Tutorial letter 201/1/2017

Quantitative Modelling 1
DSC1520

Semesters 1

Department of Decision Sciences

Solutions to Assignment 1
Dear Student

This tutorial letter contains the solutions to the assignment. Please contact me if you have any questions or need any help with the next assignment.

Kind regards

Dr Mabe-Madisa
Club One 4-37,
Hazelwood Campus,
Unisa
Tel: +27 12 433 4602
E-mail: mabemgy@unisa.ac.za
Question 1

The general equation of a line is $y = mx + c$ where m is the slope and c a constant. Two points on the line are given as $(x_1; y_1) = (4; 0)$ and $(x_2; y_2) = (2; 4)$.

The slope of the line is $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 0}{2 - 4} = \frac{4}{-2} = -2$.

Using the $(4; 0)$, we find $0 = -2(4) + c$ which gives $c = 8$. Therefore the line is $y = -2x + 8$. [Option 3]

Question 2

At equilibrium, $P_d = P_s$

$50 - 3Q = 14 + 1.5Q$

$-3Q - 1.5Q = 14 - 50$

$4.5Q = 36$

$Q = 8.$

Substituting this into P_d gives $P = 50 - 3(8) = 26$ [Option 4]

Question 3

From $P = 215 - 5Q$ we find $Q = \frac{215 - P}{5} = 43 - 0.2P$. At $P = 15$, $Q = 43 - 0.2(15) = 40$ giving $P_0 = 15$ and $Q_0 = 40$.

From the general demand function $P = a - bQ$ we find that $a = 215$ and $b = 5$. Therefore,

$\varepsilon_d = -\frac{1}{b} \frac{P_0}{Q_0} = -\frac{1}{5} \times \frac{15}{40} = -\frac{3}{40}$ or $\varepsilon_d = \frac{P}{P - a} = \frac{15}{15 - 215} = \frac{15}{-200} = -\frac{3}{40}$

[Option 4]

Question 4

Since $|\varepsilon_d| = \left| -\frac{3}{40} \right| = \frac{3}{40} < 1$, demand is inelastic at $P = 15$, meaning that the percentage change in demand is less than the percentage change in price. [Option 3]

Question 5

Subtract 2x equation (2) from equation (1) and solve for y.

$4x + 3y = 11$ (1)

$-2(2x + y) = 5$ (2)

$y = 1$
Substitute value of \(y \) into any one of equations and solve \(x \). Substitute the value of \(y = 1 \) into say equation (2):

\[
\begin{align*}
2x + y &= 5 \\
2x + 1 &= 5 \\
2x &= 4 \\
x &= 2.
\end{align*}
\]

[Option 2]

Question 6

Equilibrium is the price and quantity where the demand and supply functions are equal. Thus \(P_d = P_s \) or \(Q_d = Q_s \). If the demand: \(P_d = 255 - 4Q \) and supply: \(P_s = 25 + 7.5Q \) then

\[
\begin{align*}
255 - 4Q &= 25 + 7.5Q \\
(-7.5 - 4)Q &= -255 + 25 \\
-11.5Q &= -230 \\
Q &= 20.
\end{align*}
\]

To calculate the price at equilibrium, we substitute the value of \(Q \) into the demand or supply function and calculate \(P \). Say we use the demand function, then

\[
\begin{align*}
P_d &= 255 - 4(20) \\
&= 255 - 80 \\
&= 175.
\end{align*}
\]

We need to find the consumer surplus for the demand function

\[
P_d = 255 - 4Q
\]

when the market price \(P = 175 \).

From the textbook page 128, we know that the consumer surplus is calculated as

\[
CS = \text{Amount willing to pay} - \text{Amount actually paid}.
\]

This is determined by calculating the area of the triangle

\[
P_0E_0a
\]

in the following graph which is given by

\[
CS = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times Q_0(a - P_0),
\]

with

\[
\begin{align*}
\& P_0 \text{ the market price,} \\
\& Q_0 \text{ the number of units demanded at price } P_0 \text{ and} \\
\& a \text{ the } y \text{-intercept of the demand function } P = a - bQ.
\end{align*}
\]
In general, we can summarise the steps of determining the consumer surplus as follows:

1. Calculate Q_0 if P_0 is given (or vice versa).

2. Draw a rough graph of the demand function, with a the y-intercept and going through $(Q_0; P_0)$.

3. Calculate the area of $CS = \frac{1}{2} \times Q_0(a - P_0)$.

Draw the demand function by using the point $(20; 175)$ that we found before and $(0; a) = (0; 255)$.

The consumer surplus is the area of the shaded triangle in the sketch, that is

\[
\text{Consumer surplus} = \left[\frac{1}{2} \times 20 \times (255 - 175) \right] = \left[\frac{1}{2} \times 20 \times 80 \right] = 800.
\]

The price is equal to 175 and the consumer surplus is equal to 800.

[Option 4]
Question 7

Tax imposed, supplier’s price decreases. Supply function becomes $P - 11.5 = 25 + 7.5Q$ or $P = 36.5 + 7.5Q$. $P_d = 255 - 4Q$ and supply: $P_s = 36.5 + 7.5Q$ then

\[
255 - 4Q = 36.5 + 7.5Q \\
(-7.5 - 4)Q = -255 + 36.5 \\
-11.5Q = -218.5 \\
Q = 19.
\]

And

\[
P_d = 255 - 4(19) \\
= 255 - 76 \\
= 179.
\]

Equilibrium is at $P = 179$ and $Q = 19$. [Option 3]

Question 8

$TR = 350q$, $TC = 150q + 10000$ and $\pi = TR - TC = 350q - (150q + 10000) = 200q - 10000$. [Option 1]

Question 9

The correct graph is the third one (see chapter 9). [Option 3]

Question 10

From the given selling prices we can find total revenue; The welding time for both types of gate cannot be more than the available hours and the same for finishing time. The number of gates produced cannot be negative.

Maximise $TR = 7200x + 665y$

subject to

\[
4.5x + 2y \leq 900 \text{ (Welding time)} \\
x + 2y \leq 400 \text{ (Finishing time)} \\
x, y \geq 0 \text{ (Non-negativity)}
\]

[Option 2]

Question 11

When $P = 200$, then $Q = \frac{200 - 80}{5} = 24$. The producer surplus is the area of the triangle above $P = 200$ and the supply function. That is $PS = 0.5 \times 24 \times (200 - 80) = 1440$. [Option 2]
Question 12

\[TR = 4.75Q, \; VC = (2.5 + 1.0)Q = 3.5Q \; \text{and} \; FC = 1000. \]; Break even when \(TR = TC \), that is when \(4.75Q = 3.5Q + 1000 \). This gives \(Q = 800 \). [Option 3]

Question 13

Demand function has negative slope and supply function positive slope. [Option 2]

Question 14

We are given one point on the demand line: \((45; 80)\). Since demand decreases by 2 for each R1 increase in price, the slope of the line is \(m = -2 \). Now, using the point \((45; 80)\), we find \(Q - 80 = -2(P - 45) \) and the equation is \(Q = -2P + 170 \). [Option 1]

Question 15

Was not marked, because it was incorrectly formulated.