Chapter 4 Individual and Market Demand

INDIVIDUAL DEMAND

4.1 Individual Demand

Price Changes

Figure 4.1

Effect of Price Changes

A reduction in the price of food, with income and the price of clothing fixed, causes the consumer to choose a different market basket.

In (a), the baskets that maximize utility for various prices of food (point A, $2; B, $1; C, $0.50) trace out the price-consumption curve. Part (b) gives the demand curve, which relates the price of food to the quantity demanded. (Points E, F, and H correspond to points A, B, and D, respectively.)
4.1 Individual Demand

The Individual Demand Curve

- Price-consumption curve
 Curve tracing the utility-maximizing combinations of two goods as the price of one changes.

- Individual demand curve
 Curve relating the quantity of a good that a single consumer will buy at its price.

Income Changes

Effect of Income Changes
An increase in income, with the prices of all goods fixed, causes consumers to alter their choice of market baskets.

In part (a), the baskets that maximize consumer satisfaction for various incomes (point A, $10; B, $20; C, $30) trace out the income-consumption curve. The shift to the right of the demand curve in response to the increases in income is shown in part (b). (Points E, G, and H correspond to points A, B, and D, respectively.)

Normal versus Inferior Goods

An Inferior Good
An increase in a person’s income can lead to less consumption of one of the two goods being purchased.

Here, hamburger, though a normal good between A and B, becomes an inferior good when the income-consumption curve bends backward between B and C.
4.1 INDIVIDUAL DEMAND

Engel Curves

- *Engel curve* Curve relating the quantity of a good consumed to income.

Engel Curves

Engel curves relate the quantity of a good consumed to income. In (a), food is a normal good and the Engel curve is upward sloping. In (b), however, hamburger is a normal good for income less than $20 per month and an inferior good for income greater than $20 per month.

Example 4.1 Consumer Expenditures in the United States

The Engel curves we just examined apply to individual consumers. However, we can also derive Engel curves for groups of consumers. This information is particularly useful if we want to see how consumer spending varies among different income groups. Table 4.1 illustrates spending patterns for several items taken from a survey by the U.S. Bureau of Labor Statistics.

<table>
<thead>
<tr>
<th>TABLE 4.1 Annual U.S. Household Consumer Expenditures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenditures (2006$)</td>
<td>Less than 10,000</td>
</tr>
<tr>
<td>Entertainment</td>
<td>848</td>
</tr>
<tr>
<td>Owned Dwelling</td>
<td>4272</td>
</tr>
<tr>
<td>Rented Dwelling</td>
<td>2672</td>
</tr>
<tr>
<td>Health Care</td>
<td>1108</td>
</tr>
<tr>
<td>Food</td>
<td>2901</td>
</tr>
<tr>
<td>Clothing</td>
<td>861</td>
</tr>
</tbody>
</table>

Figure 4.5

Average per-household expenditures on rented dwellings, health care, and entertainment are plotted as functions of annual income. Health care and entertainment are normal goods, as expenditures increase with income. Rented housing, however, is an inferior good for incomes above $35,000.
4.1 INDIVIDUAL DEMAND

Substitutes and Complements

Recall that:

- Two goods are substitutes if an increase in the price of one leads to an increase in the quantity demanded of the other.
- Two goods are complements if an increase in the price of one good leads to a decrease in the quantity demanded of the other.
- Two goods are independent if a change in the price of one good has no effect on the quantity demanded of the other.

4.2 INCOME AND SUBSTITUTION EFFECTS

A fall in the price of a good has two effects:

1. Consumers will tend to buy more of the good that has become cheaper and less of those goods that are now relatively more expensive.

2. Because one of the goods is now cheaper, consumers enjoy an increase in real purchasing power.
4.2 INCOME AND SUBSTITUTION EFFECTS

Substitution Effect

- Substitution effect: Change in consumption of a good associated with a change in its price, with the level of utility held constant.

Income Effect

- Income effect: Change in consumption of a good resulting from an increase in purchasing power, with relative prices held constant.

The total effect of a change in price is given theoretically by the sum of the substitution effect and the income effect:

\[\text{Total Effect (} P, E) = \text{Substitution Effect (} P, E) + \text{Income Effect (} E) \]

Interpretation:

- When food is an inferior good, we observe an upward-sloping demand curve. The best explanation is that on a budget line, the consumer is initially at point A. When the price of food falls, the consumer moves to point B, consuming less food. However, because the substitution effect exceeds the income effect, the decrease in the price of food leads to an increase in the quantity of food demanded.

A Special Case: The Giffen Good

- Giffen good: Good whose demand curve slopes upward because the (negative) income effect is larger than the substitution effect.

In summary:

- For inferior goods, the income effect is negative, but it is outweighed by the substitution effect, leading to an upward-sloping demand curve.
4.2 INCOME AND SUBSTITUTION EFFECTS

Example 4.1
The Effects of a Gasoline Tax

A gasoline tax is imposed when the consumer is initially buying 1200 gallons of gasoline at point C. After the tax takes effect, the budget line shifts from AB to AD and the consumer maximizes his preferences by choosing E, with a gasoline consumption of 900 gallons. However, when the proceeds of the tax are rebated to the consumer, his consumption increases somewhat, to 913.5 gallons at H. Despite the rebate program, the consumer’s gasoline consumption has fallen, as has his level of satisfaction.

4.3 MARKET DEMAND

Market Demand Curve
Curve relating the quantity of a good that all consumers in a market will buy to its price.

From Individual to Market Demand

Table 4.2 Determining the Market Demand Curve

<table>
<thead>
<tr>
<th>(1) Price ($)</th>
<th>(2) Individual A Units</th>
<th>(3) Individual B Units</th>
<th>(4) Individual C Units</th>
<th>(5) Market Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

The market demand curve is obtained by summing our three consumers’ demand curves D_A, D_B, and D_C. At each price, the quantity of coffee demanded by the market is the sum of the quantity demanded by each consumer. At a price of $4, for example, the quantity demanded by the market is the sum of the quantities demanded by A (no units), B (4 units), and C (7 units).
MARKET DEMAND

From Individual to Market Demand

Two points should be noted as a result of this analysis:

1. The market demand curve will shift to the right as more consumers enter the market.
2. Factors that influence the demands of many consumers will also affect market demand.

The aggregation of individual demands into market demands becomes important in practice when market demands are built up from the demands of different demographic groups or from consumers located in different areas.

For example, we might obtain information about the demand for home computers by adding independently obtained information about the demands of the following groups:

- Households with children
- Households without children
- Single individuals

Two points should be noted as a result of this analysis:

1. The market demand curve will shift to the right as more consumers enter the market.
2. Factors that influence the demands of many consumers will also affect market demand.

MARKET DEMAND

Elasticity of Demand

Denoting the quantity of a good by \(Q \) and its price by \(P \), the price elasticity of demand is

\[
E_p = \frac{\frac{dQ}{dP} \cdot P}{Q} = \frac{\frac{\Delta Q}{Q} \cdot P}{\frac{\Delta P}{P}}
\] (4.1)

Inelastic Demand

When demand is inelastic (i.e. \(E_p \) is less than one in absolute value), the quantity demanded is relatively unresponsive to changes in price. As a result, total expenditure on the product increases when the price increases.

Elastic Demand

When demand is elastic (\(E_p \) is greater than one in absolute value), total expenditure on the product decreases as the price goes up.

Isoelastic Demand

Demand curve with a constant price elasticity.

Figure 4.11

When the price-elasticity of demand is \(-1.0 \) at a given price, the horizontal line is parallel to the demand curve. The price elasticity of demand is constant along the demand curve.
4.3 MARKET DEMAND

Elasticity of Demand

Isoelastic Demand

<table>
<thead>
<tr>
<th>Table 4.3 Price Elasticity and Consumer Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Inelastic</td>
</tr>
<tr>
<td>Unit elastic</td>
</tr>
<tr>
<td>Elastic</td>
</tr>
</tbody>
</table>

4.3 MARKET DEMAND

The Aggregate Demand for Wheat

Domestic demand for wheat is given by the equation

\[Q_{DD} = 1430 - 55P \]

where \(Q_{DD} \) is the number of bushels (in millions) demanded domestically, and \(P \) is the price in dollars per bushel. Export demand is given by

\[Q_{DE} = 1470 - 70P \]

where \(Q_{DE} \) is the number of bushels (in millions) demanded from abroad.

To obtain the world demand for wheat, we set the left side of each demand equation equal to the quantity of wheat. We then add the right side of the equations, obtaining

\[Q_{DD} + Q_{DE} = (1430 - 55P) + (1470 - 70P) = 2900 - 125P \]

4.3 MARKET DEMAND

The Aggregate Demand for Wheat

The total world demand for wheat is the horizontal sum of the domestic demand \(AB \) and the export demand \(CD \).

Even though each individual demand curve is linear, the market demand curve is kinked, reflecting the fact that there is no export demand when the price of wheat is greater than about $21 per bushel.
4.3 MARKET DEMAND

Example 4.4

Table 4.4: Price and Income Elasticities of the Demand for Rooms

<table>
<thead>
<tr>
<th>Group</th>
<th>Price Elasticity</th>
<th>Income Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single individuals</td>
<td>-0.10</td>
<td>0.21</td>
</tr>
<tr>
<td>Married, head of household age less than 30, 1 child</td>
<td>-0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>Married, head age 30–39, 2 or more children</td>
<td>-0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>Married, head age 50 or older, 1 child</td>
<td>-0.08</td>
<td>0.19</td>
</tr>
</tbody>
</table>

4.4 CONSUMER SURPLUS

Consumer Surplus and Demand

Consumer Surplus Generalized

For the market as a whole, consumer surplus is measured by the area under the demand curve and above the line representing the purchase price of the good.

Here, the consumer surplus is given by the yellow-shaded triangle and is equal to:

\[
\frac{1}{2} \times ($20 - $14) \times 6500 = $19,500.
\]

Applying Consumer Surplus

When added over many individuals, it measures the aggregate benefit that consumers obtain from buying goods in a market. When we combine consumer surplus with the aggregate profits that producers obtain, we can evaluate both the costs and benefits not only of alternative market structures, but of public policies that alter the behavior of consumers and firms in those markets.
4.4 CONSUMER SURPLUS

Example 4.5: The Value of Cleaner Air

To encourage cleaner air, Congress passed the Clean Air Act in 1977 and has since amended it a number of times.

Figure 14.5

The yellow-shaded triangle gives the consumer surplus generated when air pollution is reduced by 5 parts per 100 million of nitrogen oxide at a cost of $1000 per part reduced.

The surplus is created because most consumers are willing to pay more than $1000 for each unit reduction of nitrogen oxide.

4.5 NETWORK EXTERNALITIES

Network externality: Situation in which each individual's demand depends on the purchases of other individuals.

A positive network externality exists if the quantity of a good demanded by a typical consumer increases in response to the growth in purchases of other consumers. If the quantity demanded decreases, there is a negative network externality.

The Bandwagon Effect

Bandwagon effect: Positive network externality in which a consumer wishes to possess a good in part because others do.
4.5 NETWORK EXTERNALITIES

The Snob Effect

The snob effect is a negative network externality in which an individual demands less of a good as more people buy the good.

Example 4.6

Network Externalities and the Demands for Computers and E-Mail

From 1964 to 1965, annual revenues from the leasing of mainframes increased at the extraordinary rate of 78 percent per year. As prices declined by 20 percent per year, the demand for computers grew slowly. Soon, however, it grew rapidly, until nearly everyone likely to buy a product did so. Dynamic processes whereby demand, though small at first, grows slowly. Soon, however, it grows rapidly, until nearly everyone likely to buy a product has done so. Whereby the market becomes saturated.

This rapid growth occurs because of a positive network externality: As more and more organizations own computers, and as more and better software is written, and as more people are trained to use computers, the value of having a computer increases.

Example 4.6

From 1964 to 1965, annual revenues from the leasing of mainframes increased at the extraordinary rate of 78 percent per year, while prices declined by 20 percent per year.

An econometric study by Gregory Chow found that the demand for computers follows a “saturation curve” — a dynamic process whereby demand, though small at first, grows slowly. Soon, however, it grows rapidly, until nearly everyone likely to buy a product has done so. Whereby the market becomes saturated.

This rapid growth occurs because of a positive network externality: As more and more organizations own computers, and as more and better software is written, and as more people are trained to use computers, the value of having a computer increases.

Consider the explosive growth in Internet usage, particularly the use of e-mail. Use of the Internet has grown at 20 percent per year since 1998. The value of using e-mail depends crucially on how many other people use it. By 2002, nearly 50 percent of the U.S. population claimed to use e-mail, up from 35 percent in 2000.

4.6 EMPIRICAL ESTIMATION OF DEMAND

The Statistical Approach to Demand Estimation

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity (Q)</th>
<th>Price (P)</th>
<th>Income (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>4</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>1996</td>
<td>7</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>1997</td>
<td>8</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>1998</td>
<td>13</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>1999</td>
<td>16</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>2000</td>
<td>15</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>2001</td>
<td>19</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>2002</td>
<td>20</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>2003</td>
<td>22</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>
The Statistical Approach to Demand Estimation

Price and quantity data can be used to determine the form of a demand relationship. But the same data could describe a single demand curve or three demand curves that shift over time.

\[Q = a - bP + cI \]

\[\log(Q) = a - b \log(P) + c \log(I) \]

The Form of the Demand Relationship

Because the demand relationships discussed above are straight lines, the effect of a change in price on quantity demanded is constant. However, the price elasticity of demand varies with the price level. For the demand equation \(Q = a - bP \), the price elasticity \(E_P \) is

\[E_P = \frac{\Delta Q/Q}{\Delta P/P} = -b \frac{P}{Q} \]

There is no reason to expect elasticities of demand to be constant. Nevertheless, we often find it useful to work with the isoelastic demand curve, in which the price elasticity and the income elasticity are constant. When written in its log-linear form, the isoelastic demand curve appears as follows:

\[\log(Q) = a - b \log(P) + c \log(I) \]

The acquisition of Shredded Wheat cereals of Nabisco by Post Cereals raised the question of whether Post would raise the price of Grape Nuts, or the price of Nabisco’s Shredded Wheat Spoon Size. One important issue was whether the two brands were close substitutes for one another. If so, it would be more profitable for Post to increase the price of Grape Nuts after rather than before the acquisition.

The substitutability of Grape Nuts and Shredded Wheat can be measured by the cross-price elasticity of demand for Grape Nuts with respect to the price of Shredded Wheat.

One estimated isoelastic demand equation appeared in the following log-linear form:

\[\log(Q) = 1.998 - 2.053 \log(P) + 0.620 \log(I) + 0.145 \log(P) \]

This demand for Grape Nuts is elastic (at current prices), with a price elasticity of about -2. Income elasticity is 0.62. The cross-price elasticity is 0.14. The two cereals are not very close substitutes.
Another way to obtain information about demand is through interviews in which consumers are asked how much of a product they might be willing to buy at a given price.

Although indirect approaches to demand estimation can be fruitful, the difficulties of the interview approach have forced economists and marketing specialists to look to alternative methods.

In direct marketing experiments, actual sales offers are posed to potential customers. An airline, for example, might offer a reduced price on certain flights for six months, partly to learn how the price change affects demand for flights and partly to learn how competitors will respond.

Even if profits and sales rise, the firm cannot be entirely sure that these increases resulted from the experimental change; other factors probably changed at the same time.