Please note: This is not a summary – it is copied directly from the prescribed textbook: Curriculum Studies 2: Development, interpretation, plan and practice, 2nd Edition

What is the difference between “curriculum” and “syllabus”, pg. 2 (15 marks)

The concept of “curriculum” has its origins in the Latin currere, “to run”, with further reference to the running / chariot tracks for a race. According to Thijs and Van den Akker (2009:1), a curriculum can briefly be defined as a “plan for learning”, as used by the American Hilda Taba in 1962. There are related terms in many languages, including the classical Dutch term leerplan, the German lehrplan and the Swedish laroplan. This term should not be confused with a subject “syllabus”, because this definition of a “lehrplan” does not necessarily narrow the perspective, but permits all sorts of elaboration for specific curricular levels, contexts and representations.

In broader terms, the concept of “curriculum” refers to all the learning that is planned and guided as a body of knowledge in order to achieve certain ends (outcomes) in a teaching-learning process as realised in praxis. The curriculum document should include the rationale, aim and purpose of the particular course and refer to related subject methodology, teaching methods and guidance regarding assessment practices, which are all based on a particular approach.

The word “syllabus” in Greek means a concise statement or table of the topics of a discourse or the list of contents of a subject. Such a document has a series of headings with some additional notes which set out the areas to be examined.

A syllabus will not generally indicate the relative importance of its topics or the order in which they are to be studied. Those who compile a syllabus tend to follow the traditional textbook approach of giving an order of contents, or a pattern prescribed by a logically sequenced approach to the subject.

What is curriculum development, pg. 2 (15 marks)
Curriculum development focuses on improvement and innovation in education. During this process, which may take many years – especially where generic curriculum development is concerned – and which extends beyond a specific local context, desires and ideals are incorporated in a cyclic process of design, implementation and evaluation to achieve concrete results in practice. The literature contains a variety of models for curriculum development, in which especially the five core activities shown in Figure 1.1 are distinguished.

![Diagram](image)

Figure 1.1 Core activities in curriculum development

Source: Adapted from Thijs & Van den Akker, 2009:15. Also see Van den Akker & Kuiper, 2007:739–748.

In a cyclic process, analysis, design, development, implementation and evaluation take place interactively. Curriculum development often starts by analysing the existing setting and formulating intentions for the proposed change or innovation. Important activities in this phase include problem analysis, context analysis, needs analysis and analysis of the knowledge base.

Based on these activities, first design guidelines are drawn up. The design requirements are carefully developed, tested and refined into a relevant and usable product. Evaluation plays an important role in this process, as can be seen from its central position in the model. Evaluation activities cast light on the users’ wishes and the possibilities that exist in their practical context, and reveal the best way to attune the product to the practical setting. When the product has sufficient relevance, consistency and practical usability, its impact can be investigated. Whereas the primary emphasis is on generating suggestions for product improvement (formative evaluation), during later phases this emphasis shifts towards evaluating effectiveness (summative evaluation).

Illustrate the relationship between curriculum, context and the teacher, pg. 6 (15 marks)

The ideas of Ornstein and Hunkins (1998) about a broader definition of “curriculum” agree with the views of Grundy (1987), Kraak (1998) and Killen (2007), who acknowledge both intended and unintended learning, and who view a curriculum as a social construct. This means that a particular society’s culture will influence the development of a particular sort of curriculum, just as that curriculum will, in its turn, contribute to shaping and forming that society and its culture. Education is a dialogic process, formative and transformative (Freire, 1976). Necessarily, this process involves contact, transmitting and acquiring knowledge and developing skills, habits and values. This mutual influence of education and context is ongoing, so that we should not think of curricula and social structures as entirely separate. Kitchens (2009:255) states that by situating education in the space of local communities, and by connecting the curriculum to the everyday life of learners, situated pedagogy allows these learners to be involved in a conversation that creates new understandings of the world and their place in it. Also, Wei (2009:271), when referring to the enactment of the curriculum, explains that it “should meet the needs of all the learners and be oriented to the learners’ development; embody the nature of science; be focused on scientific inquiry; and even reflect the advance of modern science and technology”.

Figure 1.2 illustrates how aspects like space, time, resources available, community integration, organisational aspects, economic development, political changes and historical background, theories (for instance communication and systems theory), philosophical ideas and developments in technology will influence the approach to and interpretation of a curriculum. It is therefore inevitable that curriculum development is a never-ending process of reflection and change.

Ornstein and Hunkins (1998:2) explain how an individual’s view of the curriculum reflects that person’s view of the world, including what the person perceives as reality, the values he or she deems important, and the amount of knowledge he or she possesses. By understanding a teacher’s approach to or view of the curriculum, and the prevailing curriculum approach of the school or school district, it is possible to tell whether the teacher’s professional view conflicts with the formal organisational view. A view of the curriculum is about the understanding of how a curriculum

![Diagram](image-url)
is designed and developed; the role of the learner, teacher and curriculum specialist in planning a curriculum; the goals and objectives of the curriculum; and the content, concepts and skills that need to be assessed.

Kelly (1989:4–8) agrees that the view of the curriculum cannot be scientific or philosophical only; this view is too narrow, because the demands of society must also be met. Therefore the understanding of practicalities, innovation and values is also important. By means of contextualisation based on the characteristics of the population, local features and their habits and history, schooling became an easier and more successful process. Paliwal and Subramaniam (2006:25–51) emphasise the diversified mosaic existing in schools and classrooms nowadays. They assume that taking the context and diversity in context into consideration will make difficult content become more understandable and familiar, granting greater meaning in learners’ daily lives. Considering the impact of context makes a more promising response to promoting success possible.

Phase planning, pg. 71 (5 mark definition & discussion)

The implementation of the curriculum must be a phase-long process of planning, managing and organising classroom practice. This means that what is planned must guide and inform what is done in the classroom – all teaching, learning and assessment.

What must teachers keep in mind in each phase?

In the Foundation Phase (Grade R–3), the following subjects are offered: Home Language, First Additional Language, Mathematics and Life Skills. The latter includes Beginning Knowledge, Creative Arts, Physical Education and Personal and Social Well-being. In the Intermediate Phase (Grade 4–6), the subjects are Home Language, First Additional Language, Mathematics, Natural Sciences and Technology, Social Sciences and Life Skills.

In the Senior Phase (Grade 7–9) there are nine subjects, namely Home Language, First Additional Language, Mathematics, Natural Sciences, Social Sciences, Technology, Economic Management Sciences, Life Orientation and Creative Arts. Schools may offer more subjects if they want to.

In the Further Education and Training (FET) Phase (Grade 10–12) there are four compulsory (fundamental) subjects (Home Language, First Additional Language, Mathematics / Mathematical Literacy and Life Orientation) and three electives. Schools may offer more subjects and learners may choose more subjects (Department of Education, 2002b; 2011).

The following aspects are important when planning for a specific phase:

- Contexts / themes within which the teaching, learning and assessment will occur
- Principles of the Curriculum Assessment Policy Statement (CAPS) that must be incorporated in all teaching, learning and assessment
- Aims and assessment criteria across the phase
- The sequencing (conceptual progression) of the aims and assessment criteria
- The core knowledge and concepts that will be used to attain the learning outcomes / aims and assessment criteria for the phase. These should reflect the context of the community, school and classroom to ensure that the teaching and learning are appropriate for the learners’ needs
- How progression (increasing conceptual complexity) will occur within subjects and from grade to grade, bearing in mind integration across different subjects and real-life application
- The time allocation and weighting given to learning in the subject per phase (time frames for all teaching, learning and assessment)

Phase planning implies that all teachers in a phase should work together to create a clear plan of how they will guide learners through that phase for a particular subject. Individual planning is not advisable, because all teachers must ensure that learners achieve the national learning outcomes by the time they leave the phase (exit points are at the end of Grades 3, 6, 9 and 12). Teachers must be involved in different levels of planning, each level serving a different purpose and involving a different level of detail.

Every teacher remains an individual and the methods used in the classrooms may differ, though all might be equally effective in ensuring that the learners achieve the aims.

Planning takes place across a phase (three grades). The organising tool for a phase comes from both the CAPS documents and the characteristics of the learner in this age group. The teacher should refer to the Teacher’s Guide and CAPS documents for the subject and familiarise him or herself with the characteristics that make the learners in a particular phase distinct from those in another. This is important, since learners are clearly at different developmental levels in different phases. As teachers gain experience, they will find it easier to work with developmental levels and the characteristics of each. However, for new teachers, it is advisable to read up on the developmental level(s) the typical learner will have reached.

The South African Council for Educators (SACE) is the professional council for educators / teachers, which aims to enhance the status of the teaching profession through appropriate registration, management of professional development and the inculcation of a code of ethics for all educators / teachers. The SACE Act (Act 31 of 2000) states that, by means of the functioning of the council, SACE is to

- provide for the registration of educators / teachers
- promote the professional development of educators / teachers
- set, maintain and protect ethical and professional standards for educators / teachers.

As the statutory body for professional education, SACE must also manage the implementation, management and quality assurance of the Continuous Professional Teacher Development (CPTD) system. Each educator / teacher is expected to earn a target number of professional development points in each successive three-year cycle by undertaking a variety of professional development activities – endorsed by SACE on grounds of their fitness of purpose and quality – that suit their own needs and requirements or that are required by their employers (Department of Education, 2008a).

The teacher as interpreter and designer of learning programmes and materials, pg. 52 (5 mark definition & discussion)

Teachers are expected to understand and interpret existing learning programmes, design their own learning programmes and select and prepare suitable textual and visual resources for learning. They also need to sequence and pace learning in a way that shows sensitivity to the needs of the learning area or subject and those of the learners. This role is perhaps the one that has been most misunderstood and abused. It has been used to justify the fact that Curriculum 2005 in its original form did not go far enough in specifying curriculum requirements on a grade-by-grade basis. Many bureaucrats argued that this did not present a problem because “each school should design its own learning programmes, based on the needs and concerns of the community”. It has become clear that most teachers and schools do not yet have the skills, resources or inclination to develop a customised curriculum, hence the reluctance to involve schools in the setting of curriculum standards. In the CAPS, learning programmes and in some instances work schedules are included in the documents. The role of the teacher is still that of interpreter, but with particular emphasis on lesson planning and effective implementation.

Inclusive education, pg. 58 (5 mark definition & discussion)

White Paper No. 6 (Department of Education, 2001a) defines inclusive education and training as

- acknowledging that all children and youth can learn and that all children and youth need support
- accepting and respecting the fact that all learners are different in some way and have different learning needs, which are equally valued
- enabling education structures, systems and learning methodologies to meet the needs of all learners
- acknowledging and respecting differences between children due to age, gender, ethnicity, language, class, disability, HIV status etc.
- being broader than formal schooling, and acknowledging that learning occurs in the home, the community, and within formal and informal modes and structures
- changing attitudes, behaviours, methodologies, curricula and environments to meet the needs of all children
- maximising the participation of all learners in the culture and the curriculum of educational institutions, and uncovering and minimising barriers to learning.

Inclusive education and training marks a shift from disability and deficit theories, assumptions, practices and models to an enabling and empowering educational approach. This new understanding of education accepts that learners have diverse needs, and that the system might be inadequate to respond to those needs. In other words, rather than seeing individual learners as being inadequate because they do not fit into the system, the emphasis is on examining the system itself and identifying the factors within the system that are not learner-friendly (Department of Education, 2001a).

The assessment process, pg. 76 (5 mark definition & discussion)

When interpreting and implementing the curriculum, the following questions should also be asked from the outset.

- Which assessment technique is the best for measuring the required outcomes / aims? Is it, for instance, a research project, or a written assignment?
- How will a research project or an assignment be assessed? Will we use an observation sheet with assessment criteria, or a rubric? These are the tools of assessment; the tool selected should be appropriate to the assessment criteria for the activity.
- Who will be doing the assessing? Will it be group assessment, self-assessment or peer assessment? These are possible methods of assessment.

Walvoord (2004:2–5) and Lambert and Lines (2000:4) define the assessment process as the systematic collection of information about the learner’s learning, using the time, knowledge, expertise and resources available in order to inform decisions about how to improve learning. Assessment must be more than gathering evidence of how well the learners have achieved objectives / outcomes; it should also be used to improve the planning for teaching and learning in the next cycle. In this instance the improvement should be not only in the learners’ learning but also in the assessment process, and the teacher should be able to adapt the planning for more effective teaching. It is important to find and introduce ways to plan and teach that encourage and promote the diagnostic characteristics of assessment, namely its use for guidance and motivation.

The process of gaining and assessing knowledge is one of creating and illustrating one’s own understanding. Assessment must be an organic part of teaching and learning. Making connections between teaching, learning and assessment encourages a holistic approach to the analysis of assessment and its impact on the teaching-learning process. In order to create a cohesive relationship between teaching, learning and assessment, learners need to construct their own knowledge networks and the teacher must monitor this knowledge construction. The teacher can determine the level of knowledge construction by assessing prior information, the acquisition of new information and the transformation, and the elaboration and organisation of such new information.

Components that are essential in assessing a learner’s individual ability and needs include a set of objectives / outcomes and criteria; the use of close-to-reality contexts; ideas about individual formative feedback; and fostering the ability for self-assessment through a mediation process (Black, Harrison, Lee, Marshall & Wiliam, 2003:30–57).

How will knowledge and skills be organised, pg. 10 (5 mark definition & discussion)

- logical sequence
- progression of content and conceptual development
- teaching / learning methods

To “organise” is to put things together into an orderly, functional, structured whole and to arrange them in a coherent form. The importance of what the learners have to learn, in what particular order, and in what space and time must be established. How the knowledge is organised, and in what sequence, is central to framing learning; for example, the knowledge should be relevant to the labour market, appropriate to apply in civil society and be respectful of learners’ and teachers’ cultural backgrounds.

In curriculum terms, the way in which the knowledge (content) is organised is called an “organising principle”. An organising principle is the basic method of arranging content so that key ideas can be located. Organising the knowledge (content) selected to be included in the curriculum according to an organising principle helps to simplify a particularly complicated domain and make it easier for the users to grasp.

The overarching approach in a curriculum provides an indication of – and the motivation for – the particular principle or set of principles according to which the curriculum is organised; for example, whether it is organised around outcomes, objectives, unit standards, etc. This organising principle shapes the emphasis in the curriculum: all elements of the curriculum draw their classification and value from the way the curriculum is organised.

It is important to notice that two organising principles relate to curriculum development in general. The first is related to the theory of knowledge espoused in the curriculum as seen in the outcomes, assessment standards, subject and / or teaching methodology, etc., which may, for example, presuppose an approach in which the participatory learner is seen as central to the learning process or one where the learner is simply regarded as the recipient of the required information.

The second organising principle is associated with the discipline or subject itself. It refers to the idea(s) forming the basis of the selection, sequencing, pacing, level and assessment of knowledge in a curriculum. The organising principle of the subject should allow for appropriate sequencing of different skills and content areas – over the course of the year and across grades / years of study. The internal principles of the subject’s discipline(s) and theoretical framework(s) direct the logical progression of content and skill development. To ensure coherence in the curriculum, sensitive choices regarding the choice of topics / content / elements and their ordered connectedness to the organising principle should be made. The coherence within the curriculum must mirror the coherence of the discipline.

In addition to choosing the most relevant knowledge (content) and skills to be included in the curriculum, the sequencing of content also needs consideration in order to design a consistent and coherent curriculum.

Suggestions about how much time could reasonably be allocated to the various parts of the curriculum help teachers / examiners to pace the teaching. The relative importance allocated to the content will also impact on pacing.

It is furthermore important to know that the organising principle relates to the theory of knowledge, but also includes reference to a specific subject methodology, both of which must be congruent with the selection of content and the cognitive demands required at the particular level.

What is the IQMS, pg. 55 (5 mark definition & discussion)

Teachers must constantly appraise themselves critically; reflecting on how they are teaching must be part of their daily routine. The National Department of Education issued policies that address the appraisal of teachers. This is a collective agreement (No. 8 of 2003 in the Education Labour Relations Council); that is, the employer (government) and employee (represented by teacher unions) have agreed to the policy. It is important for teachers to take note of this document.

The IQMS Policy combines the different quality management programmes that have been developed in the past into an integrated quality management system. This system includes

- development appraisal, which is the process whereby individual teachers are assessed to define areas of strength and weakness and to put systems in place for individual development
- performance management, which is the assessment of individual teachers to ascertain salary adjustments, appointment adjustments, promotions etc.
- whole-school evaluation, which evaluates the effectiveness of an entire school in respect of its teaching and learning.

The document is divided into three sections: Section A describes the IQMS and why it needs to be used. It defines the structures that must be put in place in order to ensure the efficient running of the school. These structures are

- a senior management team (SMT)
- a staff development team (SDT)
- a development support group (DSG).

This section also states the guiding principles that inform the IQMS. The procedure to be followed is then outlined in six steps, stating very clearly how the whole process works. The section concludes with an outline of the roles and responsibilities of each of the school structures, i.e. the SMT, SDT and DSG.

Section B consists of an implementation plan. This is presented as a flow chart that details the procedure, culminating in the whole-school assessment. It specifies at what stage of the year each part of the process takes place and who is responsible; for example, the teachers must have a personal growth plan in place by the end of March. It gives a clear picture of the flow of information between the various stakeholders.

Section C consists of the assessment tool to be used in the various sections of the assessment process. Each assessment is rated on a four-level scale with a rubric that describes what must be achieved at each level. Forms that can be used to summarise the measurement and assessment of staff performance are provided.

The purpose of the IQMS is the personal development of each teacher. The entire document is available at http://www.elrc.co.za.

Learning and teaching support material: The reasons for using exemplary lesson materials, pg. 73 (5 mark definition & discussion)

Over the past two decades, a large knowledge base has been developed covering the primary functions and effective features of exemplary lesson materials, particularly on the basis of studies by the School of Education of the University of Michigan (Ball & Cohen, 1996; Davis & Krajcik, 2005) and the Department of Curriculum Design and Educational Innovation of the University of Twente in the Netherlands (the starting point is marked by Van den Akker, 1988).

According to these studies, materials should first and foremost focus on elements that are essential for the effective interpretation and implementation of the curriculum; but at the same time, such materials should be considered vulnerable because of their possible complexity or lack of clarity. Reasons for using exemplary lesson materials include:

- offering an indication of what can be expected during lessons
- stimulating internal dialogue and reflection on questions such as: “How does the material relate to my personal opinions and my own teaching practice? Can the material be used for preparing and teaching lessons and if so, how? What reactions and learning outcomes from learners can be expected?”
- presenting specific guidelines for use in practice
- preventing early watering down of the intended new approach to content and pedagogy and, at the same time, stimulating local adaptation and ownership of the new approach
- providing a basis for the exchange of experiences, feedback, discussion and reflection
- stimulating teachers to (re)design their own materials and/or to make a more selective, creative and conscious use of existing textbooks and materials.

The teacher should keep the following in mind when choosing lesson materials that can lead to effective implementation of the curriculum:

- The material has a modular and flexible design and structure.
- The material raises questions about essential yet vulnerable aspects of lesson preparation, subject matter content, the role of the teacher and the nature of assessments and tests.
- The material displays a balance between providing concrete suggestions and procedural specifications on the one hand (including some justification for choices made), while avoiding exhaustive regulations on the other. This will stimulate active adaptation.

At the same time, concrete and specified guidelines are necessary – especially in the early stages of implementation – in order to actively support teachers in gaining experience, which will combat feelings of insecurity and avoid premature modifications in planning and instructional design.

An important lesson is that no matter how carefully they are designed and tested, using exemplary lesson materials alone has its limitations. Such materials have proven more effective if applied in combination with more comprehensive professional development schemes for teachers. These development schemes contain activities that will stimulate collaboration with and coaching by experts and colleagues, for example the exchange of experiences, collegial feedback and reflection-in-action and reflection-on-action, focused on the users’ experiences with the material. In such “blended scenarios” virtual teacher networks may also play a role. Multimedia cases with visualisations of the envisaged teaching practice also have an added value (Van den Berg, Blijleven & Jansen, 2003).

However, it is clear that the teaching of teachers, in-service development and the choice and application of exemplary lesson material should not be seen as a shortcut in planning, instructional design and ways of interpreting and implementing the curriculum. On the contrary, further in-service teacher development requires time, should be embedded in whole-school development, and should enjoy the support of the school management and the government. When developing lesson material, teachers should acknowledge the iterative cycle of analysis, design, development, and evaluation in working with the curriculum. The following aspects of material design should be kept in mind:

- The first step is to determine the functions and features of the materials to be developed. This is done on the basis of a thorough analysis of literature, context and the needs of the target group.
Testing the effectiveness of the lesson material might include observations of lesson preparation and implementation, as well as interviews, in order to gain insight into teachers’ and learners’ experiences.

The teacher draws on the experience of subject / phase experts who have developed teaching material of high quality in terms of relevance, consistency, practicality and effectiveness. Doing this contributes to the professional development of teachers, and extends their knowledge of material design.

Teachers should assess the expected practicality and effectiveness of teaching materials; however, this can only be done when teachers and learners have used the new materials in the learning situation.

What should the teacher keep in mind when choosing lesson materials that can lead to effective implementation of the curriculum, pg. 75 (5 mark definition & discussion)

Curricular products that are developed at micro-level include lesson materials and resources.

Different subjects and curricula rely on different resources for their success. Teachers will have to be familiar with the resources needed and the resources available as they interpret the curriculum and plan instructional designs. Teachers must also be sensitive to the limitations of learners who experience barriers to learning, and how their progress may be affected by the availability (or otherwise) of resources or a lack of access to resources. If learners do not have access to resources, the school and the teachers need to find creative ways to get around this. The school must be ready for the learner rather than the learner being ready for the school. Barriers to learning must be overcome, so they do not have a negative impact upon the learners.

While teachers may rely on a textbook, they should also develop lessons that use other media, for example playing and discussing the influences on a piece of classical music that was written during the French Revolution. Alternatively, learners could be asked to use the internet and/or a library to research a particular topic/theme.

When using any learning and teaching support material (textbooks are only one type of material), it is advisable to evaluate the materials before buying them to see if they are suitable.

Teachers and schools make their own selections from the range of available educational materials; therefore the choice of lesson materials and resources is informal and non-compulsory. Teaching materials, in the form of printed and/or digital resources published by educational publishers, can be a convenient, efficient and often indispensable tool to support day-to-day teaching. However, convenience and efficiency have a downside: teachers can depend excessively on these materials. This phenomenon of “textbook teaching” may hinder rather than foster effective curriculum interpretation and implementation (Thijs & Van den Akker, 2009).

Learning resources can be regarded as the carriers of the curriculum. They thus form an ideal vehicle to make the generic implementation intentions in teaching practice explicit. This is often done by means of exemplary lesson material, which is developed to illustrate the intended implementation of curriculum content in a certain subject or subject cluster at microlevel (i.e. at group, class or teacher level). The development of these materials often starts from a basic vision (an “ideal” curriculum, whether or not it is specified in a vision document) that is related to the generic curricular framework. This exemplary interpretation may also reveal a need to further fine-tune the planners’ vision, ambitions and curricular frameworks. In the end, exemplary lesson materials aim to provide a source of inspiration for various target groups, such as educational publishers, in developing new methods and modifying existing ones. The materials can also be used when working with student teachers to give them orientation and practice.

The central question in this section is how (exemplary) lesson material may help teachers to familiarise themselves with the implementation of the intended curriculum, based on the obvious fact that the teacher-curriculum combination is an important factor in stimulating the quality of learning. In addition, (exemplary) lesson materials are an important variable in the teaching and learning process; such materials are important carriers of a teacher’s intention to effectively implement (enact) the curriculum. For these materials to fulfil their catalytic function, they should be specifically developed to allow teachers to adapt them, doing which will be a learning experience in itself. According to Ball and Cohen (1996) and Davis and Krajcik (2005), such educative materials can provide a bridge between the content-specific, pedagogical and organisational challenges entailed in a curriculum proposal and desirable in-service learning of teachers.

Stages of planning for curriculum interpretation and implementation, pg. 69 (5 mark definition & discussion)

With whole-school development in mind and working towards the holistic development of the learner, there are four key stages (Figure 4.1) of planning:

1. Strategic school planning
2. Phase planning
3. Planning per grade
4. Lesson planning

![Diagram of the four stages of planning](image)

Figure 4.1 The four stages of planning in relation to each other
Identify the cognitive category according to Bloom’s taxonomy for different questions, pg. 89 (10 marks)

Table 4.4 Application of the *Revised Bloom’s taxonomy* (Anderson & Krathwohl, 2001) as a teaching, learning and assessment tool

<table>
<thead>
<tr>
<th>Cognitive category</th>
<th>Explanation of demand in different subject fields</th>
<th>Examples of action words</th>
</tr>
</thead>
</table>
| **Remembering (knowledge)** | **Mathematics and Science:**
- Mention a simple law or equation.
- Recognise content in multiple-choice questions (MCQs), for instance: read information directly from a table (e.g. the time that bus number 1234 departs from the terminal).
- Know appropriate vocabulary such as equation, formula, bar graph, pie chart, Cartesian plane, table of values, mean, median and mode.
- Know formulae such as the area of a rectangle, a triangle and a circle where each of the required dimensions is available.
- **Languages:**
 - Tell, recite and list, e.g. identify parts of speech; match known words with definitions. Identify answers to wh- (equivalent) questions from a text (what, where, when, which etc.).
 - Explain what synonyms are.
 - Retrieve information, locate and find required data / information.
 - Use correct spelling and vocabulary.
 - Write down an unfamiliar text that is dictated.
 - Find synonyms or antonyms for words used in a text.
 - **Practical subjects:**
 - Recognise obvious facts / content in MCQs; very simple recall.
 - Identify specific data; name, tell, recite, list e.g. identify parts of a whole; match known concepts / words with definitions.
 - Mention a simple law or method / general perception. Identify content in a table.
 - Identify answers to wh- (equivalent) questions from a text / case study.
 - Explain particular terminology.
 - Identify e.g. metals, lubricants.
 - Know and correctly use vocabulary related to a particular field such as equation, formula, bar graph, table of values, tolerance range, fatigue point, flashpoint, etc.
 - Recall complex content.
 - Give correct explanations of terminology and vocabulary, e.g. encapsulation, polymorphism.
 - Find similar or different uses for terminology.
 - Know formulae.
 - Give indications of dimensions.
 - Recall complex content.
<p>| Tell, recite, list, memorise, remember, define, locate, name, match, recall, repeat, state, outline |</p>
<table>
<thead>
<tr>
<th>Cognitive category</th>
<th>Explanation of demand in different subject fields</th>
<th>Examples of action words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding (comprehension)</td>
<td>Mathematics and Science: Understand simple relationships and simple explanations; give one-step answers; derive units. Give two-step answers and simple applications; interpret realistic diagrams; draw inferences. Identify principles that apply in a novel context. Explain; demonstrate more complex reasoning with regard to understanding and explanation. Languages: Convert active to passive forms. Identify main ideas (and supporting ones) in paragraphs. Identify cause, result and reason from a text. Explain, briefly summarise, translate and interpret realistic visuals. Summarise a text. Use two steps to arrive at an answer. Draw inferences. Practical subjects: Explain simple relationships (for example classes and subclasses). Give simple explanations. Give one-step answers. Derive units. Identify cause, result or reason. Understand and be able to react to responses and actions. Explain processes, e.g. cutting / machining. Interpret realistic visuals.</td>
<td>Give example, explain, summarise, translate, show symbols, edit, define, discuss, identify, follow directions</td>
</tr>
<tr>
<td>Understanding (comprehension)</td>
<td>Mathematics and Science: Understand simple relationships and simple explanations; give one-step answers; derive units. Give two-step answers and simple applications; interpret realistic diagrams; draw inferences. Identify principles that apply in a novel context. Explain; demonstrate more complex reasoning with regard to understanding and explanation. Languages: Convert active to passive forms. Identify main ideas (and supporting ones) in paragraphs. Identify cause, result and reason from a text. Explain, briefly summarise, translate and interpret realistic visuals. Summarise a text. Use two steps to arrive at an answer. Draw inferences. Practical subjects: Explain simple relationships (for example classes and subclasses). Give simple explanations. Give one-step answers. Derive units. Identify cause, result or reason. Understand and be able to react to responses and actions. Explain processes, e.g. cutting / machining. Interpret realistic visuals.</td>
<td>Give example, explain, summarise, translate, show symbols, edit, define, discuss, identify, follow directions</td>
</tr>
<tr>
<td>Understanding (comprehension)</td>
<td>Mathematics and Science: Understand simple relationships and simple explanations; give one-step answers; derive units. Give two-step answers and simple applications; interpret realistic diagrams; draw inferences. Identify principles that apply in a novel context. Explain; demonstrate more complex reasoning with regard to understanding and explanation. Languages: Convert active to passive forms. Identify main ideas (and supporting ones) in paragraphs. Identify cause, result and reason from a text. Explain, briefly summarise, translate and interpret realistic visuals. Summarise a text. Use two steps to arrive at an answer. Draw inferences. Practical subjects: Explain simple relationships (for example classes and subclasses). Give simple explanations. Give one-step answers. Derive units. Identify cause, result or reason. Understand and be able to react to responses and actions. Explain processes, e.g. cutting / machining. Interpret realistic visuals.</td>
<td>Give example, explain, summarise, translate, show symbols, edit, define, discuss, identify, follow directions</td>
</tr>
<tr>
<td>Cognitive category</td>
<td>Explanation of demand in different subject fields</td>
<td>Examples of action words</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Application (applying)</td>
<td>Mathematics and Science: Perform well-known procedures in familiar contexts. Know what procedure is required to solve the problem from the way the problem is posed (all the information required is immediately available to the candidate). Draw data graphs for provided data; algebraic graphs for given equations. Measure dimensions such as length, time and weight using appropriate measuring instruments. Languages: Write texts related to familiar contexts. Draft a friendly letter, basic business letter and invitation. Given the necessary information, organise it into a presentable poster or a table to promote ready comprehension. Draw information from a given text, illustrate in words, construct ideas. Propose a course of action based on a straightforward case study. Collect information from available texts to support a particular position/opinion and represent the position in own words. Undertake guided research to collect information necessary for a task. Organise information into a suitable form (report, memorandum, visual presentation). Practical subjects: Perform well-known procedures in familiar contexts. Know what procedure is required to solve a problem from the way the problem is posed (all the information required is immediately available to the candidate). Simplify procedures. Draw information from a given text and illustrate. Propose a course of action based on a straightforward case study. Use, run or operate web-based applications. Select tools. Identify and use procedures. Make practical applications in own life situation. Measure dimension such as length, time and weight using appropriate measuring instruments. Assemble equipment in a particular sequence. Sort information, for instance in descending order, according to a particular description field. List processes in a particular sequence. Make conversions in currencies, weights, temperatures. Extrapolate, e.g. multiply a recipe to cater for a much larger number. Understand and change applications, e.g. adapt a quotation.</td>
<td>Demonstrate, use, guide, interpret map/chart, interpret procedures and use, decide and apply, convert, illustrate, locate and describe, identify and describe sequencing, sketch, choose particular action, sort information, use instruments or equipment, build, cook, arrange, solve</td>
</tr>
<tr>
<td>Give indications of dimensions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use procedures to solve the problem based on the way the problem is posed (all the information required is immediately available to the candidate).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply actions such as formulating checklists, show and display as single application.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive category</td>
<td>Explanation of demand in different subject fields</td>
<td>Examples of action words</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Analysis (analysing)</td>
<td>Mathematics and Science: Plug into a formula with only one unknown. Analyse a chemical equation. Solve non-routine, unseen problems by demonstrating higher-level understanding and cognitive processes. Demonstrate qualitative proportional reasoning. Explain more complex relationships between concepts, data or graphs. Construct or interpret schematic diagrams. Solve problems with two or more steps. Make basic logic leaps and proportional reasoning. Interpret tables of data. Create complex abstract representations. Combine concepts across subfields. Interpret and extrapolate from solutions already obtained by solving problems in unfamiliar contexts. Use reasoning to solve non-routine problems. Break down a problem into its constituent parts – identify what is required and then use appropriate methods in solving the problem. Languages: Create texts in known or practised context; draft an invitation, write a letter of thanks or condolence, but with some variation that prevents the text from being strictly formulaic. Write a persuasive essay. Take minutes of a meeting. Deal with more complex case studies and propose a course of action, e.g. in report form. Interpret, report on, sort, debate, e.g. by preparing a speech and / or presentation. Use reasoning to develop a proposal to solve a problem. Analyse a problem into its constituent parts; pinpoint the core and use appropriate methods to solve the problem. Practical subjects: Demonstrate procedures; work with chemical equations / mixtures to enable procedures. Read and interpret scenarios and case studies, identify the cause and suggest changes / rectifications. Determine the feasibility of e.g. an intended business. Conduct analysis of procedures, identify strengths and weaknesses. Interpret, make adjustments, provide suggestions / recommendations and give reasons for opinions. Solve non-routine, unseen problems by demonstrating understanding. Demonstrate qualitative proportional reasoning and more complex relationships or explanations. Construct or interpret schematic diagrams. Solve problems with two or more steps and basic logic leaps. Interpret tables of data.</td>
<td>Investigate, classify, categorise, analyse and compare, solve, relate, distinguish, identify and describe similarities and differences, interpret diagrams, interpret case study, report on, sort, debate</td>
</tr>
<tr>
<td>Deal with more complex case studies and propose courses of action.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate complex abstract representation. Combine concepts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>across subfields.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrapolate from solutions already obtained by solving problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in unfamiliar contexts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use reasoning to solve non-routine problems; break down a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>problem into its constituent parts, identify what is required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and then use appropriate methods to solve the problem.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Analyse a problem into its constituent parts; pinpoint the core |
| and use appropriate methods to solve the problem. |
| Give answers to “what if” questions. |</p>
<table>
<thead>
<tr>
<th>Cognitive category</th>
<th>Explanation of demand in different subject fields</th>
<th>Examples of action words</th>
</tr>
</thead>
</table>
| **Evaluation** (evaluating) | **Mathematics and Science:**
Substantiate opinions.
Critique solutions to problems and statements about situations made by others.
Languages:
Substantiate an opinion.
Critique statements about situations made by others involving critical argument, novel or abstract contexts.
Practical subjects:
Substantiate opinions.
Critique solutions to problems.
Critique statements about situations made by others; defend a critical argument.
Refactor and test a programme and write feedback.
Defend and provide substantiation for an opinion.
Write data-related feedback.
Design quotation forms and work out an event quotation.
Work out an itinerary according to particular requirements. | Judge, evaluate, give an opinion, give a viewpoint, critique information, decide what would be the best route / provide a solution and explain why, estimate cost, rate / score, support, justify, find some substantiation, argue, defend an opinion |
<table>
<thead>
<tr>
<th>Cognitive category</th>
<th>Explanation of demand in different subject fields</th>
<th>Examples of action words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creation / synthesis (creating; synthesising)</td>
<td>Mathematics and Science:
Use complex reasoning involving synthesis, critical argument linked to novel or abstract contexts etc. Generalise patterns observed in situations, make predictions based on these patterns and/or other evidence and determine conditions that will lead to desired outcomes.
Work with complex problems involving insight and logic leaps.
Formulate new equations (using all unknowns). Create new solutions to problems.
Redesign
Languages:
Generalise patterns observed in situations.
Work with complex problems involving insight and logic leaps.
Create new solutions to problems.
Write poetry, a novel or drama.
Write a complex review/critique.
Rewrite information a story for a new context and setting.
Practical subjects:
Generalise patterns observed in situations, make predictions based on these patterns and/or other evidence and determine conditions that will lead to desired outcomes.
Work with complex problems involving insight and logic leaps.
Formulate new equations using all unknowns; create new solutions to problems.
Redesign/rewrite and adapt an existing programme. Modify particular procedures or methods.
Demonstrate complex reasoning involving synthesis.
Provide imaginative answers to/fully substantiate answers to "what if"-questions.
Use critical argument linked to abstract contexts.</td>
<td>Compose, design, create, invent, construct, forecast, rearrange, rewrite, imagine, adapt, modify the existing into new, formulate hypotheses, generate, compose, develop</td>
</tr>
</tbody>
</table>

Discuss different ways of understanding the concept "curriculum" and how these different understandings relate to each other. Refer to the concept "curriculum" as prescription and in practice (pages 3 – 5) (30 mark essay question)

The debate around the interpretation of “curriculum” is long-standing. As far back as 1975, Stenhouse observed that the educationist “is confronted by two different views of the curriculum. On the one hand the curriculum is seen as an intention, plan or prescription, an idea of what one would like to happen in schools. On the other hand it is seen as the existing state of affairs in schools, what does in fact happen” (Stenhouse, 1975).

When we ask what “curriculum” means, we get different answers according to the views, background and experience of the respondent. At a general level, an explanation can be understood in relation to what is included and / or excluded in the description. For example, Eisner (1985) defines a curriculum as a series of planned events that are intended to have educational consequences for one or more learners,

whereas Fraser (1993) has a much wider interpretation of curriculum as the inter-related totality of aims, learning content, evaluation procedures and teaching-learning activities, opportunities and experiences that guide and implement didactic activities in a planned and justified manner.

The older, narrower definition says that when studying a curriculum, we must look at the curriculum plan, i.e. the document that sets out the intention of what, how and why something should be taught. In this definition, a curriculum is a “course of study” or “study programme”, whereas the broader definition is a more inclusive concept that comprises all the opportunities for learning and is viewed in historical perspective in its socio-political context. Narrow definitions are likely to foster a conception of curriculum change as a limited and largely technical exercise.

Grundy (1987), Goodson (1984; 1989) and other educationists argue that an awareness of the different interpretations is important in developing our understanding of what a curriculum is. Goodman (1998) in particular says that the struggle over the definition of “curriculum” is a matter of social and political priorities, as well as intellectual discourse; otherwise the study of schooling will leave unquestioned and unanalysed assumptions that should be at the heart of the intellectual understanding and practical operation of schooling.

Another broad definition is that of the National Education Policy Initiative (RSA, 1993): “Curriculum refers to the teaching and learning activities and experiences which are provided by schools.” The definition includes

- the aims and objectives of the education system and the specific goals of the school
- the selection of content to be taught, how it is arranged into subjects and what skills and processes are included
- ways of teaching and learning, and relationships between teachers and learners
- forms of assessment and evaluation used

This definition covers more than the stated aims and subject-specific documentation, which can be referred to as the intended curriculum. The curriculum also involves the consideration of actual classroom practices and experiences – the enacted curriculum, which results from the interpretation and implementation of the curriculum. Having the same curriculum on paper does not mean that all schools / learning institutions experience the same curriculum-in-use or enacted curriculum. This is profoundly affected by resources (e.g. laboratories and libraries) and materials that support the learning process (e.g. textbooks). It is also affected by experiences of disruption or continuity, and by the quality and morale of teachers. This means that improving teachers’ knowledge and skills may have an effect on the way they will interpret and implement the intended curriculum.

If the definition of “curriculum” includes activities, opportunities and experiences, we can ask whether the following are part of a curriculum:

- The preference for a subject because of a teacher’s knowledge of the field and choices of teaching strategies
- The principal locking the gates at 08:00 because she wants to force the children to be punctual
- The fact that Mathematics lessons are never scheduled for the last period on a Friday, but Life Orientation lessons often are
- The impact of teachers teaching subjects that they never studied themselves
- Classes that consist mainly of weak learners and repeaters
The above are all examples of the enacted, experienced or lived curriculum, which can explain why the same prescribed curriculum can generate very different results in different schools. In other words, the enacted curriculum is the actual process of teaching and learning, the operational aspect of implementing the curriculum, which is based on how the teachers perceive and interpret the curriculum. This enacted, lived curriculum, or curriculum in action, illustrates the importance of both teacher and context and can be intentional or unintentional, or even hidden.

In short, the curriculum can be defined as an organised framework that delineates the content that learners are to learn, the processes through which learners achieve the identified curricular goals, what teachers do to help learners achieve the objectives / goals, and the context in which teaching and learning occur.

The following aspects of the curriculum must therefore be considered:

1. **Official, explicit intended curriculum.** This is the prescribed curriculum, also described as the blueprint for teaching. It is the plan or intentions of, for instance, the Department of Basic Education. A single plan can be used for different learners, although its contexts can differ greatly.

2. **Enacted curriculum as practice.** This is the curriculum as it is experienced. It is also referred to as the non-official, implicit curriculum as implemented by a teacher, and is what is actually taught and learnt. Misunderstandings, resource constraints and so on can interfere with the teacher’s abilities to implement a curriculum plan exactly as intended.

3. **Covert curriculum.** This is teaching that is implicit (not spelt out), but nonetheless deliberate on the part of the teacher or school. It is especially important in early schooling, when consideration for others, order and obedience, teamwork and cooperation are focal points. “Play” in early schooling is a deliberate curriculum strategy to develop important attitudes and skills such as fine motor skills, spatial differentiation and various prenumeracy skills.

4. **Hidden curriculum.** This is learning that is hidden from the teachers as well as from the learners. It is another form of implicit learning, which the teachers did not intend and are probably not even aware of. We consciously learn many things about the world, or learn to see the world in particular ways, simply by spending a lot of time in the sort of environment that schools and classrooms present to us.

5. **Assessed curriculum.** This is the knowledge and skills that are measured to determine learner achievement or what objectives or learning outcomes have been attained. Assessment is an important element of a curriculum because it establishes how learners will be measured on performance.

Analyse how the approaches to curriculum development presented by different authors, like Tyler, Stenhouse and Freire were used in the design, interpretation and implementation of our curriculum in South Africa (pages 20 – 23). (30 mark essay question)

South Africa embarked on a radical transformation of education and training between 1989 and 1994, and subsequently on reviews of the curriculum. One of the most challenging aspects of the initial transformation has been the adoption of an OBE approach that underpins the introduction of C2005. C2005 has tried to capture aspects of all three of the approaches discussed above, but just as there was tension between the three different approaches of Tyler, Stenhouse and Freire, so there was tension between different aspects of policy (see Chapter 3). Tyler used the narrow definition of “curriculum”, while Stenhouse argued for a broader definition and Freire just assumed a broader definition. But that was only their starting point. The main focus of their debate was on what should go into a curriculum and how it should be approached (see Table 1.6). For this reason, these different approaches become useful tools for sharpening our understanding and interpretation of C2005, both its revisions and the amended NCS, referred to as the Curriculum and Assessment Policy Statement (CAPS). The CAPS is discussed in more detail in chapters 3 and 4.

The following universal principles in approaches to curriculum, but also to teaching and learning, are to be found in the views of Tyler, Stenhouse and Freire, as shown in Table 1.6 (see below):

- Experiential learning
- Clarity of focus
- Expanding opportunities
- Defining outcomes, aims or objectives
- Importance of knowledge, skills and values
- Evidence of achievement
- Individual learning
- What and whether we learn is more important than when we learned it

Tyler wanted structure in the teaching and learning situation and argued that there should be clarity of focus in what you want to teach, how you want to teach and how you want to assess. Therefore, the first step in effective teaching is to define objectives (outcomes), keeping in mind that these objectives should be context-bound. The teacher should ask four basic questions:

1. What educational purposes should the school seek to achieve? (By “purpose” Tyler was referring to behavioural objectives (developed by gathering information from three sources: the subject matter, the learners and the society).)
2. What educational experiences can be provided that are likely to achieve these purposes?
3. How can these educational experiences be effectively organised?
4. How can we determine whether these purposes are being achieved?

Tyler argued that individual learning would ensure that each learner achieved the set objectives (outcomes). We can interpret this to mean that educational experiences should be derived from objectives, based on the results of an analysis of the situation (learner, subject, society), and that objectives should be filtered through a philosophical / psychological screen before being finalised. It is important to develop citizens who are able to solve problems and can engage in democratic processes.

The principles mentioned above have their roots in the competency-based education movement and mastery learning. They are based upon the premise that we can help learners to create definite and reliable evidence of achievement. This model focuses on the need to create favourable learning conditions as regards time, teaching strategies and learning success.

A more detailed look at competency-based learning reveals that Stenhouse’s ideas of a teaching-learning process prepare learners for success in fulfilling various life roles. It is important to test, adapt and evaluate the process to see whether it is an enlightening one, and in that manner expand opportunities for application. Stenhouse stressed the
The importance of doing research while teaching and of following the route of “design down, deliver up” – a developmental process where the teacher can change the teaching-learning environment according to context and learners’ needs. The learner should change in the teaching-learning process to internalise information and form opinions of his or her own.

Mastery learning promotes the idea that all learners can achieve the desired teaching outcomes if given favourable learning conditions such as flexibility, sufficient time and alternative ways of learning. Freire focused on these aspects; he wanted teachers and curriculum developers to make sure that educational experiences could be used in real life. Experiential learning was of utmost importance: learners should be able to reflect on the value of learning. What is also considered here is the perception of what the ideal learner in a particular field should look like, be like, act like and think like. Freire felt it was important to identify specific knowledge in order to attain a skill which could be applied in practice as the connection between reflection and action.

Table 1.6 Approaches to curriculum planning according to Tyler, Stenhouse and Freire: a summary

<table>
<thead>
<tr>
<th>Ralph Tyler</th>
<th>Lawrence Stenhouse</th>
<th>Paolo Freire</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sees curriculum as a product (objectives / instrumental approach)</td>
<td>• Sees curriculum as a process with objectives not set at the start, but changing in the teaching process</td>
<td>• Thinks about the purpose of a curriculum – it must serve to liberate learners to make links and understand language, experiences and their daily struggle.</td>
</tr>
<tr>
<td>• Has a linear focus on the end product; cannot branch off in the middle</td>
<td>• Focuses on descriptiveness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Knowledge must be speculative.</td>
<td></td>
</tr>
<tr>
<td>• Objectives, content, methods and sequence questions</td>
<td>• Guidelines and professional development are important.</td>
<td>• Intellectual, social and political liberation – how learners feel about knowledge and whether experiences can be used in everyday life</td>
</tr>
<tr>
<td></td>
<td>• Learners should know what to do with content.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Understanding and criteria are central to the process.</td>
<td></td>
</tr>
<tr>
<td>• Educational purposes, experiences etc. are important.</td>
<td>• Carries out research while teaching, evaluates while researching, changes the process of reaching goals.</td>
<td>• The way in which we teach may change learners – it is always political (empowers or domesticates the learners).</td>
</tr>
<tr>
<td></td>
<td>• Learners should “change” in the learning process.</td>
<td>• Negotiates understanding with learners.</td>
</tr>
<tr>
<td>• Do research to find the best content to include in curriculum / evaluate content.</td>
<td>• Tests, adapts and evaluates the process to see if it is enlightening.</td>
<td>• Learners should be able to reflect on the value of learning.</td>
</tr>
</tbody>
</table>

Discuss the steps that you will follow to interpret and implement a curriculum for your specific subject (pages 66 – 73).

With regard to the background discussion in Chapter 1 and the importance of the aims and content of learning, it should be acknowledged that changes to aims and content also presuppose changes to many other aspects of the plan for learning and teaching (Van den Akker, 2003).

As discussed in Chapter 1, the aspects of curriculum design mentioned below should be kept in mind when working with the curriculum, and interpreting and planning an instructional design. Thijs and Van den Akker (2009:12) suggest questions that could guide the interpretation of a curriculum (Table 4.1).

The process of interpreting and implementing the curriculum is actually curriculum development “in reverse”. As mentioned in Chapter 1, Section 1.2.2, working with a curriculum is a cyclic process of design in which context analysis, planning, development, implementation and evaluation take place interactively.

Table 4.1 Questions to guide interpretation of a curriculum

<table>
<thead>
<tr>
<th>Curriculum design / component</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rationale</td>
<td>Why do the learners have to learn?</td>
</tr>
<tr>
<td>Aims and objectives</td>
<td>What are the goals of their learning?</td>
</tr>
<tr>
<td>Content</td>
<td>What do they learn?</td>
</tr>
<tr>
<td>Learning activities</td>
<td>How do they learn?</td>
</tr>
<tr>
<td>Teacher’s role</td>
<td>How does the teacher facilitate learning?</td>
</tr>
<tr>
<td>Materials and resources</td>
<td>With what do learners learn?</td>
</tr>
<tr>
<td>Grouping</td>
<td>With whom do they learn?</td>
</tr>
<tr>
<td>Location</td>
<td>Where do they learn?</td>
</tr>
<tr>
<td>Time</td>
<td>In what time frame should learning take place?</td>
</tr>
<tr>
<td>Assessment</td>
<td>How should learning be assessed?</td>
</tr>
</tbody>
</table>

It is therefore important that teachers ask about the socio-political view of the learning to be undertaken (rationale): for example, will the learner be an active co-creator and participant in the classroom and beyond, or will he or she be trained to be biddable, respectful and unquestioning? Other questions about what, how and where the learners should learn, and the role of the teacher and learner, should also be asked. In addition, teachers should think about how the answers will impact on the interpretation and implementation of the curriculum and the way lesson planning is approached.