, Q and P. It is given that $P = 70 - 0.5Q$ and the question is asked in terms of P. Thus $P = P$. Comparing $P = 70 - 0.5Q$ with $P = a - bQ$, we can say that $a = 70$ and $b = 0.5$. At this stage a, b and P are known, and Q is unknown.

The demand function denotes the relationship between the price P and the demand Q. Therefore, if P is given, we can derive Q by substituting P into the demand function and solve Q.

To determine the value of Q we need to change the equation of the demand function $P = 70 - 0.5Q$ so that Q is the subject of the equation. That means we write Q in terms of P. Now

$$P = 70 - 0.5Q$$

$$P - 70 = -0.5Q$$

$$\frac{P - 70}{-0.5} = Q$$

$$Q = \frac{P - 70}{-0.5}.$$

As we have determined the values of b, P and Q we can now substitute them in the formula for elasticity of demand and solve when $P = 20$:

$$\varepsilon_d = -\frac{1}{0.5} \times \frac{P}{P - 70}$$

$$= -\frac{1}{0.5} \times \frac{P}{P - 70} \times \frac{-0.5}{1}$$

$$= \frac{P}{P - 70}$$

$$= \frac{20}{70 - 20}$$

$$= \frac{20}{50} = -0.4$$

The point price elasticity of demand is 0.4 or 0.40 as the zero to the right of the comma is insignificant.

[Option 4]