1. Identification: Simple interest rate

Savings worth at month 10 – move R9 000 from 2 month’s ago to 10 month’s in future:

\[S = P(1 + rt) \]
\[= 9000 \left(1 + 0.115 \times \frac{12}{12}\right) \]
\[= 9000(1,115\ldots) \]
\[= R10\,035.00. \]

Money Short:
R10\,035.00 – R10\,500 = −465.00
She shorts R465.00.

Option [3]

2. Identification: Simple discount rate

Money Short:
R10\,000 \rightarrow R5\,000
\[P = S(1 - dt) \]
\[5000 = S \left(1 - 0.18 \times \frac{63}{365}\right) \]
\[\frac{5000}{\left(1 - 0.18 \times \frac{63}{365}\right)} = S \]
\[S = R5\,160.32. \]

Option [2]
3. Identification: Compound interest

\[j_m = 12\% \]
\[m = 12 \]
\[P = P \]
\[S = 2P \]
\[t = ? \]

\[S = P \left(1 + \frac{j_m}{m} \right)^{tm} \]
\[2P = P(1 + \frac{0.12}{12})^{112} \]
\[\frac{2P}{P} = \left(1 + \frac{0.12}{12} \right)^{12t} \]
\[\ln 2 = 12t \ln \left(1 + \frac{0.12}{12} \right) \]
\[\frac{\ln 2}{\ln \left(1 + \frac{0.12}{12} \right)} = 12t \]
\[t = \frac{\ln 2}{12 \ln \left(1 + \frac{0.12}{12} \right)} \]
\[t = 5.80506 \text{ years} \]
\[t \approx 5.81. \]

Option [1]

4. Identification: Odd periods – method given

\[S = P(1 + rt)(1 + r)^t(1 + rt) \]
\[= 375\,000 \left(1 + 0.1045 \times \frac{25}{365} \right) \left(1 + 0.1045 \times \frac{12}{365} \right)^{\frac{7}{12}} \]
\[= 404\,419.5870 \ldots \]
\[\approx R404\,419.59. \]

Option [4]
5. Identification: Fractional compounding

\[S = P \left(1 + \frac{j_m}{m} \right)^{tm} \]
\[= 375000 \left(1 + \frac{0.1045}{12} \right)^{ \left(\frac{17}{36} + \frac{27}{36} \right) \times \frac{12}{12} } \]
\[= R404\,415.85. \]

Option [4]

6. Identification: Compound interest

\[S = P(1 + \frac{j_m}{m})^{tm} \]
\[50\,000 = P \left(1 + \frac{0.1388}{52} \right)^{5 \times 52} \]
\[P = R25\,001.79. \]

Option [2]

7. Identification: Continuous compounding rate

\[S = Pe^{ct} \]
\[P = \frac{S}{e^{ct}} \]
\[= \frac{32\,412.87}{e^{(0.1015 \times \frac{57}{365})}} \]
\[= R29\,000.00. \]

Option [1]
8. Identification: Equivalent compound interest rate

\[j_n = n \left(\left(1 + \frac{j_m}{m} \right)^m - 1 \right) \]

\[j_{52} = 52 \left(\left(1 + \frac{0.149}{4} \right)^{\frac{4}{52}} - 1 \right) \]

\[= 0.14650 \]

\[\approx 14.65\%. \]

Option [1]

9. Identification: Effective interest rate

\[j_{eff} = 100 \left(\left(1 + \frac{j_m}{m} \right)^m - 1 \right) \]

\[= 100 \left(\left(1 + \frac{0.165}{6} \right)^6 - 1 \right) \]

\[= 17.67684 \]

\[\approx 17.677\%. \]

Option [4]

10. Identification: Re-scheduling of debt - equation of value.

\[2,500,000 \left(1 + \frac{0.1225}{4} \right)^{10 \times 4} = X \left(1 + \frac{0.1225}{4} \right)^{6 \times 4} + 3X \]

\[2,500,000 \left(1 + \frac{0.1225}{4} \right)^{10 \times 4} = X \left[\left(1 + \frac{0.1225}{4} \right)^{24} + 3 \right] \]

\[2,500,000 \left(1 + \frac{0.1225}{4} \right)^{10 \times 4} = 5,06261X \]

\[2,500,000 \left(1 + \frac{0.1225}{4} \right)^{10 \times 4} / 5,06261 = X \]

\[X = R1 650 412.32 \]

\[3X = R4 951 236.95. \]

\[
X = 150000 \left(1 + \frac{0.155}{12} \right)^{9 \times 12} + 250000 \left(1 + \frac{0.164}{2} \right)^{-(2 \times 3)}
\]

\[
= 599863.8759 + 155803.23
\]

\[
= \text{R755 667,10.}
\]

12. Identification: Payments paid indefinitely – Perpetuity

\[
PMT = 3500 \quad i = 0.112/12
\]

\[
P = R/i
\]

\[
= 3500 \left/ (0.112/12) \right.
\]

\[
= \text{R375 000.}
\]

13. Identification: Equal payments in equal time intervals plus compound interest rate – annuity but time intervals of payments not equal to compounding periods thus change compound interest rate from quarterly to monthly.
\[j_n = n \left(\left(1 + \frac{j_m}{m} \right)^{\frac{m}{n}} - 1 \right) \]

\[= 12 \left(1 + \frac{0.0775}{4} \right)^{\frac{12}{4}} - 1 \]

\[= 0.07700. \]

Thus

\[S = Rs \bar{s}_{\bar{m}_t} \]

\[= 1200s_{10 \times 12}^{0.077} \]

\[= R215\,899.01. \]

Option [2]

\[S = Pe^{ct} \]

\[S \div P = e^{ct} \]

\[\ln(S \div P) = \ln e^{ct} \]

\[\ln(S \div P) = ct \ln e \]

\[\frac{\ln(S \div P)}{t} = c \]

Option [5]

15. Identification: Payments that are made on equal time periods but payments increase each time period with a constant amount – increasing annuity.

\[S = \left(R + \frac{Q}{i} \right) s_{\bar{m}_t} - \frac{nQ}{i} \]

\[= \left(3\,600 + \frac{360}{0.110} \right) s_{20|0.10} - \frac{20(360)}{0.1} \]

\[= R340\,379.99 \]

\[\approx R340\,380. \]

Option [2]

\[A = Ra_{\frac{i}{m}} \]
\[= 25000a_{\frac{0.169}{6 \times 6}} \]
\[= \text{R}561\,047.91. \]

Option [4]

17. Identification: Moving money back in time – time value of money and compound interest.

\[P = \frac{S}{(1 + \frac{j}{m})^{tm}} \]
\[= \frac{\text{R}561\,047.91}{(1 + \frac{0.169}{6})^{5 \times 6}} \]
\[= \text{R}243\,834.05. \]

Option [4]

18. Identification: Equal amount’s deposited in equal time periods + payments made immediately – annuity due.

\[S = (1 + i)Rs_{\frac{i}{m}} \]
\[= (1 + \frac{0.124}{12})5000s_{\frac{4}{12}}^{0.124} \]
\[= \text{R}311\,882.75. \]

Amount needed still:
\[= 350\,000 - 311\,882.75 \]
\[= \text{R}38\,117.25. \]

Option [1]

\[S = Rs \bar{m}_i \]
\[275\,000 = Rs \bar{m}_{5\times2|0.14} \]
\[R = R19\,903.81 \]
\[R \approx R19\,904. \]

Option [3]

\[A = \text{payment} \]
\[\text{Interest + principal repaid} = 3081.86 + 1119.21 \]
\[= R4\,201.07. \]

Option [5]

Using your calculator:

\[IRR = 15.23893\% \]
\[\approx 15.24\%. \]

Option [5]

22. Identification: Equal payments in equal time intervals – annuity or armotisation

\[A = R \bar{a}_{\bar{m}_i} \]
\[= 5311.69a_{\frac{20}{12}\,1.075} \]
\[= 559\,999.54 \]
\[\approx R560\,000. \]

Option [3]

23. Identification: Percentage calculation.

\[560\,000 = 80\% \]
\[\frac{560\,000}{1} \times \frac{100}{80} = R700\,000. \]

Option [4]
24. Identification: Total real cost

Total real cost = \(PV \) of annuity using inflation rate – \(PV \) of annuity

\[
PV = 5311.69 \times 12^{0.0467}
\]

\[
 = 827543.12.
\]

Real cost = \(827543.12 - 560000 \)

\[
 = R267543.13.
\]

Option [2]

25. Identification: Correlation coefficient.

Using your calculator:

\[r = -0.98185. \]

Option [2]

Using your calculator:

intercept \(a = 1021.13 \)

slope \(b = -207.59 \)

Option [1]

27. Identification: Bond

\[n = 22.5 \text{ years} \]

\[
 = 22 \times 2 + 1
\]

\[
 = 44 + 1 = 45
\]
\[P = da_{\overline{m}|z} + 100(1 + z)^{-n} \]
\[= \frac{9.75}{2}a_{\overline{45}|0,1125/2} + 100 \left(1 + \frac{0.1125}{2} \right)^{-45} \]
\[= 87,80282 \]

Add coupon as number of days > 10 days between settlement date and next coupon date.

\[87,80282 + 4,8785 \]
\[= 92,67782\% . \]

Move value to 15 Nov’12: \(R = 15 \text{ Nov’12} - 7 \text{ Feb’13} = 84 \)
\(H = 7 \text{ Aug’12} - 7 \text{ Feb’13} = 184 \)

Thus all-in-price is:

\[92,67782 \left(1 + \frac{0.1125}{2} \right)^{\frac{84}{184}} \]
\[= 90,39112\% . \]

Option [4]

28. Identification: Bond

\[107,55174 = da_{\overline{29}|0,135} + 100 \left(1 + \frac{0.135}{2} \right)^{-29} \]
\[107,55174 - 100 \left(1 + \frac{0.135}{2} \right)^{-29} = da_{\overline{29}|0,135} \]
\[92,50885 = da_{\overline{29}|0,135} \]

This looks like an annuity formula, thus use your calculator’s financial mode with \(92,50885 = PV; N = 29; P/Y = 2; I/Y = 13.5 \) and solve for your payment which is \(d. \ c/2 = d = 7,35\% . \)

Option [2]

29. Identification: Profitability index Typing error in answers – Question ignored in October/November 2012 exams.

\[PI = \frac{NPV + \text{initial}}{\text{initial}} \]
\[1,0514 = \frac{25,700 + x}{x} \]
\[1,0514x = 25,700 + x \]
\[0,0514x = 25,700 \]
\[x = 500,000 . \]

30. Identification: \(NPV; PI \) and \(IRR \)
<table>
<thead>
<tr>
<th>Investment A</th>
<th>Investment B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$NPV < 0$ reject</td>
<td>$NPV > 0$ accept</td>
</tr>
<tr>
<td>$PI < 1$ reject</td>
<td>$PI > 1$ accept</td>
</tr>
<tr>
<td>$IRR < K$ reject</td>
<td>$IRR > K$ accept</td>
</tr>
</tbody>
</table>

Accept Invest B

Option [2]