
APM1612/MO001/4/2018 

 

 

 

 

 

 

 

MO001/4/2018 

 

Mechanics II 

APM1612 

 

Semesters 1 & 2 

 

Department of Mathematical Sciences 

  

 
IMPORTANT INFORMATION: 

 
This is a blended module; therefore it will also be available 
on myUnisa.  
 
Please activate your myUnisa and myLife email in order to 
access the module site. The Code for this module is 
APM1612. 
 
This also contains important information about the Learning 
Units 1 to  5 of your module APM1612. 
 

 

 

 

  



APM/MO001/4/2018 

1  
 

 

 

 

 

  CONTENTS 

 

1: WELCOME .......................................................................................................................................... 2 

2: INTRODUCTION .................................................................................................................................. 2 

3: OUTCOMES AND ASSESSMENT CRITERIA ..................................................................................... 3 

4: ASSESSMENT PLAN .......................................................................................................................... 6 

5: LEARNING UNITS ............................................................................................................................... 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



2  
 

 

 

1: WELCOME  

1.1 Welcome 
 

We wish to welcome you to the module APM1612 (Mechanics II). We hope that you will enjoy studying 
this module. 

 
This module is taught online and I want to encourage all students of APM1612 to study this module in 
this way! Apart from Tutorial letter 101 you will also receive other tutorial letters during the semester – 
for instance, containing feedback on assignments. These tutorial letters (102, 103 and so on; 201, 202 
and so on) will not necessarily be available at the time of registration. These tutorial letters will be 
despatched to you as soon as they are available or needed. They will appear on the myUnisa site. 
 
You will receive a number of tutorial letters during the semester. A tutorial letter is our way of 
communicating with you about teaching, learning and assessment. Right from the start we would like to 
point out that you must read all the tutorial letters you receive during the semester immediately and 
carefully, as they always contain important, and sometimes urgent information. 
 
There is no prescribed textbook and no recommended readings for this module. All the material is 
contained in the learning units. 
 
The myUnisa learning management system is Unisa’s online campus that will help you to communicate 
with your lecturers, with other students and with the administrative departments of Unisa - all through 
the computer and the internet. 
To go to the myUnisa website, start at the main Unisa website, http://www.unisa.ac.za, and then click 
on the “Login to myUnisa” link on the right-hand side of the screen. This should take you to the myUnisa 
website. You can also go there directly by typing in http://my.unisa.ac.za. Please consult the publication 
my Studies @ Unisa which you received with your study material for more information on myUnisa. 

 
1.2  Purpose of the Module  

 
This module deals with the dynamics of systems of particles and rigid bodies under the influence of 
forces. Broadly, the outcomes are as follows. 

 Finding the centre of mass of systems of particles, rigid bodies, and more general systems, 

 Finding the moments of inertia of various objects, about given axes of rotation, 

 Understanding and applying the equations of translation and rotation of bodies, to analyse the 
motion of objects and to solve problems, 

 Understanding and applying the concepts of kinetic and potential energy, and using energy 
conservation methods to solve problems. 

 
 

2: INTRODUCTION 

2.1 Structure of the module 
 
There are FIVE main Learning Units for this module 
 
LEARNING UNIT 1: PRELIMINARIES 
LEARNING UNIT 2: THE CENTRE OF MASS 
LEARNING UNIT 3: ROTATION 
LEARNING UNIT 4: ROTATION AND TRANSLATION 
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LEARNING UNIT 5: ENERGY METHODS 
 
2.2 Contact details 
 
Your APM1612 lecturer in 2018: 
Dr E Franc Doungmo Goufo 
Lecturer of APM1612 
Department of Mathematical Sciences 
Block C, office 6-38, 
Unisa Florida Campus,  
Roodepoort 
Tel:  (+27) (0) 11 670 9159 
e-mail: dgoufef@unisa.ac.za 
 
Alternatively you can send any queries to the e-mail address 
swanem@unisa.ac.za 
 
Mail address: 
The Lecturer (APM1612) 
Department of Mathematical Sciences 
University of South Africa 
PO Box 392 
UNISA 
0003  
 
 
2.3 What do I need to do to pass this module? 

This module is a semester module, so please start studying as soon as you receive your study 
Material.  

Very important: Please refer to Tutorial letter 101 section 6 Module specific study plan for detailed 
instructions regarding your studies. 

You need to do and submit all assignments by the due date. 

Work through tutorial letter 102 which is a workbook with exercises to practice each section. 

Then for exam preparation you need to work through past examination papers. 

3: OUTCOMES AND ASSESSMENT CRITERIA 

 

Outcome 1:  Calculate centres of mass of systems of particles, rigid bodies of continuous 
structure, and systems consisting of a combination of these. 

Assessment criteria: 

1.1. Centre of mass is calculated correctly, in either coordinate or vector format, as appropriate, 

and either summation or integration is selected correctly according to the situation. 

1.2. A reference frame (Cartesian coordinate system) is introduced, if it is not already given. 

1.3. The position of the centre of mass can be described in relation to the system or body. 

mailto:dgoufef@unisa.ac.za
mailto:swanem@unisa.ac.za
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1.4. Standard techniques such as calculating centres of mass of laminas bounded by functions 

and solids of revolution are applied correctly 

1.5. Rules applying to combined objects, objects with parts removed, and simplifying tactics 

such as planes or axes of symmetry are used correctly where appropriate.   

 

 

Outcome 2:  Calculate moments of inertia of systems of particles, rigid bodies and systems. 

Assessment criteria: 

3.1. The axis of rotation is understood correctly, and the moments of inertia can be calculated 

correctly from first principles, using summation or integration as necessary. 

3.2. Simplifying tactics such as the parallel and perpendicular axis theorems, symmetry, 

combined bodies and bodies with parts removed, and utilising previously proved results 

are used correctly when appropriate. 

 

 

Outcome 3:  Apply the equation of translation of centres of mass of systems 

Assessment criteria: 

3.1. A sketch of the system is drawn, with all the relevant forces marked in, with correct 

directions and points of action. 

3.2. The equation of motion for describing the motion of the centre of mass is written down 

correctly, both in vector form and in component form.  

3.3. Forces are classified correctly as internal or external to a given system. 

3.4. The case of non-acceleration of the centre of mass is recognised when no external forces 

act on the system.  

 

Outcome 4:  Apply the equation of rotation of a rigid body or system 

Assessment criteria: 

4.1. A sketch of the system is drawn, with all the relevant forces marked in with correct 

directions and points of action. 

4.2. Vector products of vectors expressed in terms of unit vectors are evaluated correctly. 

4.3. The angular momentum of a single particle and of systems of particles about a given point 

is calculated correctly. The special nature of the angular momentum of a rigid body rotating 

about a fixed axis can be explained.  

4.4. The connection between the moments of forces and the angular momentum of a system 

of particles, and how the equation of rotation of a rigid body rotating about a fixed axis 

follows from this, is explained.  

4.5. The moment of a given force, acting at a given point P, about a given reference point Q, is 

calculated correctly.  

4.6. The equation of motion for describing the rotation of a rigid body rotating about a given 

axis is written down correctly, both in vector form and in terms of unit vectors. 
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Outcome 5:  Calculate kinetic and potential energies for given systems 

Assessment criteria: 

5.1. The meaning of the work done by a force is defined, and how the concepts of kinetic and 

potential energy follow from this is explained. 

5.2. The gravitational potential energy of the system is calculated correctly in relation to a given 

zero energy level.  

5.3. The kinetic energy for a system, undergoing translation, rotation or a combination of 

translation and rotation is calculated correctly. 

 

 

Outcome 6:  Apply the principle of energy conservation in a described situation 

Assessment criteria: 

6.1. Forces acting in the system are correctly classified as conservative or non-conservative. 

6.2. Whether the conservation principle of mechanical energy applies or not in a given situation 

is judged correctly and justified.  

6.3. Given an initial and a final situation where the energy conservation does apply,  

a) a suitable zero potential energy level is selected appropriately, 

b) initial and final potential energies as well as initial and final kinetic energies are 

calculated correctly, 

c) The energy equation is written down correctly.  

 

Outcome 7:  Apply the above skills to solve problems in mechanics. 

Assessment criteria: 

7.1. The system or situation in the question statement is understood correctly and described in 

a sketch.  

7.2. All relevant forces acting on the system are identified and applied correctly (with correct 

directions and points of action) 

7.3. An appropriate solution method is selected by applying correctly one following 

laws/principles, or a combination thereof: The equation for the translation of the centre of 

mass of a system; the equation for the rotation of a rigid body around a fixed axis or about 

an axis through its centre of mass; the energy conservation principle.  

7.4. The motion of a rigid body is correctly classified as pure rotation, pure translation, or a 

combination of both; and the equations of motion are selected accordingly.  

7.5. Where necessary, a suitable coordinate system is selected, and all calculations are done 

correctly in relation to the selected reference system.  

7.6. In applying the energy conservation method, an initial and a later situation are selected 

appropriately.  

7.7. Where applicable, the rolling condition is applied correctly. 

7.8. A solution to the problem is found in terms of values given in the problem statement, and 

correctly interpreted (where applicable).  
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We wish you all the best for your studies. 

 

 

 

 

 

 

4: ASSESSMENT PLAN 

Refer to section 8 of Tutorial letter 101 for more detailed information on the assessment plan. 

 
4.1 Assignments 
 
Assignments are seen as part of the learning material and assessment for this module. As you 
do the assignments, discuss with fellow students or tutor, you are actively engaged in learning. 
It is therefore important that you complete all the assignments. There are six assignments for this 
module. 

4.2 Examinations 
 
The examination mark is the percentage mark you get in the examination. 
The examination mark contributes 80% to the final mark, and the semester mark contributes 
20%.  
You pass the module if your final mark is > 50, and you pass it with distinction if your final mark 
is  >75. There is also a subminimum rule, which says that you must get at least 40% in the 

examination to pass the module. 

 

5: LEARNING UNITS 

You will be required to log on to myUnisa and go to the module site for APM1612. Go into each unit on 
myUnisa. These will be included in Additional Tutorial letters. 
 
There are five main learning units for this module. 
 
LEARNING UNIT 1: PRELIMINARIES 
LEARNING UNIT 2: THE CENTRE OF MASS 
LEARNING UNIT 3: ROTATION 
LEARNING UNIT 4: ROTATION AND TRANSLATION 
LEARNING UNIT 5: ENERGY METHODS 

Each learning unit will have a theory contents sections and activity sections. 
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LEARNING UNIT 1

PRELIMINARIES

CONTENTS OF LEARNING UNIT 1

Study unit 1 Introduction to the module and the study guide

Study unit 2 Background physics

Introduction

This first Learning Unit of the study guide contains, firstly (in Unit 1) an introduction to

this module and some information on how to best study this module and, secondly (in Unit

2), some background information in physics which you should already be familiar with.

Many important examples are provided accordingly.

After reading through Learning Unit 1, you will be ready to start the real work in Learning

Unit 2!
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Unit 1 INTRODUCTION TO THE

MODULE AND THE STUDY

GUIDE

This unit tells you about the module and about the study guide, and how best to study this

module.

Contents of this unit:

3.1 What this module is all about

3.2 How to work through this study guide

1.1 WHAT THIS MODULE IS ALL ABOUT

Mechanics is a part of physics, and can be defined as the branch of physics which analyses

the action of forces on matter. Classical1 mechanics, which is what we deal with in this

module, is one of the main achievements of applied mathematics, and one of the most

successful attempts to describe the world around us. And as you might guess, mechanics

has proved to be extremely useful! Mechanics does form a very important part of the daily

life of all of us: You are applying principles of mechanics every time to open a door, or

pick up an object, or play in a see-saw (well, it might have been a while since you last

did that) — mechanics comes in everywhere, and a lot of the objects around us, from very

simple to quite complex, are built based on an understanding of mechanics.

Mechanics is usually divided into kinematics, statics and dynamics. Kinetics deals with

motion as such, with no interest in the forces which cause and modify the motion; statics

deals with situations where the actions of forces cancel out so that the object is at rest;

and finally, dynamics describes the way that action of forces causes motion. This module

deals with rigid body dynamics, more specifically the problem of describing how systems

of particles, rigid bodies and systems move under the action of forces. In particular we

will spend a lot of time investigating rotational motion. (This is where the concern with

rigid bodies, rather than just particles, comes in — particles cannot rotate since they are

just point masses!)

All of mechanics is based on Newton’s laws of motion, which you probably have come

across already. However, what we do in this module is to rewrite those laws in more and

more convenient forms, using various concepts such as the centre of mass and moments

of inertia, so that we end up with very powerful tools for analysing the motion of objects

in various situations. The flow chart below attemts to show how the different concepts we

discuss in this module fit together.

1 as opposed to quantum mechanics, that is!
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Newton’s laws

Equation of
motion of c.m. Equation of

rotation

Definition:
centre of mass Definition:

moment of inertia

Potential
energy

General
motion

Kinetic energy
(particles)

Kinetic energy
for rotating
objects

Kinetic energy
for translation
of  objects

Total mech.
energy

Hopefully after you have worked through this module, you have been impressed with the

power of mathematics and mechanics as tools for understanding the world around us! This

module is based on quite simple concepts; if you wish to learn more, you can move on to

even more powerful mathematical tools (such as the calculus of variations) as explored in

some of our other Applied Mathematics and Physics modules.

1.1.1 Outcomes of this module:

When you have worked through this study guide, you should be able to:

• Calculate centres of mass of systems of particles, rigid bodies of continuous structure,

and systems consisting of a combination of these.

• Calculate moments of inertia of systems of particles, rigid bodies and systems.

• Apply the equation of translation of centres of mass of systems.

• Apply the equation of rotation of a rigid body or system.

• Calculate kinetic and potential energies for given systems.

• Apply the principle of energy conservation in a described situation.

• Apply the above skills to solve problems in mechanics.

A more detailed list of the outcomes, with the criteria that will be used in assessing that

you have reached them, will be given in Tutorial letter 101 of this module.

To pass this module, you will need to demonstrate that you have achieved these outcomes.

Tutorial letter 101 explains how you will demonstrate that you have mastered the outcomes

of the module (for instance, by submitting assignments and by writing an examination).

You will master the contents of the module, gaining the necessary knowledge and skills,

by working through this study guide. All the necessary information is contained in this

study guide, although we have also included a lot of additional material and resources into
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this module to improve you understanding where necessary. Please see the Tutorial letter

101 on how all these extra resources link to this study guide!

The next section explains how you should work through this study guide, for you to make

the most of it!

1.2 HOW TO WORK THROUGH THIS STUDY GUIDE

1.2.1 Some general remarks

Mechanics involves using a fairly small number of definitions and equations to solve prob-

lems. The definitions and formulas appear between horizontal lines in the study guide, and

if you look through the guide, you will see that there really are not very many of them!

But to be able to apply them correctly to solve problems requires an understanding which

you can only gain by practice. So, you can only learn this subject by doing lots of exer-

cises yourself. It is important to realise that you can’t learn by just reading solutions to

problems; you must be able to solve each problem and similar problems on your own!

Studying mechanics does take time. Don’t be discouraged if you have trouble understand-

ing a concept or an example at first reading. Similarly, if you are unable to solve a problem

the first time, keep on trying! If you feel you really cannot understand something, do

contact us, your lecturers, for help.

As with all mathematics and physics, concepts tend to build on other, already introduced

concepts. Therefore, you must make sure that you know the previous material well enough

before moving on to later topics!

1.2.2 About the study guide

The study guide is divided into five parts, each dealing with one particular topic; and there

are 15 study units, plus an appendix about integration and one containing problem-solving

strategies. The first Learning Unit, consisting of the two study units that you are going

through now, is just and introduction. The content matter you need to master is contained

Learning Unit 2 to Learning Unit 5 in units numbered from 3 to 15.

The study guide explains the content matter by deriving and explaining the definitions and

results, and illustrates how to use them to solve problems with the help of many worked-

out examples. But I should already warn you that you will NOT be able to understand the

material if you will just read through it passively! You must study actively, which means

that you must really try to understand every step, preferably with a pen and paper on the

ready so that you can fill in any missing gaps in calculations or make any other notes for

yourself. Indeed you are recommended to dedicate an exercise book to this module, to

write your notes and calculations in while working through the study guide.

In particular, when reading through the worked-out examples, you must resist the temp-

tation of just reading through them. When you read through an example, you must make

sure that you really understand all the steps in the solution. Ask yourself what rules were

applied and why. Whenever a new equation is introduced, you must know exactly where it

came from and why it was included! Similarly, you can be sure that each sequence of cal-

culations has a clear purpose – you must understand what that purpose is. Only then will

you in future be able to apply the method correctly yourself.
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To help you with the necessary active studying, we have included a lot of activities in the

study guide. The activities are there to ensure that you have truly mastered the material

before you move on to the next section. It is easy to believe that you understand everything

when you are just reading through it, so you really should do all the activities to ensure that

you do really did understand things correctly, and will be able to apply what you learned

in the rest of the study guide! The activities have been carefully selected to guard against

common misunderstandings, to ensure that you reach all the outcomes in each unit, and to

prepare you for completing the assignment questions. The answer and feedback to each

activity is given right after it. Your study material includes a workbook which also contains

detailed solutions to many of the activities.

Most of the time the worked examples are followed by an activity which requires you

to solve a similar problem. It is recommended that you attempt to solve that problem

immediately after going through the worked examples; this is the optimal way to learn

from the worked examples, and will ensure that you are ready to tackle similar assignment

questions, and ready to move on to the next topic!

It is recommended that you do the activities in writing in your exercise book, so that they

are available for future reference. Some activities are simple enough to do in your head, or

directly in the study guide, but others, in particular problem-solving ones, will require you

to compare you solution to the correct answer, and you might also want to compare your

solution to a given model solution, whether it is given in the study guide or the workbook!

If you are struggling with the activities in any particular Learning Unit of the study guide,

you should make sure to do more exercises from the workbook relating to that section. If

you are still having trouble, please do contact your tutor or your lecturer for help! Do this

early enough, before you fall behind!

1.2.3 The language of theoretical mechanics

You will soon see that the problems and examples in the study guide are written in a very

special kind of language — for instance we will talk about spheres, laminas and cones

instead of ordinary everyday objects; and about a rod rotating in a vertical plane about a

horizontal axis instead of the more concrete case of a rod fixed to the wall with a nail. Also,

most of the time we will discuss a “rod of length a with mass M”, rather than referring

to a rod which is 2 metres long and weighs 2.5 kg. We use this abstract language, firstly,

because it is more general than if we were to use everyday objects for every example and

exercise. Secondly, many of the results that we derive in this study guide only hold for

“idealised” objects, such as a rod which has zero thickness. Any real rod that we might

imagine has a definite thickness — it might be very thin, having for instance a diameter of

only 1 millimeter, but this is still not at all the same thing as zero thickness! By dealing with

abstract, theoretical objects we can state very precise results; and we can then always apply

these results to everyday objects by assuming that the results hold at least approximately

for the real objects as well.

It is one of the objectives of this module to make you familiar with this abstract language of

theoretical mechanics. You will have to learn how to recognise and understand keywords

describing

• position: flat, horizontal, tangential etc.

• properties: uniform, smooth, massless, thin etc.

• types of motion: smooth, roll without slipping, rotate freely, etc.

• objects: a rod, disc, pulley etc.

If you find the terminology used in the study guide confusing, and have a lot of trouble
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understanding the problems, you might find it helpful to try the following approaches:

• Try to think of real-life examples of the situations and objects we are talking about —

for instance, a coin for a disc, or a ball for a sphere. Using such everyday objects, you

can often picture in your mind how a disc or a sphere might move in a certain situation.

Or, you could actually do an experiment to see what might happen!

• As you work through the examples of the study guide, draw up a list of these abstract

terms and what they mean, with real-life examples. For instance: horizontal plane —

floor, vertical plane — wall, smooth plane — no friction.

• Read the examples and activity questions carefully! Take care not to assume things

that are not specified in the question — for instance, if you are told that a particle is

attached to the end of the rod, do not add complications such as assuming that it is

attached with a rope.

1.2.4 Problem-solving strategies

To pass this module, you must know and understand certain theoretical principles (the

centre of mass and its motion, rotation, kinetic and potential energy and so on), and you

must also be able to apply them. You can look through some of the examples and problem

solving activities in the study guide to see what kind of applications you should be able

deal with. Sometimes this will be very easy— some problems consist simply of a direct

application of a definition or a principle that has just been introduced.

But more often you will have to solve problems which are more than just straightforward

applications of an equation. Typically, a problem will be described in words, rather than

in mathematical terms. You will have to introduce the necessary mathematical notation,

coordinate systems, and so on by yourself! Also, quite often a problem statement contains

no hints of which of the principles you should be applying — and there may be more than

one way to solve the problem. Until you get practice in the problem solving, it can be

difficult to know where to start.

However, problem solving is one of the skills we wish you to learn in this module. It is

a difficult thing to teach, but we would like to suggest to you a strategic way of thinking

about problems. In general, there are four separate steps in successful problem solving:

1. Understanding the problem

This should be obvious — before you can start solving a problem, you must correctly

understand the situation that is described, what is known and what you are asked to do!

2. Planning a solution

Once you understand the problem, you can decide on how to proceed to solve it. This

is of course easier said than done – indeed, this is the tricky bit! You’ll need to decide

which approach or method applies to the particular problem. Sometimes you’ll have

to apply several different approaches in the correct order; sometimes more than one

method may seem appropriate; and often the correct method may initially seem to be a

very unlikely candidate.

3. Executing the plan

This is where you translate the problem into mathematics, write down the equations

and solve for the unknown quantities, but actually much more may be involved: you

may have to introduce a coordinate system, calculate intermediate results, and so on.

4. Analysing the solution

There are at least two good reasons to take a good look at the solution you have obtained

in step 3, rather than just writing it down and rushing to the next problem! Firstly, you
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may wish to check your solution to make sure that it is correct. Secondly, if you are

solving problems in order to understand a subject, you should see what you can learn

from the solution. For instance, does the solution surprise you, or is it as you would

have expected?

Of course, if you are solving simple or familiar types of problems, or if you have had lots

of practice with problem solving, you may not be consciously aware that you are applying

these four steps. It may seem to you that you are jumping straight to step 3 with a statement

like “Let a be the angular acceleration of the disc”. However, if you think about it, you

will realise that you could not have arrived there without first going through steps 1 and 2.

Likewise, however much you may try not to, you certainly do learn something from every

problem you solve!

As you get better and better at problem solving, you should be able to apply these steps

without thinking. However, it is certainly helpful to spell them out, especially if you are

still trying to learn how to solve problems in a new field such as theoretical mechanics.

We would like to suggest to you a problem-solving strategy based on these four steps and

a problem-solving “toolbox” to help you approach the problems in this study guide in a

systematic way.

HOW TO SOLVE IT – A STRATEGY

Any problem can be solved by going through the listed steps 1 to 4. To complete

each step, you will use information and skills that you have at your disposal, based

on what you have already learned or experienced. Each of these can be thought

of as a tool, and by writing them down, you can develop a “toolbox” for dealing

with each of the four steps of the problem-solving strategy.

The tools can be divided into subject-matter tools (i.e. your accumulated knowl-

edge and skills in mechanics results and concepts) and strategic tools (sometimes

given in terms of questions which help you to approach the problem).

Your toolbox will expand as you learn new things during the course of the module.

Also, different types of problems require different types of tools.

In the following we give you an initial toolbox with general types of tools; later on

we shall give you more specialised ones!

GENERAL TOOLBOX

1. UNDERSTANDING THE PROBLEM

Here, you must understand what the object/system/situation is like, and what

you are asked to do.

To make sure that you have understood the problem, answer the following

questions:

• What is given and what is wanted? What conditions apply?

• Can you describe the situation in your own words?

You could make use of the following tools:
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• Knowledge of the language of mechanics problems, and using keywords for

clues about positions, objects and their properties, types of motion, etc.

• Sketches and diagrams

• Real-life examples and experiments

• Listing in standard mathematical notation the known and unknown quanti-

ties

2. PLANNING A SOLUTION

Most of the time solving a problem in mechanics involves deciding on the cor-

rect principles or results of physics to apply in a given situation. Hence, one

important class of tools consists of your knowledge of these:

• The principles, definitions and results of mechanics – add the tools here

• Knowledge about when the principles and results apply and when not – add

the tools here

• Sub-toolboxes you may already have designed for other tasks – add here

To decide which of these you should apply to a particular problem, you may

wish to use the following strategic questions as tools:

• Can you find similar, already solved examples and problems? Can you use

their method, or their results? (Similarity could mean dealing with a similar

situation, or dealing with the same type of unknown.)

• Which mechanics principles could be applied in this situation?

• Which definitions, principles, results deal with the given type of unknown?

• Do we have all the information necessary to apply the definitions, principles

or results we have decided on? If not, can we determine the information

from the given? Alternatively, can we introduce the information as another

unknown? Which definitions, principles, results deal with the new unknown?

3. EXECUTING THE PLAN

To complete this step, you will probably have to apply the following tools:

• Sketches and diagrams

• Mathematical notation, symbols for variables, coordinate systems

• Equations and formulas

• Mathematical tools (integration, solving equations, etc.)

4. ANALYSING THE SOLUTION

To check the correctness of the solution, you can

• see whether the solution makes sense

• try to think of other ways to solve the same problem

• compare the end result with other known, similar results

• compare the result with experiments and guesses based on real-life objects

• work in a group and compare your results with those of others

If your solution seems to be wrong, you should

• find out where you went wrong, by checking the argument and the calcula-

tions
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• go back to step 1 or step 2

To reflect and learn from the solution, you can

• try to invent similar problems

• compare this problem with other examples and problems that you have

come across, and ask yourself what the differences and similarities are

The described strategy does not provide an instant solution to the problem, but it does help

you to find the solution by helping you to think systematically about the problem.

Throughout the study guide, you will come across versions of this general toolbox, as well

as separate toolboxes for specific tasks. Also, at the end of each unit, we have listed what

we think are the most important tools you should have derived from that unit.

The way you use these tools and toolboxes is up to you! To make the most of the tools and

your toolbox, you should keep them all close at hand so that they are readily accessible to

you. To make this easier, we have repeated all the toolboxes listed in the text at the end

of the guide, so that you can cut them out. To these, you must add all the individual tools

listed at the end of the units – ideally, you should write all of them on separate pieces of

paper! (Of course, also make sure that you know how to use the tools you add to your

toolbox...) And also add any additional tools which you think we may have overseen, or

which you think will be useful to you. Now, you can actually put all the separate pieces

of paper into a box (okay, you can use an envelope) so that every time you have to solve

a difficult problem, you can go through the available tools one by one. In time, some of

the tools or sub-toolboxes will become so familiar to you that you will be able to put them

aside (but keep them around for future reference...).

Of course you may think this approach is just silly, and choose to ignore the toolbox idea

completely, but we do believe you will come to realise that this strategy does indeed help

in problem solving. We say so from personal experience!

You may, of course, be more comfortable with another type of strategy to solve problems!

In that case, why not write it down? There are no right or wrong strategies, only those that

work and those that do not work for you. Setting out your favourite strategies will help

you to analyse how you like to solve problems, and that will help you to further develop

your problem-solving skills.
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Unit 2 BACKGROUND PHYSICS

It will be assumed in this module that you are familiar with certain basic concepts and

notations of physics and mathematics, some of which are briefly summarised in this first

“real” study unit of the study guide. If any of the concepts below give you trouble, you

may have to read up on them in any mathematics, mechanics or physics text book!

2.1 Vectors

Most of the time we will operate in the three-dimensional space R3. To be able to refer

to the position of any point in this space, we introduce a coordinate system XY Z which

consists of three mutually perpendicular axes called the X -axis, Y -axis and Z -axis, which

are oriented according to the so-called right-hand rule. (Later on it will become clear

why the orientation is so important!) In this module, we shall usually draw the axes as

shown in the “side view” below, that is, the XY -plane is the plane of this page and Z is

perpendicular to the plane, towards the reader. (Note that there are, of course, many other

ways of depicting the axes. We choose to have the XY -plane on the plane of the page,

because most of the time we shall consider objects which move in the XY -plane and rotate

about an axis which is parallel to the Z -axis.)

X

Y

Z

ij

k

WARNING:

In this module you will occasionally have to be able to “think” in three dimensions, and to

understand two-dimensional pictures of three-dimensional things, as in the sketch above!

Quite often we shall be dealing with three-dimensional objects and shall have to agree how

they are situated in relation to the coordinate axes; and later on, you will have to be able

to understand the orientation of certain vectors (such as the orientation of the Y -axis in

relation to the X - and Z -axes).

If you were in a lecture room, or sitting in my office, I could explain all these things with

a lot of gestures; but many of you will have to figure things out from this study guide.

As a compromise, I would like to suggest the following: make a three-dimensional model

of the XY Z -coordinate system for yourself, and use that to make sense of the three-

dimensional thinking in this module. Instructions follow below!
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HOW TO MAKE A THREE-DIMENSIONAL MODEL OF THE XY Z -COORDINATE

SYSTEM

• You will need a cardboard box (of any size) of which at least one end has been

glued closed. A cereal box, for instance, will work nicely!

• Start from one of the corners which has been firmly glued closed – this will be

the origin of the coordinate system.

• We wish to keep just the three edges of the box which extend from this corner

– these will be our coordinate axes. So, we cut out everything else as shown

below. Leave the edges wide enough to keep the coordinate system rigid!

• Finally, we need to label the coordinate axes. Put the model down on the table

in front of you so that two of the edges are flat against the table forming an L

shape, and the third one goes straight up from the table. Label the ones along

the table as X and Y (the one extending away from you is Y and the one going

towards the right is X). Label the one sticking up from the table as Z .

Now, you have a concrete example of what the XY Z -coordinate system looks like.
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You can now compare it with the two sketches shown below. The one on the left is

the “top view” of the coordinate system, in which the X - and Y -coordinates are on

the plane of this page, and Z is not shown, but is assumed to be pointing towards

the viewer, out of the page. In this way of drawing things, all items are shown “flat”,

and it is up to the viewer to remember about the third dimension! The one on the

right is the “side view”, in which we attempt to show things in three dimensions. All

the coordinate axes are now shown, and any objects are shown “in depth”.

X

Y

X

Y

Z

An object (a rectangular box) is included in both sketches for illustration. Compare

with your coordinate model – put for instance a matchbox in the corresponding

position in your model, and try to duplicate the two views shown above!

The position of a point in R3 is then fully determined by giving its coordinates (x, y, z):
the values x, y, and z give the point’s position on the X -, Y - and Z -axes, respectively.

A vector is a quantity which possesses a direction as well as magnitude (length). In this

module, vectors will be denoted by underlined letters. If P and Q are two points, then

P Q will denote the vector from P to Q (so, in the figure below, we have a = P Q.)

P
Qa

We will denote the magnitude (i.e. the length) of a vector a by
∣∣a∣∣ . The zero vector (with

zero length and undefined direction) is denoted by 0. The resultant of a collection of

vectors is another word for the sum of the vectors, itself also a vector. Once we have fixed

the origin O of our coordinate system, the position vector r of a point P is the vector

from the origin O to the point P, that is,

r = O P.

(More generally, if Q is any point in R3, then the position vector of P from point Q is

r = Q P = O P − O Q.)

In mechanics, it is often useful to refer to a point by its position vector (from the origin),

rather than by its coordinates. However, moving from coordinate position to position

vector and back is easy, as we will explain next. We denote by i, j, k the unit vectors,

that is, vectors of length one in the positive X -, Y - and Z -directions, respectively. Now,

if the coordinates of a point P are known: P = (x, y, z) then the position vector of P is

simply

r = O P = xi + y j + zk.

Going in the reverse direction, from vectors to coordinates, note that every vector A can
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be expressed in terms of the mutually perpendicular unit vectors i, j, k as

A = ai + b j + ck

for some a, b and c, and that the vector is then identical to the position vector from the

origin to the point P = (a, b, c).

In fact, it is possible to identify vectors of R3 with points in R3, and write for instance

a = (x, y, z) to mean that a = xi + y j + zk. (For example, (4, 2,−3) = 4i + 2 j − 3k.
The magnitude of this vector a is then given by∣∣a∣∣ = √x2 + y2 + z2.

The scalar product of two vectors a and b, denoted by a · b is defined as

a · b =
∣∣a∣∣ ∣∣b∣∣ cos θ (2.1)

where
∣∣a∣∣ , ∣∣b∣∣ are the magnitudes of the vectors a, b and θ is the angle between them.

Note that the value of the scalar product of any two vectors is always a real number, that is,

a scalar — hence the name! The order of the vectors in the scalar product does not affect

the end result: we have a · b = b · a. The scalar product is sometimes also called the “dot

product”, based on the notation used for it.

From the definition (2.1) we see that the scalar product a · b of any two non-zero vectors a

and b is positive if and only if the angle θ between them is between−π
2

and+π
2

(meaning

that the vectors have an acute angle, less that 90◦, between them) and negative if and only

if the angle between them is between −π and −π
2

or +π
2

and +π (an obtuse angle).

If either one of the vectors has a length of zero then their scalar product is equal to zero. If

a and b are non-zero vectors, then the scalar product a · b is zero if and only if the vectors

are at right angles to each other (i.e. orthogonal to each other). This can often be used as

a handy test for orthogonality!

a · b < 0

a a

bb

a · b = 0 a · b > 0

a

b

When vectors are identified with points in R3, the following rule provides an easy way

to calculate the scalar products: If a = (a1, a2, a3) and b = (b1, b2, b3) then a · b =
a1b1 + a2b2 + a3b3. Note that it follows that a · a = |a|2 .

2.2 Kinematics

In this study guide, we will use the “dot” notation for the time differentials of various

quantities. That is, if x is any quantity which varies in time, then we use ẋ to denote its

derivative with respect to time, and ẍ to denote its second derivative with respect to time.

That is,

ẋ =
d

dt
x = x ′(t),

ẍ =
d

dt
ẋ =

d2

dt2
x = x ′′(t).
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If r = r (t) is the position vector of a particle, then its velocity is the vector defined by

.
r =

d

dt
r

and its acceleration is the vector

..
r =

d2

dt2
r .

For one-dimensional motion, where the position of the particle is given by its X -coordinate

x = x (t), we usually denote velocity by v:

v =
.
x

and acceleration by a:

a =
.
v =

..
x .

In this case the velocity and acceleration are also real values. Remember that the sign

of the velocity indicates the direction of the motion along the axis, and its absolute value

the speed of the motion. Similarly, the sign of the acceleration indicates the way that the

velocity is changing. It is important to understand the difference between the acceleration

and the velocity of a moving particle! A particle can have positive velocity but negative

acceleration, or negative velocity but positive acceleration (in both these cases it is slowing

down) and it can also have negative velocity and negative acceleration, or positive velocity

and positive acceleration (in both cases it is speeding up).

You should be familiar with the following results which hold when the acceleration a is

constant:

v = v0 + at (velocity after time t)

x = x0 + v0t + 1
2
at2 (distance travelled in time t)

v2 − v2
0 = 2a (x − x0) (velocity after travelling distance x)

2.3 Newton’s laws of motion

Newton’s laws of motion can be summarised as follows:

First law: A particle remains stationary or in uniform motion in a straight line unless

it is acted upon by external forces.

Second law: The acceleration is proportional to the external force and acts along the

same line:

F = m
..
r (2.2)

where r̈ is the acceleration vector of the particle, m is its mass and F is the total external

force acting on the particle.

Third law: If one particle exerts a force on another particle (the action force), then

there is an equal and opposite force (the reaction force), exerted by the second particle

on the first particle. The action and reaction forces act along the line joining the two

particles.

Remarks:

• The uniform motion mentioned in the first law means that the particle moves at constant

velocity, that is, the acceleration is zero. This also means that the particle does not

change its direction of motion!

• The second law states that the acceleration and the force are proportional, with the

mass of the particle acting as the constant of proportionality. We say that the mass
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measures the inertia of the particle, that is, how well it can resist change in its motion

— a heavier particle has a greater mass and thus greater inertia, which means that it

takes more force to get it into motion at a certain acceleration than it would a lighter

particle with a lower mass.

• In particular it follows that if no forces act on the particle, then the acceleration of the

particle is zero, and the particle will remain in uniform motion along a straight line.

• If we introduce the concept of linear momentum (plural: “momenta”)

p = m
.
r (2.3)

then Newton’s second law can be reformulated as follows:

F =
d p

dt
. (2.4)

This follows directly from the fact that

d p

dt
= mr̈ .

2.4 Forces

In this module it will be particularly important to remember that forces are vectors, that

is, they have both magnitude and direction. Since we shall be discussing general objects

rather than just particles, it is also important to remember that each force has a specific

point of action.

For any given situation, you should be able to identify all the forces acting on a system or an

object, giving both their direction and their point of action. Sometimes this information is

given directly in the description of the situation (as in “a downwards force with magnitude

F acts on the upper left corner of the box”). Another easy one is the force of gravity which

acts downwards, at the centre of mass (centre of gravity) of each object. However, often

you have to figure out yourself which forces act on the system!

When drawing forces in our sketches, we shall draw the force as a vector (hence, with a

direction and length) which starts at the point of application. See below for examples of

such sketches.

The following is a list of the basic categories of forces which you will come across in

this module. Pay attention in particular to the so-called contact forces (normal forces and

friction), as they are easy to overlook:

• The force of gravity. This force acts between any two particles or bodies with non-zero

mass. For the sake of this module, we are only interested in the force of gravity that

the Earth exerts on everyday objects on its surface (also known as weight).So, in this

module, the force of gravity exerted on an object of mass M will have the magnitude

Mg, where g is the constant of gravitational acceleration, and is directed downwards.

The force of gravity can be taken to act at the centre of mass of the object. (More about

centres of mass in Learning Unit 2!)

• Normal forces. These forces arise where two solid objects are in contact with each

other, and they act to prevent the objects from overlapping. There is always an action-

reaction pair of equal but opposite normal forces, consisting of the normal force exerted

by object 1 on object 2, and the normal force exerted by object 2 on object 1. (Or, to put

it more simply, the force on object 2 from object 1 and the force on object 1 from object

2.) The normal forces act at the joint surface, where the two objects touch each other,

and they are always perpendicular to the joint surface of the objects. The magnitude of

the normal force can be found from the fact that it must always exactly cancel out all
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the other forces acting on the object perpendicularly to the surface.

• Forces of friction. Friction is a force that resists the motion of one object relative to

another, when the surfaces of the two objects are in contact. Frictional forces also come

in an action-reaction pair. They act parallel to the surface between the objects, and the

direction of the frictional force can be found from the fact that it always acts to resist

motion.

• Tension. By tension at the end of a rope, cable etc. is meant the force with which the

rope, cable etc. pulls on the object which is attached to it. This force is directed along

the rope, and acts at the point where the rope is attached. The action/reaction pair then

consists of the rope pulling on the object, and the object pulling on the rope. Usually

we are not interested in the forces acting on the rope, and therefore interpret the tension

as a force pulling an object in the direction of the rope. If the tension at the end of the

rope is not zero, then the other end of the rope must also be attached somewhere or

pulled. The other end of the rope will therefore also have its own tension. Assuming

that the rope has negligible mass, and moves freely, the tension at both ends of the rope

can be assumed to be the same. This also holds if the rope passes over a frictionless

pulley or the like — such a rope transmits tension without change, meaning that it may

change the direction of the tension of the rope but not its magnitude. (The situation is

different if the pulley is not frictionless — we shall come across this situation later on!)

Normal and friction forces act over the entire surface of contact, but we can usually assume

that they act in the middle of the surface.

Example 2.1

A block of mass M lies on top of a table. The two forces acting on it are the force of

gravity, Mg, acting downwards at the centre of the block and the normal force N exerted

upwards on the block by the table. The reaction pair of the normal force is another normal

force of the same size as N pushing down on the table. What about the reaction pair of the

force of gravity? That acts on the object that causes the gravity, namely the Earth — the

block pulls the Earth towards itself with the force Mg, which, however, due to the huge

mass of the Earth, makes hardly any difference in the motion of the Earth!

N

Mg N

Forces on block Forces on table due to block

Example 2.2

The block in the previous example is attached to one end of a rope, the other end of which

is attached to the ceiling. Now the forces acting on the block are the force of gravity, Mg,

acting downwards at the centre of the block, and the tension T on the rope, acting upwards

along the rope at the point where the rope is attached. What is the reaction pair of the

tension force? The block is pulling down on the rope with a force of the same magnitude

as T . The rope will transmit this tension to the other end of the rope, so that the rope pulls

at the ceiling with the same tension — and there is a corresponding reaction force of the

ceiling pulling at the rope with the same force.
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Forces on block Forces on rope Force on ceiling
due to rope

Mg

T
T

T

T

Example 2.3

Two blocks (with masses m and M) are attached to the opposite ends of a light rope. The

rope passes frictionlessly over a smooth pulley (mass m), which is attached to the ceiling.

What are the forces acting on the blocks and the pulley?

Solution

Let us start with forces of gravity: The forces mg, Mg and mg act downwards at the

centres of the two blocks and the pulley, respectively. The tension of the rope is the same

at both ends, since the rope passes frictionlessly over the pulley. Thus we have two forces

of tension T , each pulling one of the blocks upwards (in the direction of the rope), and

each acting at the point where the rope is attached to the block. How then does the rope

act on the pulley? The rope lies on top of the pulley and pulls it downward, which means

that there is in fact a normal force acting on the pulley due to the rope. However, it is

convenient to assume that in fact the rope exerts a tension on the pulley on both sides of

the pulley, acting on the point where the rope leaves the pulley. The magnitudes of these

tensions are again the same as T .

Is this all? To see that something is still missing, consider the forces listed so far as

acting on the pulley: the gravity mg downwards and two identical forces of tension, also

pulling downwards. So, all forces so far are downwards; if they are indeed all the forces

acting on the pulley, then according to Newton’s second law, the pulley must accelerate

downwards. But we know that is does not; therefore there must be another force or forces

acting upwards! This is obviously the force keeping the pulley suspended where it is. We

must thus add another force S which acts upwards at the point where the pulley is fixed to

the ceiling.

mg
M g

T
T

Forces acting on  the blocks

T
T

S

mg

Forces acting on  the pulley
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In the examples above we have utilised some of the following hints which you can also

use to make sure that you have included all the forces acting on an object or a system:

TOOLBOX: IDENTIFYING ALL THE FORCES ACTING ON A SYSTEM

• Draw a picture of the system as a whole, and, if necessary, separate diagrams

for all the components of the system, with the forces acting on them. Draw each

force as a vector (an arrow) which starts at the point of action of that force.

• For all forces, consider the corresponding reaction force. Does the reaction

force act on one of the objects we are interested in? If so, remember to include

it!

• Does the collection of forces make sense? Remember that if the object is

motionless, then the forces acting on it must balance out – that is, their sum

must be zero. If the object is supposed to be still, but all the forces act in the

same direction, then something is wrong – you may have let out some forces.

The following example is quite complicated, but it does give a good illustration of the

various kinds of forces!

Example 2.4

A rectangular block of mass M lies on top of two identical parallel rough cylinders, each

with mass m and radius r , on top of a rough horizontal table. A horizontal force F is

applied to the block, perpendicular to the axes of the cylinders.

F

Assume that the mass of the block rests evenly on both the cylinders. Indicate all the

forces acting on the block and the two cylinders.

Solution

Let us first take a moment to think what happens in the described system. The force F

pulls the block towards the right. It seems obvious that the block will roll on top of the

cylinders, and the cylinders in turn will roll on the table. What causes the cylinders to

roll? The surface between the block and the cylinders is rough, so that from the point

of view of the block there are forces of friction resisting the motion of the block across

the cylinders. These forces act on the points where the cylinders touch the block, and are

directed towards the left, since the motion of the block is towards the right. As far as the

cylinders are concerned, the same friction acts to pull the tops of the cylinders towards the

right. That is, forces of friction are acting on the cylinders. These forces are of the same

magnitude as the ones acting on the block; they are also acting on the points where the

cylinders touch the block, but now towards the right. So, now we have forces acting at the

top of the cylinders, towards the right. This causes the cylinders to move towards the right.

However, there is also friction between the table and the cylinders, resisting the motion of

the cylinders towards the right — this causes the cylinders to roll, rather than to slide.
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Block:

NBC NBCfBC

F

Mg
fBC

The forces acting on the block are:

• The force F ; we have not been told which point this is applied at.

• Gravity Mg, downwards and acting at the centre of the block.

Acting at the points of contact between the block and each of the two cylinders, we have:

• Friction f
BC

. Friction opposes motion, so the direction of f
BC

is opposite to the

direction of F .

• The normal force N BC exerted on the block by the cylinder, upwards.

The cylinders:

fCBBlock

Table

NCT

NCB

mg
fCT

Identical forces act on both the cylinders. They are:

• Gravity mg, downwards.

Acting at the point of contact between the block and each cylinder, we have:

• The frictional force between the block and the cylinder, f
C B
. Note that f

C B
and f

BC
form an action-reaction pair, so their directions are opposite:

f
C B
= − f

BC
.

• The normal force that the block exerts on the cylinder, N C B . Again, N BC and N C B

form an action–reaction pair, so

N BC = −N C B .

Acting at the point of contact between the cylinder and the table:
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• The normal force that the table exerts on the cylinder, N CT (upwards).

• The frictional force f
CT

, due to the friction between the cylinder and the table, oppo-

site to the direction of F .

Note that N CT and f
CT

also each form halves of action-reaction pairs — namely, there are

corresponding forces N T C (the normal force that the cylinder exerts on the table, acting on

the table) and f
T C

(the force due to the friction between the table and the cylinder, acting

on the table). We are not listing these, since they act on the table, not the system consisting

of the cylinders and the block.J

CONCLUSION

This unit contained a summary of definitions and results involving vectors, coordinates,

kinematics, forces and Newton’s laws of motion. If you felt unsure about any of this, you

might wish to go back to your study guides or textbooks on physics or mathematics for

revision, since we do assume that you are fairly familiar with all the topics discussed in

this unit!

Remember to add the following tools to your toolbox:

• all the background information given in this unit (make a summary of them

yourself!)

• Newton’s laws of motion for particles

• the tools for the task of identifying all forces acting on a system
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LEARNING UNIT 2

THE CENTRE OF MASS

CONTENTS OF LEARNING UNIT 2

Study unit 3 The centre of mass of a system of particles

Study unit 4 The motion of the centre of mass of a system of particles

Study unit 5 The centre of mass of a rigid body

Study unit 6 More on integration

Study unit 7 The motion of the centre of mass — the general case

Introduction

In the simplest applications of mechanics it is customary to treat all bodies, irrespective of

their shape and size, as if they were particles, i.e. point masses. But are we really justified

to simplify things so much? After all, the motion of rigid bodies has properties which a

particle can’t share, as the next example shows.

Example 2.1

The figure below shows a sketch of the motion of a hammer tossed in the air. As it travels

through the air, it also rotates and it does not seem possible to represent this complicated

motion by the path of a particle.
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Although this is correct, the remarkable thing is that there is a particular point on the

hammer which does move as if it were a particle thrown into the air and acted upon by

gravity. The curve superimposed on the sketch shows its path. This point is called the

centre of mass of the hammer.

In this Learning Unit (Learning Unit 2) of the study guide (Study units 3 to 7), we shall

show how it is possible, to some extent, to approximate the motion of a body or a system

of particles by the motion of a particle. The particle should have the same mass as the

original body/system, and should be situated at the centre of mass of the body/system.

We shall first define what is meant by the centre of mass, and how it can be found; and

then we shall derive an equation of motion for it. Initially we shall consider systems of

particles. This is a natural place to start, since Newton’s laws of motion, which we base

our results on, are expressed for particles! By adding the properties of rigidity and solidity

(a continuous structure), we shall eventually be able to consider ordinary, everyday objects

and combinations of them.

The outcomes of Learning Unit 2

When you have worked through this Learning Unit of the study guide, you should

be able to

• explain why the centre of mass is important

• calculate the centre of mass of a given system of particles

• find the centre of mass of a rigid body by using integration, as well as the

appropriate rules of symmetry and composite bodies

• introduce a suitable coordinate system

• analyse the motion of the centre of mass of a system of particles, of rigid bodies

and of systems when the forces acting on parts of the body or the system are

known
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Unit 3 THE CENTRE OF MASS

OF A SYSTEM OF PARTICLES

Key questions:

• What is meant by the centre of mass of a system of particles?

• How can it be found?

In this unit we consider the centre of mass of a system of particles. But why would we

be interested in systems of particles at all, when we really wish to consider objects like

hammers? The answer to this is that all objects can be considered to be systems of particles,

with the added property that they are rigid (with all the particles staying in fixed positions

in relation to each other) and with the property that there are so many particles that they can

be considered to form a continuous structure. So, the analysis of the behaviour of objects

(usually called “rigid bodies” in mechanics) can be brought back to the analysis of the

behaviour of systems of particles, which in turn can be determined by applying Newton’s

laws of motion to all the individual particles making up the system.

Accordingly, we need to start with systems of particles. In this unit we give a formal

definition of the centre of mass of a system of particles, and you will learn how to find

centres of mass — which often involves introducing a coordinate system, which you will

also find out how to do! In the next unit, we will derive, from Newton’s laws for the motion

of particles, the law of motion for the centre of mass of the particles.

Contents of this unit:

3.1 Definition of the centre of mass

3.2 About coordinate systems

What you are expected know before working through this unit:

In this module all you will need is straightforward algebra, and an ability to work with

points in the one, two and three dimensional coordinate systems!

3.1 Definition of the centre of mass

The position of the centre of mass of a system is merely the “average position” of the mass

of the system. For example, if the system consists of two particles, each with a mass of 1

kg, then the centre of mass is halfway between them. (Note that here and in the rest of the

study guide, we use the symbol ⊗ to denote the centre of mass in the sketches!)
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What if one of the particles has a mass of 1 kg and the other has a mass of 2 kg? In that

case, we would expect the centre of mass to lie closer to the 2kg mass.

More generally, let us assume that a system consists of n particles 1, 2, 3, . . . , n, all of

which are situated on the X -axis. Assume that particle number i is in position xi and has

a mass of mi . What is the “average position” of the mass of the system in this case? It

should be the average of all the positions x1, x2, . . . , xn of the particles, with each position

xi weighed by the mass mi of that particular particle. That is, the centre of mass should be

at the position

n∑
i=1

mi xi

n∑
i=1

mi

=
m1x1 + m2x2 + . . .+ mn xn

m1 + m2 + . . .+ mn

.

Of course, we would really wish to consider a more general case, with particles situated

anywhere in the three-dimensional space R3. The position of each of the particles, and of

the centre of mass of the system, can then be described by giving their position vectors.

The following definition expresses this idea.

Definition 3.1 (The centre of mass of a system of particles)

Let a system consist of n particles with masses m1,m2, . . . ,mn and position vectors

r1, r2, . . . , rn . We define the centre of mass of the system to be the point with the po-

sition vector R given by

R =

n∑
i=1

mir i

n∑
i=1

mi

=
m1r1 + m2r2 + . . .+ mnrn

m1 + m2 + . . .+ mn

. (3.1)

Note that the position vectors r i and R must all be from the same origin point O . In actual

calculations, the position vectors of the particles are usually expressed in terms of the i,
j and k unit vectors of some coordinate system, and the end result R is then also of this

type.

Example 3.1

Find the centre of mass of a system consisting of three particles of masses m1 = 4m,

m2 = m and m3 = 3m located at the points r1 = i+3 j , r2 = −2i−2 j and r3 = 4i−2 j ,

respectively.
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Solution: Using (3.1), we get

R =
4m ·

(
i + 3 j

)
+ m ·

(
−2i − 2 j

)
+ 3m ·

(
4i − 2 j

)
4m + m + 3m

=
14mi + 4m j

8m

=
7

4
i +

1

2
j = 1

3

4
i +

1

2
j .

The centre of mass therefore has the position vector 1 3
4
i + 1

2
j . J

Note how the constant m cancelled out in the calculation! Since each position vector in

(3.1) is multiplied by the mass of that particle, and the whole thing is divided by the sum

of the masses, it follows that the centre of mass stays the same if all the masses of all the

particles are multiplied or divided by the same non-zero amount K . The centre of mass of

a system depends only on the relative distribution of the mass within the system, not on the

exact masses of the particles! (But if we multiply just some of the masses by K and not

others, then we have changed the mass distribution of the system and the centre of mass

may change.)

The position of the centre of mass can of course alternatively be thought of as a point

specified by its coordinates. If we select an XY Z -coordinate system, we can find the

X -, Y - and Z -coordinates of the centre of mass separately. If particle number i has coordi-

nates (xi , yi , zi ) in the chosen coordinate system, then the centre of mass has coordinates

(x̄, ȳ, z̄) where

x̄ =

n∑
i=1

mi xi

n∑
i=1

mi

=
m1x1 + m2x2 + . . .+ mn xn

m1 + m2 + . . .+ mn

(3.2)

ȳ =

n∑
i=1

mi yi

n∑
i=1

mi

=
m1 y1 + m2 y2 + . . .+ mn yn

m1 + m2 + . . .+ mn

(3.3)

z̄ =

n∑
i=1

mi zi

n∑
i=1

mi

=
m1z1 + m2z2 + . . .+ mnzn

m1 + m2 + . . .+ mn

(3.4)

In one- and two-dimensional cases we only need to use one or two of these formulas. If

all the particles lie on the XY -plane, for instance, then the centre of mass must also lie on

the XY -plane, and we only have to find the values of x̄ and ȳ.

Example 3.2

Particles of masses m1 = 2, m2 = 3, m3 = 5 and m4 = 4 are located at the points

(x1, y1, z1) = (4, 1, 1), (x2, y2, z2) = (0, 2, 1) , (x3, y3, z3) = (−1, 1,−2) and (x4, y4, z4) =
(1, 0, 1) respectively. Find the centre of mass of the system.
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Solution: We can use equations (3.2), (3.3) and (3.4):

x =
m1x1 + m2x2 + m3x3 + m4x4

m1 + m2 + m3 + m4

=
2 · 4+ 3 · 0+ 5 · (−1)+ 4 · 1

2+ 3+ 5+ 4
=

1

2
,

y =
m1 y1 + m2 y2 + m3 y3 + m4 y4

m1 + m2 + m3 + m4

=
2 · 1+ 3 · 2+ 5 · 1+ 4 · 0

2+ 3+ 5+ 4
=

13

14
,

z =
m1z1 + m2z2 + m3z3 + m4z4

m1 + m2 + m3 + m4

=
2 · 1+ 3 · 1+ 5 · (−2)+ 4 · (1)

2+ 3+ 5+ 4
= −

1

14
.

That is, the centre of mass is situated at the point (x̄, ȳ, z̄) =
(

1
2
, 13

14
,− 1

14

)
. J

It is, of course, easy to move between the vector notation and the coordinate notation,

using the fact that the point (x, y, z) has the position vector xi + y j + zk. The answers

using either method (coordinates or position systems) will of course be the same, and you

may use either method – whichever you are more comfortable with!

Example 3.3

Find the centre of mass of a system consisting of three particles of masses 4m, m and 3m

located at the points i + 3 j , −2i − 2 j and 4i − 2 j , respectively.

Solution: The system here is identical to that in Example 3.1, but we will repeat the calcu-

lations here, this time using (3.2) and (3.3). In coordinate form, the positions of the parti-

cles are given by (1, 3), (−2,−2) and (4,−2), and therefore the X - and Y -coordinates of

the centre of mass are

x =
4m · 1+ m · (−2)+ 3m · 4

4m + m + 3m
=

7

4
,

y =
4m · 3+ m · (−2)+ 3m · (−2)

4m + m + 3m
=

1

2
.

So, the centre of mass is at
(

1 3
4
, 1

2

)
, which of course corresponds to the previous answer

where we obtained the position vector R = 7
4
i + 1

2
j for the centre of mass.J

Note that in this example, we did not explicitly number the particles, as particles number

1, 2 and 3, with x-coordinates x1, x2, x3, y-coordinates y1, y2, y3 and masses m1, m2,
m3, but rather applied the formulas in (3.2) and (3.3) directly. A good reason to number

the particles is that it ensures that you do take all of them into account, and it also enables

you to identify all the particles, their masses and their position vectors in a systematic way.

You should only take shortcuts when you are sure you know what you are doing.

The picture below shows the positions of the three particles, as well as the position vector

of the centre of mass in the previous example. The heavier particles are denoted by a bigger

dot. Note that the calculated centre of mass lies roughly halfway between particles 1 and
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3, a bit closer to particle 1. This is what we would expect: particle 2 is much lighter than

the other two, so it does not contribute very much to the position of the centre of mass; and

the other two particles are of roughly the same size, with particle 1 a little bit heavier.

Activity 3.1

Here is your turn to do the calculations. To practice both methods, find the centre of mass of the following system

both using coordinates, and using position vectors expressed in terms of the i, j and k unit vectors.

Particles of mass 2m and 3m have the position vectors i + k and 3i + j + 2k, respectively. Find the centre of

mass of the system consisting of the two particles.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: You should get (11/5, 3/5, 8/5), or identically 1
5

(
11i + 3 j + 8k

)
, for the centre of mass.

Quite often we are faced, not with the job of finding the centre of mass of a given system,

but rather with the opposite: the job of positioning objects or particles, or adding new

particles, to make the centre of mass coincide with a desired point. There are many real-

life situations like this. If you have ever played in a see-saw, you will remember that two

children of different sizes will need to adjust their positions on the ends of the see-saw to

make the see-saw level — the heavier child will need to move closer to the centre! In this

example, the children act as the particles with given masses, and the problem is to select

their positions such that the centre of mass of the system coincides with the centre of the

see-saw (its pivoting point). Games aside, the centre of mass plays an important role in

balancing the wheels of a car. Often in real life the centre of mass is not exactly at the

centre of the wheel. In the balancing, a small piece of metal is attached at the rim of the

wheel, to ensure that the centre of mass of the wheel coincides with the axis of the wheel.

This is important to minimize the moment of inertia, as we will find out later! In this case

the problem is to select the correct mass for the added piece of metal.

In the following we discuss how to solve these kinds of problems.

Example 3.4

Three particles of mass m are situated on the X -axis, at the positions x = −4, x = −1 and

x = 4.
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(a) What should the mass of a fourth particle be, to be situated at x = 2, if we want the

centre of mass of the four-particle system to be at the origin?

(b) Is it possible to add a fourth particle at x = −2 instead, and still have the centre of

mass at the origin?

Solution: We will start by looking at a sketch of the situation. Let us first consider the

three-particle system. All the particles have the same mass m, and their positions on the

X -axis are indicated in the sketch below.

X0

From the sketch, we might guess that the centre of mass of this three-particle system lies

somewhere between −1 and 0 on the X -axis, and indeed direct calculation confirms this

— the centre of mass of the three-particle system is at x̄ = −1/3.

(a) Let us now add to this system a fourth particle, situated at x = 2, but with an unknown

mass. We wish to find the mass of this particle so that the centre of mass of the four-

particle system will lie at the origin (at x = 0). Adding the new particle will move the

centre of mass from its existing position towards the new particle, that is, towards the

right. However, if the mass of the fourth particle is very small, then adding it will not

change the situation enough to move the centre of mass of the system to the origin,

while if the mass of the new particle is too large, then adding it will move the centre of

mass too far towards the right, beyond the origin.

There is only one possible mass for the fourth particle which will cause the centre of

mass to be at the origin.

(b) What if the new particle is added at point x = −2 instead? Again, the addition of

the new particle has the effect of moving the centre of mass towards the new particle.

But this means that the centre of mass moves towards the left, which is away from the

origin.

So, it seems that adding a fourth particle at x = −2 cannot cause the centre of mass to

move to the origin.

Of course, we cannot find the exact solution to the two questions with these graphical

representations. To do that we have to use the definition of the centre of mass, for instance

as follows.

(a) Let M denote the unknown mass of the fourth particle. The centre of mass of the

four-particle system is then, according to (3.2), at the position x̄ on the X -axis, where

x̄ =
−4 · m − 1 · m + 4 · m + 2 · M

m + m + m + M
.
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On the other hand, we wish the centre of mass to be at the origin, that is, we want to

have x̄ = 0. This means that the following equation must hold in case (a):

0 =
−4 · m − 1 · m + 4 · m + 2 · M

m + m + m + M

∴ −m + 2M

3m + M
= 0.

We will solve the unknown value of M from this. We can multiply both sides by the

denominator, 3m + M to get

−m + 2M = 0 ∴ M =
1

2
m.

That is, a fourth particle of mass 1
2
m at position x = 2 will give us a centre of mass

situated at x̄ = 0.

(b) On the other hand, if a particle of unknown mass M is to be at x = −2, then, reasoning

as above, for the centre of mass to be at x̄ = 0 we must have

0 =
−4 · m − 1 · m + 4 · m − 2 · M

m + m + m + M

∴ 2M = −m ∴ M = −
1

2
m.

This suggests that the fourth particle should have a negative mass, which is of course

impossible. Thus, it is not possible to cause the centre of mass to be at the origin by

adding a particle at x = −2. J

Activity 3.2

The following problem is similar to the one above, except that you now need to work in three dimensions! Re-

member that for the centre of mass to be at the given point, the coefficients of all three unit vectors (i, j and k)

in its expression must be equal to the given values!

Particles of mass 2m and 3m have the position vectors i + k and 3i + j + 2k, respectively.

(a) Show that it is not possible to place a new particle, whatever its mass M, at the position 2i + k and have the

new centre of mass at the origin.

(b) At what position ai + b j + ck should a new particle of mass m be positioned to have the new centre of mass

at the point i + j + k?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: In (a), you will get three equations involving M and m which must hold for all at the same time. Two

of these equations give a negative value for M; also the values contradict; and one equation only holds if m = 0.
Any one of these contradictions would be enough to prove that no mass at the given position will give you the

required centre of mass! In (b), the third mass should be put at the point −5i + 3 j − 2k.

Note that the centre of mass can be defined for any system of particles. The particles do

not necessarily have to be stationary: they can move around as well. If the position of

particle i is given by a position vector r i (or the coordinates (xi , yi , zi )) at some specified

moment t, then the centre of mass calculated from equations (3.1) or (3.2), (3.3) and (3.4)

is the centre of the mass at that moment t . If the particles move, then their positions change

and the centre of mass might well also change. This idea of viewing the centre of mass

of a system of particles as a vector or a point which varies as a function of time will be
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very important to us in the rest of the study guide — our aim is, after all, to derive laws to

describe its motion!

3.2 About coordinate systems

In all the examples above, the coordinate system was already in place — that is, the po-

sition vectors were given in terms of the unit vectors i, j, k, and the points were referred

to by giving their coordinates in some already existing XY Z coordinate system. The fact

that the coordinate system is given in a problem is very convenient, but not something you

should automatically expect! Remember that a coordinate system is something that we in-

troduce in order to be able to apply mathematical analysis to real-life problems — it is not

something that already exists.
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Often, in fact most of the time, problem statements are given without any reference to a

coordinate system. The following problem, which we will solve later on, is of that type:

Four particles, with masses m, m, m and 2m, are positioned in such a way that they form

the four corners of a square. Where is the centre of mass of the system?

To solve this type of a problem, you will first have to introduce a coordinate system. How

this can best be done varies from case to case, and will involve a lot of decisions. Below

we provide you with a toolbox which should help you get started with this!

TOOLBOX FOR SELECTING A COORDINATE SYSTEM

Before we can even start the task of finding the centre of mass of a system of

particles, we need to have a coordinate system in place! If one is already given,

fine; if not, then we must decide on a suitable one. The reason why we need a

coordinate system is because the formulas (3.1) or (3.2), (3.3) and (3.4) help us to

find the position of the centre of mass from the position of the particles. However,

we cannot talk about the position of a particle without having a way to refer to

it! The formulas (3.1) to (3.4) refer to the position vectors or coordinates of the

particles of the system. But position vectors are meaningless unless we have a

reference point (position vectors from where?) and, similarly, the coordinates of a

point do not mean anything unless we have specified our coordinate axes.

There are many possible coordinate systems, any one of which would do; but

some are more suitable than others, because they make calculations easier. Here

are some guidelines on how you can go about to select a good coordinate system.

• Draw a sketch of the system. The sketch will make sure that you understand

the situation, and will make it easier to select a suitable coordinate system! You

might want to label the particles in the sketch. You may have to assume values

for distances, masses and positions when they are not fully specified!

• Determine the dimension of the system. If all particles are along one straight

line, or along one plane, then the system is in fact one- or two-dimensional,

respectively. In that case you do not have to introduce a complete three-

dimensional coordinate system.

• Now, you can proceed to select the direction of the coordinate axes and the

position of the origin. Things to take into account here are symmetry (we will

come back to that later, in Unit 5), and the need to be able to find the position

vectors or coordinates of all particles as easily as possible!

To illustrate these guidelines, we will look at the problem mentioned above.

Example 3.5

Four particles, with masses m, m, m and 2m, are positioned in such a way that they form

the four corners of a square. Where is the centre of mass of the system?

Solution:

Draw a sketch of the system:

m m

m 2m

a

a

The actual drawing depends on the orientation of the square (we have been unadventurous
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here and drawn it straight, but it can also be drawn standing on one corner), and also on

where we wish to put the heavier particle! Instead of labeling the particles, we have written

the mass of each particle next to it. We have assumed that the square has sides of length a.

Determine the dimension of the system. All the particles of the system are clearly lying

on one plane, and therefore to introduce a coordinate system we just have to decide where

on the XY -plane we wish to place the square. Select the direction of the coordinate

axes and the position of the origin. It is certainly simplest to assume that the edges of

the square are parallel to the X - and Y -axes. Let us introduce the XY coordinate system

shown below.

m m

m 2m

a

a

Y

X

The three lighter particles (mass m) are at the points (0, 0), (0, a) and (a, a); and the

heaviest one (mass 2m) is at point (a, 0). It follows that in this coordinate system, the

centre of mass is at the point (x, y) where

x =
m · 0+ m · 0+ m · a + 2m · a

m + m + m + 2m
=

3

5
a,

y =
m · 0+ m · a + m · a + 2m · 0

m + m + m + 2m
=

2

5
a

The centre of mass is at
(

3
5
a, 2

5
a

)
. J

Activity 3.3

Re-do the calculations in the previous example, if we change the coordinate system to the one described below.

Remember to draw a sketch of the system and your coordinate system!

Find the centre of mass in the previous example, Example 3.5, if instead we assume that the heaviest particle

(with mass 2m) is situated at the origin, and if we use position vectors expressed in terms of the i and j unit

vectors, rather than the coordinates.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: You should get the centre of mass at R = 2
5
a

(
i + j

)
.

Activity 3.4

Write the full solution to the following problem in your exercise book. Please remember to draw a sketch of

the system, select a coordinate system according to the guidelines in the toolbox for selecting a coordinate

system, draw a sketch of your coordinate system and the object within it. You can use either position vectors or

coordinates in your calculations.

Three particles, all with the same mass m, are situated at three of the corners of a square. Find the centre of mass

of the system.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Your answer will depend on how you selected your coordinate system in relation to the three particles.

The system is 2-dimensional, so it becomes just a matter of selecting how the particles lie in relation to the X and

Y axes. If the three particles lie along the positive XY axes, with the middle one in the origin, then you should

get a

(
i + j

)
/3 for the centre of mass where a denotes the length of the sides of the square.

Activity 3.5

The following problem is even more theoretical, in that we do not even give the masses of the two particles! Write

the complete solution to your exercise book, and make sure to include a sketch!

Show that in a two-particle system, the ratio of the distances of the two particles from the centre of mass of the

system is the inverse of the ratio of their masses.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The system is one-dimensional, and it might be easiest to take origin to coincide with one of the

particles! You needed to introduce a coordinate system, find the centre of mass, find the distances from the centre

of mass to the two particles, and check that their ratio is indeed the inverse of the ratio of the masses. See the

workbook for a fully worked out solution.

CONCLUSION

In this unit you have learned how to

• find the centre of mass of a system of particles, using position vectors and using coor-

dinates

• select a coordinate system to assist you in finding the centre of mass

• solve problems involving centres of mass of systems of particles

Remember to add the following tools to your toolbox:

• the definition of the centre of mass of a system of particles

• the toolbox for the task of selecting coordinate systems

After working through this unit, you should be able to find the centre of mass of systems

of particles, introducing a coordinate system if necessary. In the rest of the study guide we

will study the centres of mass of more and more complicated objects, but all the subsequent

results will build on the simple case of a system of particles we have discussed in this unit!

In the next unit we will look at what the law governing the motion of the centre of mass

looks like for our system of particles. After that, we will move on to more complicated

objects.
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Unit 4 THE MOTION OF THE

CENTRE OF MASS OF A

SYSTEM OF PARTICLES

Key questions:

• What then is the equation describing the motion of the centre of mass?

In this unit, we will show why exactly the centre of mass of a system of particles is so

important in describing the behaviour of the system. To this end, we will apply Newton’s

laws of motion to each particle of the system separately, and end up with a very simple law

linking the external forces acting on the system and the acceleration of the centre of mass,

in perfect analogy with the forces acting on a single particle and its acceleration.

Contents of this unit:

4.1 The velocity and acceleration of the centre of mass

4.2 The law for the motion of the centre of mass

What you are expected know before working through this unit:

In this unit, you will need the concept of the centre of mass, which you learned in the

previous unit, as well as a working knowledge of Newton’s laws of motion. You will also

need to remember what we mean by taking a derivative with respect to time, and how it

links position to velocity and acceleration!

4.1 The velocity and acceleration of the centre of mass

Remember that we defined the centre of mass of a system of n particles as the position

vector R given by

R =

n∑
i=1

mir i

n∑
i=1

mi

=
m1r1 + m2r2 + . . .+ mnrn

m1 + m2 + . . .+ mn

. (4.1)

If we take into account the fact that the position vectors r1, . . . , rn of the n particles may

change in time, that is, they may be functions of time t, then the position vector R of the

centre of mass will also change in time, so that it is also a function of t. In particular, as

with all position vectors which are functions of time, we can talk about its velocity vector

Ṙ and its acceleration vector R̈.

Assuming that we are given the masses of the n particles, and we know all the position

vectors r1, . . . , rn as functions of time t, how do we find the vectors Ṙ and R̈? We could

calculate the expression of R as a function of time t and then find its derivative with respect
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to time t. However, the equation (4.1), which calculates the position vector of the centre

of mass from the position vectors of the individual particles, will also readily give us a

way of finding the velocity and acceleration vectors of the centre of mass directly from the

velocity and acceleration vectors of the individual particles: differentiating both sides of

(4.1) once and twice, respectively, with respect to time, we get the two formulas

Ṙ =

n∑
i=1

mi ṙ i

n∑
i=1

mi

, R̈ =

n∑
i=1

mi r̈ i

n∑
i=1

mi

.

That is, we get the following results.

Result 4.1

Consider a system of n particles with masses m1,m2, . . . ,mn .

(a) If the velocity vectors of the particles are ṙ1, ṙ2, . . . , ṙn then the velocity vector Ṙ of

the centre of mass is given by

Ṙ =

n∑
i=1

mi ṙ i

n∑
i=1

mi

=
m1ṙ1 + m2ṙ2 + . . .+ mn ṙn

m1 + m2 + . . .+ mn

. (4.2)

(b) If the acceleration vectors of the particles are r̈1, r̈2, . . . , r̈n then the acceleration vector

R̈ of the centre of mass is given by

R̈ =

n∑
i=1

mi r̈ i

n∑
i=1

mi

=
m1r̈1 + m2r̈2 + . . .+ mn r̈n

m1 + m2 + . . .+ mn

. (4.3)

Note that just as we did in unit 3, we can again write alternative versions of these results

in terms of the X -, Y - and Z -components of the vectors in some coordinate system, so that

for instance we would find ¨̄x (the X -component of the acceleration vector R̈ of the centre

of mass) from ẍ1, ẍ2, . . . , ẍn . However, in this unit it is important to remember that we are

dealing with vectors and therefore we will most of the time prefer to work with the vectors

R, Ṙ and R̈. Of course, if we have fixed an XYZ coordinate system, then we can always

express all the vectors in terms of the unit vectors i, j, k of the coordinate system!

The following example illustrates the two alternative ways of calculating the velocity and

acceleration of the centre of mass, if we know the position vectors as functions of time.

This example is just to remind you of the time-dependency of the position, velocity and

acceleration vectors; in what follows, we will very rarely come across an example such as

this, with the position expressed as a function of time!

Example 4.1

Two particles move around on the Y Z -plane. Particle A has mass m and particle B has

mass 3m. The position vector of particle A varies in time such that the position at time t is

given by t j−t2k. Similarly, the position of particle B at time t is given by
(
1− t − t2

)
j+

5k. Find the centre of mass, the velocity of the centre of mass and the acceleration of the

centre of mass at time t.
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Solution: The position vectors of the two particles at time t are

r A = t j − t2k,

r B =
(

1− t − t2
)

j + 5k

and by direct differentiation we see that their velocities are

ṙ A = j − 2tk,

ṙ B = (−1− 2t) j

and their accelerations are

r̈ A = −2k,

r̈ B = −2 j .

Thus, since the masses of the two particles are m A = m and m B = 3m, the position of the

centre of mass of the two-particle system at time t is given by

R =
m Ar A + m Br B

m A + m B

=
m

(
t j − t2k

)
+ 3m

((
1− t − t2

)
j + 5k

)
m + 3m

=
1

4

(
3− 2t − 3t2

)
j +

1

4

(
15− t2

)
k,

its velocity at time t is

Ṙ =
m Aṙ A + m B ṙ B

m A + m B

=
m

(
j − 2tk

)
+ 3m

(
(−1− 2t) j

)
m + 3m

=
1

4
(−2− 6t) j −

1

2
tk,

and its acceleration at time t is

R̈ =
m Ar̈ A + m B r̈ B

m A + m B

=
m
(
−2k

)
+ 3m

(
−2 j

)
m + 3m

= −
6

4
j −

1

2
k.

Note that Ṙ and R̈ could, of course, also have been obtained from R by direct differentia-

tion, as follows:

R =
1

4

(
3− 2t − 3t2

)
j +

1

4

(
15− t2

)
k

when differentiated once, and twice, gives

Ṙ =
1

4
(−2− 6t) j +

1

4
(−2t) k,

R̈ =
1

4
(−6) j +

1

4
(−2) k,

which is the same result as before.J

The following example is a much more typical example of the kind of calculations you

will need to be able to do in this module!
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Example 4.2

Two particles, both with mass m, are situated on the XY -plane. At a time t, particle 1 and

particle 2 are both at the point with position vector j . The velocities of both particles are

zero. Particle 1 has a acceleration of i− j and particle 2 has a acceleration of 3 j . Calculate

the values of the following quantities at time t :

(a) The position vector of the centre of mass of the system consisting of the two particles.

(b) The velocity vector of the centre of mass of the system.

(c) The acceleration vector of the centre of mass of the system.

Solution: At time t, we have the following quantities:

Particle 1 Particle 2

mass: m1 = m m2 = m

position vector: r1 = j r2 = j

velocity: ṙ1 = 0 ṙ2 = 0

acceleration: r̈1 = i − j r̈2 = 3 j

(a) Position vector of the centre of mass:

R =
m · r1 + m · r2

m + m
=

1

2

(
r1 + r2

)
= j .

(b) Velocity of the centre of mass:

Ṙ =
m ṙ1 + m ṙ2

m + m
= 0.

(c) Acceleration of the centre of mass:

R̈ =
m1 r̈1 + m2 r̈2

m1 + m2

=
m

(
i − j

)
+ m

(
3 j

)
2m

=
1

2
i + 2 j .

Note that although the centre of mass is not currently moving (its velocity is zero), it has

non-zero acceleration which means that the velocity is changing, and will soon be non-

zero!J

Activity 4.1

Answer the following questions.

Two particles are situated on the XY -plane. Particle 1 has mass m and particle 2 has mass 2m.At a time t, particle

1 has position vector −2 j and particle 2 has position vector j . Particle 1 has a velocity of i − j and particle 2

has a velocity of j − i . Particle 1 has a acceleration of 2i and particle 2 has a acceleration of −i . Calculate the

position, velocity and acceleration of the centre of mass of the system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Here, position and acceleration of the centre of mass both vanish, but the velocity is a non-zero vector.
1
3

j − 1
3
i . From zero acceleration it follows that the velocity of the system is constant, and the centre of mass will

move away from the origin in a straight line in the direction given by the velocity vector, at constant speed.
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As you now know, the motion of the centre of mass of a system (its position, velocity, ac-

celeration) is found as a weighted average of the corresponding quantities of the individual

particles. In particular, the motion of the centre of mass can be very different from the

motion of any of the particles! The next important activity reminds you of this fact.

Activity 4.2

Which of the next statements are true and which are false? You should be able to justify your answers, either

by proving the fact, or by giving a counter-example which proves that it is false! Write your answers, with

justifications, in your exercise book.

True or false:

1. If the velocities of all the particles are zero, then the velocity of the centre of mass is zero.

2. If the velocity of the centre of mass is zero, then the velocities of all the particles are also zero.

3. If the centre of mass has non-zero velocity, then at least one of the particles must be moving.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Compare your answers with the answers below. Make sure you know and understand the correct

reasoning, since misunderstandings about this are very common and can lead to confusion later on! 1 is correct:

if all the velocities of the particles are zero then so is their weighed average. 2 is false: velocities of particles can

cancel out and give a zero velocity for the centre of mass. 3 is true, and follows from 1.

Again, sometimes the problem is stated without any reference to a coordinate system; we

then have to introduce a suitable system. The following example is of this type!

Example 4.3

Two cars are moving along a straight and level road. Car 1 has a mass of 800 kg and it is

moving at 100 km/h. It is followed by car 2 with a mass of 1600 kg, moving at 60 km/h.

How fast is the centre of mass of the two cars moving?

Solution: Let us take the X -axis to go along the road, with the positive direction in the

direction that the cars are travelling. Then car 1 and car 2 have the velocities

ṙ1 = 100i,

ṙ2 = 60i

(with the units in kilometers per hour). Their masses are given as

m1 = 800,

m2 = 1600

(in kilograms). It follows that the velocity of the centre of mass equals

Ṙ =
m1 ṙ1 + m2 ṙ2

m1 + m2

=

800 · 100i + 1600 · 60i

800+ 1600

= 73
1

3
i (kilometers per hour).

Remark: Note that we can work here with the units km/h. However, please do always

remember that m
s

(metres per second) is the standard unit of velocity!J
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Activity 4.3

Solve the following problem in your exercise book. Draw first a sketch with the positions of the two cars, as

well as their velocities and accelerations as vectors - you must get the directions these right! You will need to

introduce a coordinate system.

Problem: Car 1 with a mass of 2400 kg is moving along a straight stretch of road. It is followed by car 2 with a

mass of 1600 kg. At a certain moment, car 2 is 20 meters behind car 1. At that moment, car 1 travels at 60 km/h,

while car 2 is moving at 80 km/h. Where is the centre of mass of the system of the two cars at that moment? How

fast is the centre of mass moving? If at that particular moment, car 1 is braking, at acceleration 5 m/s2, and car

2 is speeding up at 2 m/s2,what is the acceleration of the centre of mass? Describe the motion of the centre of

mass: In what direction is it moving? Is its speed increasing, decreasing or constant?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The centre of mass lies the distance 12 metres in front of car 2, and 8 metres behind car 1. The

velocity vector of the centre of mass is 68i (kilometers per hour) and the acceleration vector is −2.2i (m/s2) if

the direction of the unit vector i is from car 2 towards car 1 (which is also the direction both the cars are moving).

This means that the centre of mass is, at that moment, moving in the direction the cars are moving, with velocity

68 km/h. Since the acceleration is in the negative i-direction while velocity is in the positive direction, we know

that the speed of the centre of mass is decreasing.

4.2 The law for the motion of the centre of mass

For a particle, Newton’s laws of motion link the acceleration of the particle to the forces

acting on it. Our goal in this section is to see what happens in the case of a system of

particles. We will consider a general system of particles with forces acting on it, we will

apply Newton’s laws of motion to each particle separately, and then see what conclusions

we can make about the motion of the centre of mass of the system — the outcome will be

a very nice formula indeed!

So, let us consider a system consisting of n particles, with masses m1,m2, . . . ,mn and with

position vectors r1, r2, . . . , rn , respectively. Unless the system is completely isolated,

which is impossible in real life, various forces act on the particles in the system. Let

us examine the forces acting on a single particle. We can distinguish between external

forces, which are the forces acting on the particle from outside the system, and internal

forces, which are due to the actions of any of the particles which are a part of the system.

Note that what is internal and what is external depends on how the system is defined. For

example, if we consider the planets moving around the sun as a system of “particles”,

then the gravitational force the sun exerts on a planet can be regarded as an external force.

On the other hand, the gravitational force on a planet due to another planet would be

considered as an internal force in our chosen system. However, if we consider the system

consisting of the planets and the sun, then both of the gravitational forces mentioned above

are internal forces — an external force in this case would be, for instance, the force of

gravity from a nearby star or galaxy!

Let F i be the resultant external force on the i th particle in the system, that is, the sum of

all the vectors representing external forces acting on the particle. Let f
i j

be the internal

force on the i th particle exerted by the j th particle, and similarly let f
j i

be the force on

the j th particle exerted by the i th particle.

The internal forces must satisfy Newton’s third law, the law of action and reaction, which

states that the forces that the i th and j th particles exert on each other are equal and oppo-
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site. We can express this as

f
i j
= − f

j i

so that

f
i j
+ f

j i
= 0,

that is, all the internal forces cancel each other out in pairs.

Note that according to the notation introduced above, f
i i

would be the force that the

particle exerts on itself. This must be zero: f
i i
= 0. This follows from the action-reaction

result above, applied in the case i = j!

Example 4.4

The sketch below illustrates the external and internal forces that could act on/in a system

of particles. The system consists of particles 1, 2 and 3. Particles 1 and 3 attract each other,

leading to the internal forces f
13

and f
31
. Particles 2 and 3 repulse each other, hence the

internal forces f
23

and f
32
. There are no internal forces between particles 1 and 2. A

downwards directed external force (which could, for instance, be the force of gravity) acts

on all three particles. No other external forces act on particles 1 and 3, and therefore the

resultant external forces F1 and F3 are directed downwards. Particle 2, on the other hand,

is attracted by another particle, particle 4, which is not a part of the system. Hence the

resultant external force F2 acting on particle 2 is directed down-and-left, as shown. Note

that particle 4 must also be attracted by particle 2, and other forces may also act on it, but

since particle 4 is not part of the system we are interested in, we will not analyse the forces

acting on it.J

Particle 1

Particle 2 Particle 3

F2

F3

f23

f32

f31

F1

Particle 4

f13

Let us now apply Newton’s second law (2.2) separately to each of the particles in a system.

Newton’s second law tells us that particle number i satisfies the equation of motion

F i +
n∑

j=1

f
i j
= mi

..
r i . (4.4)

Here, the left-hand side is the vector sum of all the forces, the external plus the internal

ones, acting on the i th particle; and the right-hand side involves the mass and the acceler-

ation vector of the i th particle.

If we now add up over all the particles, i = 1, . . . , n, on both sides of (4.4) we get

n∑
i=1

(
F i +

n∑
j=1

f
i j

)
=

n∑
i=1

mi
..
r i . (4.5)
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Let us analyse the left and right sides of this equation. Firstly, by re-arranging the

sums which appear on the left, we can re-write the left side of (4.5) as

n∑
i=1

(
F i +

n∑
j=1

f
i j

)
=

n∑
i=1

F i +
n∑

i=1

n∑
j=1

f
i j

=
n∑

i=1

F i +
{

f
11
+ f

22
+ · · · + f

nn

}
+
{(

f
12
+ f

21

)
+ · · · +

(
f

n,n−1
+ f

n−1,n

)}

=
n∑

i=1

F i + 0+ 0

=
n∑

i=1

F i

since all the f
i i

terms are zero, while all the other internal forces cancel each other out

in pairs. That is, the sum of all the forces acting on all the particles of the entire system,

external or internal, equals the sum of all the external forces acting on all the particles of

the system.

We will from now on say that a force acts on a system if the force acts on any particle

which is a part of the system.

Let F now denote the resultant of all the external forces acting on the entire system, that

is, the sum of all external forces acting on all the particles:

F =
n∑

i=1

F i .

Then, the left-hand side of (4.5) is simply F .

On the other hand, the right side of (4.5) is equal to M R̈ where
..
R is the acceleration of the

centre of mass of the system, and

M =
n∑

i=1

mi

is the total mass of the system. Therefore, we have arrived at the following result:

Result 4.2 (Equation for the motion of the centre of mass for a system of particles)

Let a system consist of n particles, and let M be the total mass of the system, R the

position vector of its centre of mass, and F the resultant of all the external forces acting

on the system, that is,

M =
n∑

i=1

mi , F =
n∑

i=1

F i , R =

n∑
i=1

mir i

n∑
i=1

mi

.

Then

F = M R̈ (4.6)

If you go through the proof of this result, you will see that the result followed directly

from applying Newton’s second and third laws of motion to the particles in the system.
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We have merely introduced the notation of a centre of mass, and ended up with a very

simple expression (4.6) to describe the way the centre of mass moves. To find out the

acceleration of the centre of mass of a system of particles, all we need to know is the total

mass of the system and the sum of all the external forces acting on it.

Notice the striking resemblance between this equation, valid for a system of particles, and

Newton’s second law of motion for a single particle, (2.2). Indeed, if the system consisted

of just one particle, then this would give exactly Newton’s second law. The centre of mass

of a system is just a hypothetical point in space, describing the average location of the

mass of the system, but according to Result 4.2 it moves just like a particle whose mass is

equal to the total mass M of the system, when it is acted upon by the force F, which is the

sum of all the external forces acting on the system.

It follows that it is possible to approximate the motion of a system of particles by the

motion of a single particle with the mass of the system (at least if we are willing to ignore

the way the particles move in relation to each other). However chaotic the motion of

the system may be, underlying it is a pattern as uncomplicated as the motion of a single

particle.

The following example deals with the straightforward case of finding the acceleration of

the centre of mass when all forces acting on the system are known.

Example 4.5

Let us assume that particle 1 has a mass m, particle 2 has a mass 2m and particle 3 has a

mass 2m. The force F1 = i + j acts on particle 1, the force F2 = −4k acts on particle

2 and the force F3 = i − j + k acts on particle 3. Find the acceleration vector of the

centre of mass.

Solution:

The following information is given:

Particle 1 Particle 2 Particle 3

Mass: m1 = m m2 = 2m m3 = 2m

Force acting

on particle: F1 = i + j F2 = −4k F3 = 2i − 2 j + k

We have two alternative ways of finding the acceleration of the centre of mass, namely (a)

by first calculating the acceleration of each particle according to Newton’s second law and

then using (4.3); or (b) by using Result 4.2. We will do both calculations, just to check that

they do indeed give the same result!

(a) Applying Newton’s second law to each particle separately, we get

m1 r̈1 = F1 ∴ r̈1 =
F1

m1

=
1

m

(
i + j

)
,

m2 r̈2 = F2 ∴ r̈2 =
F2

m2

= −
2

m
k,

m3 r̈2 = F3 ∴ r̈2 =
F2

m3

= i − j +
1

2m
k,
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and by applying (4.3), we get

R̈ =
m1 r̈1 + m2 r̈2 + m3 r̈2

m1 + m2 + m3

=

m

(
1

m

(
i + j

))
+ 2m

(
−

2

m
k

)
+ 2m

(
i − j +

1

2m
k

)
m + 2m + 2m

=
1

5m

(
3i − j − 3k

)
.

(b) We will now calculate the acceleration vector of the centre of mass of the system by

utilising Result 4.2. If we consider the system formed by the three particles, then the

total mass of the system is M = 5m, and the total force acting on the system is

F = F1 + F2 + F3 = 3i − j − 3k.

According to Result 4.2, the acceleration of the centre of mass, R̈, obeys the law of

motion

M R̈ = F

from which we get

R̈ =
1

M
F =

1

5m

(
3i − j − 3k

)
Methods (a) and (b) did give the same answer for the acceleration of the centre of mass,

but I am sure you agree that method (b) was much faster — in (a), we first divided the

force acting on each particle by the mass of the particle to find the acceleration of that

particle, and then again multiplied by the mass when applying equation (4.3).J

Activity 4.4

Solve the following problem using both of the methods illustrated earlier.

Three particles with masses m, 2m and 4m are at rest at position 2i + 3 j , i + 2 j and −i − 2 j , respectively.

• Find the centre of mass of the system.

• Find the acceleration of the centre of mass when the force −i acts on the first particle, the force i + j on the

second particle, and the force 2 j on the third particle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The centre of mass is at −
1

7
j , and the acceleration is

3

7m
j .

Note that from the equation for the motion of the centre of mass

M R̈ = F

in Result 4.2 it follows in particular that if the resultant external force is zero (for instance,

if the external forces acting on the system all cancel out), then the acceleration of the

centre of mass is zero. This means that the centre of mass has a constant velocity, and it

thus moves in a straight line, at constant speed. This must hold, regardless of how many

internal forces may be acting in the system! The following example illustrates this.
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Example 4.6

Two particles of identical masses are involved in an ideal elastic collision, as follows:

Initially, particle 1 is at rest and particle 2 moves towards it at constant velocity v. After

the collision, particle 2 is at rest and particle 1 moves away from it at the same constant

velocity v. Investigate the motion of the centre of mass of the system formed by the two

particles.

After
collision

2

2

1

1

v

v

v=0

v=0

Before
collision

Solution:

Since the two particles have the same mass, the centre of mass is always situated halfway

between them. Before the collision particle 2 moves towards particle 1 with velocity

v, and therefore the centre of mass (always being halfway between the two particles) is

moving towards the stationary particle 1 with velocity v
2
. By similar reasoning, we see

that after the collision the centre of mass moves away from the now stationary particle

2 with velocity v
2

. That is, regardless of the collision, the centre of mass of the system

always moves forward with a constant velocity v
2

. This is in agreement with Result 4.2.

No external forces act on the system, so the acceleration of the centre of mass is zero, and

motion with uniform velocity is predicted. The collision is just an internal rearrangement

of matter within the system, and does not change the motion of the centre of mass.J

In the following example, external forces do act on the system, but again Result 4.2 sim-

plifies an otherwise complicated situation.

Example 4.7

Suppose that, at a fireworks display, a rocket of mass M is launched on a parabolic path.

At a certain point along the path, it explodes into fragments. If the explosion had not

occurred, the rocket would have continued along the parabolic trajectory shown with a

dotted line in the sketch. If the explosion does happen, then the centre of mass of the

fragments follows the same trajectory that the unexploded rocket would have followed.

To prove this, we note that the forces of the explosion are internal to the system formed

by the rocket or its fragments. The total external force acting on the system is the force of

gravity, which is equal to Mg both before and after the explosion. Thus the rocket and the

centre of mass of the fragments follow exactly the same path. This, regardless of the fact

that right after the explosion, we can see some of the fragments actually moving upwards,

or backwards!J
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The principle that the acceleration of the centre of mass is zero if the total external force

acting on the system is zero is often very useful for solving problems. Both of the following

activities apply this principle!
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Activity 4.5

Solve the following problem, by analysing the motion of the centre of mass. Write the full solution, in complete

detail, in your exercise book. Include a sketch of the situation before and after the explosion.

Problem: An isolated particle of mass m is moving in the XY –plane. It moves along the X -axis at a constant

speed, when it suddenly explodes into two fragments of masses 1
4

m and 3
4
m. An instant later, the smaller

fragment is the distance ` above the X -axis. How far below the X–axis is the larger fragment at this instant?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The larger fragment will be the distance `/3 below the X–axis. You should use the fact that no external

forces act on the particle, either before or after it explodes, and therefore the centre of mass of the system formed

of the two fragments will still be on the X–axis. A full solution should include the following:

• A sketch which should show the X and Y –axes, and the before and after situations (either in the same or

separate sketches; you should clearly label each case). The before sketch should show the particle of mass m

on X–axis, and the after sketch should show the two particles, the one with mass m/4 the distance ` above the

X–axis and the one with mass 3m/4 at the same X -coordinate but an unknown distance below the X–axis.

• You must denote the unknown distance asked for by some variable.

• You must explain briefly what leads you to the equation you are going to use: namely, that the centre of mass

will still be at the X -axis, since no external forces act on the system.

• Finally, write down the necessary equation, and solve for your unknown variable from it.

If you omitted some of these, please re-write the solution in your workbook! (In an assignment or examination

question, you would have lost points had you not included all of these!)

Activity 4.6

Solve the following problem. Write the full solution, in complete detail, in your exercise book.

Two particles A and B are initially at rest, the distance a apart. Assume that A has mass m and B has mass M .

Further, assume that A and B attract each other with a constant force F . No external forces act on the system.

At what distance from A’s original position do the particles collide? Hint: How does the centre of mass move?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Since only internal forces act on the system, the centre of mass does not move. Therefore, when the

particles collide, they must both be at the centre of mass. Make sure you understand this, and are able to explain

it clearly in you solution! Your solution must include the following:

• You must decide on a coordinate system, and show a sketch with your coordinate system and the before/after

situations of the particles.

• From your initial positions of the particles, you can calculate where the centre of mass is.

• You must explain that the particles will collide at the centre of mass, and explain why this is so.

• The question you need to answer is: at what distance from A’s original position do the particles collide?. This

is equal to the distance from A’s initial position to the centre of mass.

If you omitted some of these, please re-write the solution in your exercise book! The particles collide at a distance

a M
m+M

from the original position of particle A.

Note that there are other ways to solve this problem: for instance, you can use the forces acting on each particle

to analyse how they move and hence where they collide (but this will be more tedious and longer than the solution

indicated above, which uses the lack of motion of the centre of mass!)
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We have seen how applying Newton’s laws of motion to the individual particles of a sys-

tem, and then introducing the concept of a centre of mass, leads to a very simple equation

for the motion of the centre of mass. Before we finish this unit, we wish to look at a sim-

ilar simplification concerning linear momenta — note however that we will not be using

the concept of the linear momentum in this module, so the paragraph below is just for your

information!

Remember that Newton’s second law describing the motion of a particle can alternatively

be expressed in terms of the linear momentum of the particle: If p = mṙ then

d p

dt
= F .

Now, a similar simplifying result holds for the linear momentum of a system. A particle

with mass m and position vector r has a linear momentum p = m
.
r .

The total linear momentum of a system of particles, denoted by P , is the (vector) sum of

the linear momenta of the individual particles: if there are n particles in the system and

mi and r i are the mass and position vector of particle number i , then we define

P =
n∑

i=1

mi
.
r i . (4.7)

It follows directly from the definition of the centre of mass of a system, that we can equiv-

alently define

P = M Ṙ (4.8)

where R is the position vector of the centre of mass of the system, and M is the total mass

of the system.

If we differentiate (4.8) once with respect to time and compare the result with (4.6), we get

an alternative form of the equation for the motion of the centre of mass:

d P

dt
= F . (4.9)

This result is again very similar to equation (2.4), that is, Newton’s second law for the one-

particle case, using linear momenta. Again this reflects the fact that the centre of mass of

a system moves just like a particle, which is acted on by the sum of all the external forces

acting on the system.

But is the result of this unit not an oversimplification? What about the rest of the story,

that is, the motion of the particles in relation to each other? We must admit that in some

of the examples above, there was certainly a lot of detail lost in the attempt to describe

the behaviour of the system using only the relatively simple motion of the centre of mass!

We had to leave out completely the way that the particles move in relation to the centre of

mass. However, as we will learn later on, the general motion of an object can be described

very nicely as a combination of rotation and translation, and the translation will be the

translation of the centre of mass, so the motion of the centre of mass will be very important

then!
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CONCLUSION

In this unit you have learned how to

• find the velocity and acceleration of the centre of mass of a system of particles, from

the velocity and acceleration of the particles

• apply the equation for the motion of the centre of mass, which links the acceleration of

the centre of mass to the resultant force acting on the system

• solve problems using the results in this chapter

Remember to add the following tools to your toolbox:

• the formula for calculating the velocity and acceleration of the centre of mass

from those of the particles

• resultant external force acting on a system is proportional to the acceleration

of the centre of mass

• the equation for the motion of the centre of mass

In this and the previous unit, we learned how find the centre of mass of a system of parti-

cles, and how the motion of the centre of mass is determined by the action of all the forces

acting on the system. In the next unit we will start moving from systems of particles to

objects.
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Unit 5 THE CENTRE OF MASS

OF A RIGID BODY

Key questions:

• Enough about systems — what about ordinary objects?

• How do ordinary objects differ from systems of particles?

• How do we find their centres of mass?

Introduction

So far we have discussed general systems of particles, but of course we are really more

interested in objects like hammers or tables. But, everyday things like hammers are just

special kinds of systems of particles with the properties of being rigid (rather than freely

moving collections of particles), and having a continuous structure (with no spaces be-

tween the different particles which they are made of). In this unit we will discuss the

special cases of rigid systems of particles, and rigid systems with a continuous structure.

When we are done, we will also know how to find the centre of mass of ordinary objects

– which is a skill we will need throughout the rest of the module! The unit also includes a

collection of helpful rules which can simplify finding centres of mass in many cases.

Contents of this unit:

5.1 Centres of mass of rigid systems of particles

5.2 Using integration to find centres of mass of rigid bodies (continuous structure)

5.3 Helpful rules for finding centres of mass

What you are expected know before working through this unit:

This unit is based on the definition of the centre of mass in unit 3, but we will extend that

definition by bringing in integration. Now would be a good time to refresh your knowledge

about integrals!

5.1 Centres of mass of rigid systems of particles

A rigid system of particles has the property that the particles are kept in fixed positions

relative to each other by some strong internal forces. That is, the system has a fixed,

unchangeable shape and each one of its particles has a fixed position relative to all the

other particles. If a system is rigid, then we can imagine picking it up from any part of

it and turning it around while the system stays of exactly the same shape — which is

something we can do with a pen or a hammer, but not with a handful of rice or a plastic

bag! For a system to be rigid, we should be able to imagine all the particles to be connected

to each other with massless rods. (Note that “massless” here implies something that has no

effect as far as the centre of mass and actions of forces are concerned, so that it can simply
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be ignored - its only purpose is to keep the particles in their places!)

Now, one important difference between the centre of mass of a general system of particles

and that of a rigid system of particles is this: For a rigid system of particles, the centre

of mass has a fixed position in relation to the system. When we “pick up” the system,

we can also point to a certain position and say that the centre of mass is exactly there, at

all times, whichever way we turn the system! Compare this with the handful of rice: we

can never say that the centre of mass lies, say, 2 millimetres to the right of a certain grain

of rice, since the rice grains can move around freely and the centre of mass moves along

with them. On the other hand, if two particles are fixed so that they are always 1 metre

from each other, then we can certainly say that the centre of mass always lies, say, 30 cm

from particle 1, towards particle 2.

Thus we can say that the centre of mass of a rigid system is at a certain point, often denoted

by G, within the system. (Note, of course, that the point G does not have to coincide with

any particle of the system - for instance the centre of mass of a ring is in the middle of the

ring, where there are no particles!)

Activity 5.1

This activity aims to make sure that you understand correctly the concept of a rigid system of particles.

Which of the following systems are rigid and which are not rigid? Tick the appropriate box!

Object rigid not rigid

A ring

A rubber band

A closed book

An open book

A bicycle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Remember that the decision is based on whether or not all the different parts of the object or system

will always stay in the same fixed positions in relation to each other! The following objects are definitely rigid: a

ring, a closed book (if it has hard covers, so it can’t be bent). The following are usually not rigid: a rubber band,

a bicycle or an open book (since various parts can be turned into different positions).

Recall that in Unit 3 you learned how to find the centre of mass of a system of particles,

using the following procedure: 1. Introduce a coordinate system, 2. Express the positions

of the particles in terms of the chosen coordinate system, 3. Use the formulas given in that

unit to find the x, y and z coordinates or the position vector R of the centre of mass.

The centre of mass of a rigid system can be found similarly to the centre of mass of a

general system. Since the centre of mass is now a particular point of the system, it is often

easiest to also select a coordinate system fixed relative to the system. The centre of mass

of a rigid system will then be a fixed point within the system, and it will not change in

time.

Example 5.1

Three particles, all with mass m, are joined together by two rigid, massless rods of length

a to form an L-shaped system. Find the centre of mass of the system.

Solution

The system looks like this:
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a

a

Particle 1

Particle 2 Particle 3

Massless rods

We have drawn the three particles, numbered 1, 2, and 3. (Since all the particles have the

same mass, we have not mentioned their masses in the sketch.) We have also drawn in the

sketch the massless rods, together with their lengths. However, we must remember that the

system consists of the three particles only, and that the rods must be ignored, since they

are massless!

Note that there is no mention of a coordinate system in the statement of the problem. But

remember that we must have a coordinate system in place in order to be able to apply the

definitions of the centre of mass given in unit 3. Therefore, the first thing we must do is

to decide on a coordinate system. Since the system is rigid, and the centre of mass G is at

some fixed position in relation to the system, we should also choose our coordinate system

in relation to the system. Therefore, let us assume that the X - and Y -axes lie along the

arms of the L , with the origin in the corner (at particle 2), as shown below:

a

Y

X

a

In this coordinate system, the three particles lie at points (x1, y1) = (0, a), (x2, y2) =
(0, 0) and (x3, y3) = (a, 0). Now, we can apply equations (3.2) and (3.3). Remember that

here we have m1 = m2 = m3 = m! We find that the coordinates of the centre of mass are

(x̄, ȳ) where

x =
m · 0+ m · 0+ m · a

m + m + m
=

a

3
,

y =
m · a + m · 0+ m · 0

m + m + m
=

a

3
.

The centre of mass G lies at the point (a/3, a/3) when the coordinate system is the one

indicated above. However, we would like to be able to refer to the point G without having

to first explain what the coordinate system is — where does point G lie in relation to the

three particles? Since the point (a/3, a/3) lies at the distance
√

2a/3 from the origin of

the XY -plane (according to Pythagorean’ Theorem), we can refer to point G by saying that

the centre of mass of the system lies on the diagonal of the L-shape, the distance
√

2a/3

from the corner.
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G

What happens if we choose another XY -coordinate system? Let us, for instance, assume

that the origin is at the upper left corner of the L (at particle 1), but that the X - and Y -axes

are still parallel to the arms of the L .

Y

X

a

a
0

Now, according to the new coordinate system, the three particles lie at points (x1, y1) =
(0, 0), (x2, y2) = (0,−a) and (x3, y3) = (a,−a). Therefore, the centre of mass is at the

point (x̄, ȳ), where

x =
m · 0+ m · 0+ m · a

m + m + m
=

a

3
,

y =
m · 0+ m · (−a)+ m · (−a)

m + m + m
= −

2a

3
.

The centre of mass G therefore lies at the point (a/3,−2a/3) when the coordinate axes

are as indicated in the picture above. However, this still refers to the same point, namely

one which lies on the diagonal of the L-shape, the distance
√

2a/3 from the corner.J

In the example above, we did the calculations with two different coordinate systems. Both

the coordinate systems selected gave us the same point G as the centre of mass. But,

remember that to find the centre of mass, we need to first find the coordinate positions of

all the particles in the selected coordinate system, and often a good choice of the coordinate

system can make the calculations easier.

Activity 5.2

Now it is your turn to find the centre of mass of a rigid system. Write a complete solution to the problem below

in your exercise book. Pay special attention to the following:

• Decide on a suitable coordinate system, based on the considerations above.

• Draw a sketch of the system, and show your coordinate system clearly in your sketch.

Four particles, with masses m, 2m, 2m and 2m are situated at the corners of a massless square with sides of

length a. Find the centre of mass of the system, and explain where on the system the centre of mass lies.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Did you include the include the following in your answer?

• A sketch of the four particles, at the corners of a × a square, with the positions of the m and the three 2m

massed particles clearly indicated.

• Your selected coordinate system marked in the sketch.

• The coordinate positions of all four particles in terms of your selected coordinate system

• The position of the centre of mass of the system, using your coordinate system.

• An explanation of where the in relation to the system the centre of mass lies.

The coordinates you get for the centre of mass depend on your selected coordinate system. But, whatever coor-

dinate system you chose, you must get the following point as the coordinate system: a point along the diagonal

from the lightest particle towards the opposite particle, at the distance 4
7
a
√

2 from the lightest particle. A model

solution to this problem can be found in your workbook.

5.2 Using integration to find centres of mass of rigid bodies with continuous
structure

A rigid body means a rigid system consisting of a very large number of particles which

are so closely packed that the body can be assumed to have a continuous structure. The

object could be three-dimensional (e.g. a hammer or a chair), but it could also be two-

dimensional, with negligible thickness, such as a thin sheet of metal, or one-dimensional,

such as a thin rod.

Note that such an object can indeed be assumed to be formed of a finite number of particles

(atoms), where the particles are kept in fixed positions relative to each other by strong

internal forces. This is, of course, only a model, since matter is made up of atoms which

behave according to quantum mechanics and not Newtonian mechanics. Nevertheless, the

assumption works very well in most practical situations.

As it is just a special case of a rigid system of particles, a rigid body also has a centre

of mass indicated by some point G fixed in relation to the body. In principle, the centre

of mass of a rigid body can be calculated as before, by the equation (3.1) or (3.2) to

(3.4), summing up over all the particles forming the rigid body. However, there are so

many particles (atoms) that this is not practical. For example, one pencil could contain

1023 atoms – that is, 1 followed by 23 zeroes! Instead, we will utilise the fact that the

particles in a rigid body are packed so closely together that we can assume that they form

a continuous structure with infinitely many particles packed together, and with no spaces

left between them. Of course this is not really true, but once we assume it, we can use a

very handy mathematical concept called integration, which enables us to deal quite easily

with the problem of summing up infinitely many infinitely small terms.

In the following, we will describe how and why we are justified in moving from sums to

integrals when calculating the centre of mass of a system with continuous structure. This

will lead us to an alternative equation for calculating the centre of mass of a rigid body,

based on integrals, rather than sums.

5.2.1 Derivation of the integration formulas for finding centres of mass for

rigid bodies

To calculate the centre of mass of a rigid body, we can proceed as follows. Instead of con-
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sidering all the actual particles which form the body, we divide the body into n small ele-

ments, with masses 4m1,4m2, . . . ,4mn and position vectors r1, r2, . . . , rn . The small

elements of mass could, for instance, be small cubes or squares, and the position vec-

tors could be the mid-points of these objects. If the sizes of the mass elements are small

enough, then they can be considered to be approximately particles. And then, in terms of

Result 3.1 it follows that the centre of mass is approximately at the position

R ≈

n∑
i=1

4mi · r i

n∑
i=1

4mi

.

This is only an approximation since each mass element is not really a particle, but rather

a small segment of the whole body — remember that a particle must have all its mass

concentrated at one point, which is not really the case with our small mass elements! But

we will obtain a more accurate result if we reduce the size of each particle, which means

that we are making 4mi smaller and smaller, while increasing the total number n. We can

do this if we assume that the body has continuous structure! The approximation becomes

exact at the limit when the sizes of the mass elements and hence the 4mi approach zero,

while n approaches infinity. That is,

R =

lim
n→∞

n∑
i=1

r i 4 mi

lim
n→∞

n∑
i=1

4mi

.

At limit, the sums become definite integrals and we write

lim
n→∞

n∑
i=1

r i 4 mi =

∫
rdm,

lim
n→∞

n∑
i=1

4mi =

∫
dm.

Note that the “dm” is then the mass of a “differential” (infinitely small) mass element and

r is its position vector. We are “summing”, or integrating, over all the infinitely small

mass elements which form the object. The following results are then obtained.

Result 5.1 (The centre of mass of a rigid body)

For a rigid body, the position vector of the centre of mass is given by

R =

∫
rdm∫
dm

(5.1)

or, in coordinate form, the centre of mass lies at the point (x, y, z) where

x =

∫
xdm∫
dm

, (5.2)

y =

∫
ydm∫
dm

, (5.3)

z =

∫
zdm∫
dm

(5.4)

Here r = xi + y j + zk is the position vector of a small particle-like mass element with

mass dm, and integration is over all the mass elements of the body.
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What exactly happened here? How does this definition, using integration instead of sums,

help us? Remember that we started off by complaining that a rigid body has too many

particles (atoms) for the original definition of a centre of mass to be usable. But then we

went on to make the assumption that the body is made of infinitely many particles. Surely

this should make things even worse as the sums are now infinite? Actually, this is not the

case — the infinite sums can be expressed as integrals, and as such can be evaluated fairly

easily!
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About integration

According to Result 5.1 above, to find the centres of mass of rigid (solid) objects, we will

have to use definite integrals. This topic is dealt with in detail in the Mathematics modules

on Calculus. For the purposes of this module, you should firstly be able to calculate the

value of given definite integrals: for instance, calculate the values of the following:∫ `

0

xdx,

∫ b

a

R4d R,

∫ 12

0

y3dy.

Secondly, you should be able to follow the explanations of how express certain limits of

sums as definite integrals.

If you want to refresh your knowledge of them, please take time now to read through Ap-

pendix A at the end of this study guide; or revise the material in your calculus textbooks

or study guides!

Note that unlike the sums in the earlier formulas for the calculation of a centre of mass,

Result 5.1 is not complete and ready to use — to apply it in practice we still have to do a

bit of thinking! For instance, for the integral, we have to decide on the integration variable

and the range of integration.

5.2.2 How to use integration to find centres of mass

In practice, the calculation of the centre of mass of a rigid body using Result 5.1 would

proceed as follows.

1. First, we have to draw a sketch of the body. Drawing a sketch will help you make

sure that you know what the object looks like. Remember that you can turn a rigid

body around any way you like, and therefore there are many possible ways to draw the

object! A well-chosen orientation in you sketch may make it easier for you to decide

on a coordinate system later on.

We also need to select a suitable coordinate system. Remember that position vectors

and coordinates are meaningless without the point of reference provided by the cho-

sen coordinate system! What then is a “suitable” coordinate system? The coordinate

system just provides a way of referring to the positions of individual mass elements

and of the centre of mass — it does not change the end result of where the centre of

mass is! Every coordinate system must give the same point as the centre of mass, it

may just be referred to in a different way (it may, for instance, have different X -, Y -

and Z -coordinates, depending on where the origin of the XY Z system was chosen to

be). However, some coordinate systems are better than others. The difference is that

some coordinate systems make the calculations needed to find the centre of mass much

easier. As we have seen earlier, and as will be discussed again later on in this unit,

symmetry linked with a suitable choice of coordinates can reduce the dimension of the

problem!

2. Next, we divide the object into small pieces, each approximately a particle with known

mass 4mi and known position vector r i (or coordinates xi , yi , zi ). Remember that

in what follows, we must be able write down exactly the mass and position vector of

each small piece! This means that we need a systematic way of cutting the object into

smaller and smaller pieces.

The centre of mass is now approximately given by the sum (3.1), or in coordinate

form, by (3.2), (3.3) and (3.4). However, at limit, when we take smaller and smaller

pieces, the sums become integrals and we apply instead the integral formulas (5.1), or

in coordinate form, (5.2), (5.3), (5.4) where we integrate over all small mass elements

dm. In each situation, the integrals in these formulas become specific definite integrals
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— that is, depending on the actual situation, we get an integral from some lower limit

to some upper limit of a specific variable of integration (this corresponds to summing

up over all the particles which form a system).

3. Finally, we find the numerical values of all the definite integrals to evaluate R or x̄ , ȳ

and z̄. These values, when interpreted according to our chosen coordinate system, give

the position of the centre of mass.

If the explanation above on how to find the centre of mass by integration still seems very

confusing, do not worry — you will learn it by studying examples, and then by doing it

yourself! After working through this and the next unit, you will be able to come back to

the explanation above, and it will all make sense to you!

About mass and density

Note that when applying the process described above, we will need to find the mass of

a small mass element, 4mi or dm. In practice, when we are applying the formulas, we

will usually obtain a small mass element by "slicing" the object into smaller objects. This

means dividing the volume (or area, or length) of the object into small volume (or area, or

length) elements. We would usually be able to determine the volume, or area, or length of

such a small element, and the mass of the small elements can then calculated by using the

concept of density, usually denoted by ρ (this is the Greek letter “rho”). Density links the

mass of an object to its size, as follows:

For a one-dimensional object (e.g. a rod), mass = ρ× length

(so density ρ is mass per unit length);

For a two-dimensional object (e.g. a rectangle), mass = ρ× area

(so density ρ is mass per unit area);

For a three-dimensional object (e.g. a cube), mass = ρ× volume

(so density ρ is mass per unit volume).

If ρ is constant throughout the object, then we say that the object has uniform density.

More generally, ρ could depend on the position within the object.

An example on how to integrate to find centres of mass – showing all the detail

Example 5.2

A thin rod of length ` is of uniform density. Find its centre of mass.

Solution (in detail):

1. Let’s choose the X -axis to go along the rod, as shown.

XY

0Z l

If the rod is very thin, then we can assume that is lies completely on the X -axis. The

centre of mass will then also lie on the X -axis, with the Y - and Z -coordinates equal to

zero, and all we have to do is to calculate its X -coordinate.

2. To calculate the X -coordinate of the centre of mass, let us see what happens when we
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divide the rod into N short segments of equal length. Let 4x be the length of the each

of the segments, and let xi denote the X -coordinate of the centre of the i th segment.

We need to know the mass of segment number i , and for that we will use the density

of the rod. The rod has uniform density, which means that the mass per unit length of

the rod equals some constant ρ. So, the mass of the i th mass element equals

4mi = ρ 4 x

for all values of i.

What about the values of the xi ? They are N points situated at even intervals on the

line from x = 0 to x = l. The exact values are not too difficult to find for any given

value of N , but we are not really interested in the exact values, since we will in any

case let N increase without bound! It is enough for us to be able to say what happens

to the small segments and to the 4mi and xi values as N goes to infinity.

We have divided the rod into N small segments, each with a known position and mass;

if the segments are small enough, then they are approximately particles, and we can

say that the X -coordinate of the centre of mass is approximately

x ≈

N∑
i=1

xi 4 mi

N∑
i=1

4mi

=

N∑
i=1

xiρ 4 x

N∑
i=1

ρ 4 x

.

Now, what happens when we let N →∞ and 4x → 0? The segments of the rod get

smaller and smaller, and we have to sum up over more and more of them. At limit, we

get integrals instead of sums:

x =

∫ `
0

xρdx∫ `
0
ρdx

. (5.5)

The upper and lower limits of integration (from x = 0 to x = `) are determined by the

fact that x , the position of each infinitely small mass element of length dx , ranges over

all the possible values of x from 0 to `.

3. Evaluating the integrals, we get

x =

∫ `
0

xρdx∫ `
0
ρdx

=
ρ
∫ `

0
xdx

ρ
∫ `

0
dx
=

x2/2
]`

0

x]`0

=
`2/2− 0

`− 0
=
`

2
.

In our coordinate system, this is a point in the middle of the rod. So, the centre of mass

G of a uniform rod lies at the centre of the rod, as we would expect. J

Above, we have derived the formula (5.5) in great detail, in effect re-deriving Result 5.1

(the centre of mass of a rigid body using integrals). In the rest of this study guide, we will

not write down all these details, but will instead apply (5.1), (5.2), (5.3) and (5.4) directly.

Instead of first dividing the object into N small pieces and then letting N increase without

bound, we will work directly with the differentials dm, considered to be infinitely small

mass elements. To apply these formulas, for instance (5.2):

x =

∫
xdm∫
dm

,

we need to decide how we shall divide the object into the small mass elements. For each
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small mass element dm, we have to be able to find its mass and its position vector r , or its

coordinates x, y and z in the chosen XY Z coordinate system. This means that we must

be able to refer to each small mass element by using a variable of integration. The upper

and lower limits of integration will then correspond to the range of possible values of the

variable of integration. To illustrate this, we shall re-derive the equation (5.5) above, using

the integration notation directly.

An example on how to integrate to find centres of mass – the way we will do it

Example 5.3

The previous example revisited: Solution (a shorter version)

1. Let the coordinate system be as before, with the rod lying along the X -axis such that

the left end of the rod is at the origin.

2. We shall now divide the rod into small mass elements dm, each an infinitely short

segment of the rod of length dx . If the rod is of uniform density ρ, then the mass of

the element is

dm = ρ dx .

Integration is over x, (that is, x will be the variable of integration), since each small

segment corresponds to a different value of x . The positions of the small mass elements

range from x = 0 to x = `, and therefore integration is from 0 to `. Then, according

to (5.2), the X -coordinate of the centre of mass is given by

x =

∫ `
0

xρdx∫ `
0
ρdx

.

3. As before, we evaluate the integrals and get x = `
2
. J

Remarks:

• Note how the unknown density ρ cancelled out in the calculations! This will always

happen if the object is of a uniform density. This is because, as we have stated before,

the centre of mass of the system depends on the relative masses of the different parts of

the system, not on the actual masses.

• The way the rod is situated on the x-axis determines the limits of integration. For

instance, if we decide to place the rod on the negative part of the X -axis, with its right

end at the origin, then the integration would be from x = −` to x = 0 and the integral

would be

x =

∫ 0

−` xρdx∫ 0

−` ρdx
=
ρ
∫ 0

−` xdx

ρ
∫ 0

−` dx
=

1
2

x2
]0

−`

x]0
−`

=
1
2
(0)− 1

2
(−`)2

0− (−`)
= −

`

2
.

In our new coordinate system, this again refers to the midpoint of the rod.

Activity 5.3

Here is your chance to practice finding a centre of mass by integration. Write the complete solution down on

your exercise book.

A thin rod of length ` is of uniform density. Find its centre of mass by integration, when the rod lies on the

X -axis between −`/2 and +`/2.
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Feedback: In this coordinate system, you should get x = 0 as the centre of mass! If you did not, check that you

got the following in your answer: Integration should be from −`/2 to +`/2; you should therefore get

x =
1
2
(`/2)2 − 1

2
(−`/2)2

(`/2)− (−`/2)
= 0.

You have now seen three different coordinate systems used for finding the centre of mass

of the rod. Which do you think had the simplest calculations? If you are like me, and don’t

like to work with fractions too much, you might have preferred the original solution! But

the main thing is that all the choices must give you the same solution! This can be used to

check the solution: re-do the calculations with another coordinate choice to make sure the

answer you got the first time around is correct!

The next example deals with an object of non-uniform density. You will see that the

solution is not much more complicated!

Example 5.4

A rod AB of length ` is of non-uniform density. Assume that the density at a point on the

rod at the distance x from the end A of the rod is given by

ρ (x) =
c

`
x

were c is a constant. Find the centre of mass.

Solution:

Note that here the density is smallest at point A and increases towards point B — that is,

end B of the rod is heavier than end A! Accordingly we would expect that the centre of

mass of the rod would no longer lie in the middle of the rod, but rather somewhere closer

to end point B than end point A.

Take the X -axis to go along the rod, as shown.

X
A Bdx

x0 l

We divide the rod into small mass elements, each consisting of a short segment of the rod

of length dx . If such a segment is situated at position x on the X -axis, then its mass can

be calculated by

dm = ρ (x) dx =
c

`
xdx

since ρ (x) gives the density at that particular position. The positions of the small mass

elements range from x = 0 to x = `. (5.2) now gives:

x =

∫ `
0

xdm∫ `
0

dm
=

∫ `
0

x c
` xdx∫ `

0
c
` xdx

=
c
`

∫ `
0

x2dx

c
`

∫ `
0

xdx
=

1
3

x3
]`

0

1
2

x2
]`

0

=
1
3
`3

1
2
`2
=

2

3
`.
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That is, the centre of mass G of the rod is situated 2/3 of the length of the rod from end A.

J

Activity 5.4

Solve the following problem. Write your complete solution in your exercise book, and pay particular attention

to the following: You must select a coordinate system yourself, and you should draw a sketch of the rod and the

coordinate system, and make clear which is the end where the x in the density expression is calculated from. Give

your answer as a point in your coordinate system, and also explain where it lies on the rod.

The density of a thin rod of length ` varies with the distance x from one end as ρ (x) = ρ0x2/`2. Find the centre

of mass.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: you should get as the centre of mass a point at the distance 3
4
` from the lighter end of the rod.

We can now, in principle at least, calculate the centre of mass of any system of particles

(by summing over all the particles), or of a rigid body (by integrating over infinitely small

mass elements). We will give many more examples of the calculation of the centre of mass

of rigid bodies later on, but first we will introduce some basic rules which often make

calculations much easier. The rules in the next section are valid for all rigid systems of

particles, but you’ll see that they are really helpful for rigid bodies in particular!

5.3 Helpful rules for finding centres of mass

The following general rules can often be used to considerably simplify the calculation of

centres of mass. In this section we will mostly use rigid bodies as examples, but since we

do not use integration anywhere, the results apply equally well to systems of particles.

5.3.1 Using symmetry and dimension of the object to help find centres of

mass

Laminas

If an object is of a negligible thickness (i.e. is very thin), and if it is flat, then we can think

of it as a portion of a plane. Such an object is called a lamina.

Activity 5.5

The concept of lamina will be used a lot in the rest of the study guide, so it is important that you understand it

well.

Which of the following everyday objects could we call laminas, and which would have to be treated as three-

dimensional objects?

Object Lamina 3D object

A sheet of paper

A rubber band

An empty toilet paper roll

A balloon
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Feedback: Remember that for an object to be a lamina, it has to be flat and very thin! You should be able to

imagine it being cut out from a thin sheet of metal. The only object here which can be considered to be a lamina

is a sheet of paper, the others are usually not laminas.

About symmetry

Suppose that a line can be drawn through the lamina so that the part of the body on one

side of this line is a mirror image of the part on the other side. Such a line is called an axis

of symmetry. The dotted lines in the pictures below are all axes of symmetry.

In the case of a body with a definite thickness (that is, it is a three-dimensional object), if a

plane can be drawn which cuts the body in such a way that the two parts on either side of

this plane are mirror images of each other, then this plane is called a plane of symmetry.

Now consider a lamina with an axis of symmetry represented by the Y -axis as in the figure

below. Let P = (x, y) be the position of a particle of mass mi on the right-hand side of

the Y -axis. Since Y is an axis of symmetry, there will be a point P ′ = (−x, y) on the left,

which is the position of another particle of mass mi (the mirror image of the particle at P).

x

Y

y PP’

X
x

But now, when we calculate the X -coordinate of R, the contributions of these two particles

will be

mi x + mi (−x) = 0.

Each particle on the right has a mirror image on the left, such that the contributions of the

particles in calculating the X -coordinate of the centre of mass cancel out. As a result we
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have that

x =

n∑
i=1

mi xi

n∑
i=1

mi

= 0,

which means that R must lie on the axis of symmetry.

By similar reasoning, we can show that the centre of mass of a body with a plane of

symmetry must lie on that plane. This leads to the following result.
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Result 5.2

If a body or a system of particles has an axis or a plane of symmetry, then the centre of

mass must lie on that axis or plane. If there are more than one axis and/or plane of sym-

metry, then the centre of mass will lie at their intersection.

Note that for two halves of the object to be mirror images, it is not enough that their shapes

are the same – their mass distributions must be mirror images of each other. This is so if

the two halves are made from the same, uniform material!

From this result it follows that the centres of mass of a uniform rod, rectangular lamina,

circular disc, cube, sphere, etc. lie at the geometric midpoints of these bodies. In these

cases the centre of mass can be found directly, using the symmetry argument. At other

times symmetry can at least be used to simplify calculations, for instance in order to reduce

the dimension of the problem.

About dimensions

Finally, we note the following trivial result that follows directly from the symmetry argu-

ment. This deals with the dimension of the system/body, and really just states that if the

body is one- or two-dimensional, then we don’t have to find its centre of mass using a full

three-dimensional coordinate system!

Result 5.3

If the entire mass of a body lies on a line or a plane, then the centre of mass of the body

also lies on that line or plane.

5.3.2 Selecting the best possible coordinates

The choice of the coordinate system can make a lot of difference in the calculation of the

centre of mass, as we already learned in Unit 3. The following trick can often be applied to

select an optimal coordinate system: If symmetry or other arguments tell us that the centre

of mass lies on some line or plane, then we should make sure that line coincides with the

X -, Y - or Z -axis; or correspondingly, that the plane where the centre of mass is known

to lie coincides with the XY -, Y Z - or X Z -plane. Such a choice guarantees that we shall

only have to find one (or two) coordinates, rather than all three coordinates. The other

coordinates will be zero.

We already used this idea earlier when we found the centre of mass of the rod by integra-

tion. Remember that our initial coordinate system was as shown below:

XY

0Z l

The rod is a one-dimensional object, and we selected it to go along the X -axis. But any

other coordinate system would give the same result, namely that the centre of mass lies

in the middle of the rod. However, the calculations are quite a bit easier when the rod is

chosen to lie along one of the axes. Say, for instance, that we had drawn the rod differently,
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such it was instead lying along the line y = x on the XY -plane, as shown below.

Y

X

Mass = ?

x

y

We can, of course, still divide the rod into small lengths, as shown. However, now it is

a bit more difficult to find the x and y coordinates of each length of the rod. Also, what

is the mass dm of each piece of the rod, and what should the variable of integration be?

(Actually, all such small pieces are uniquely defined by either their x or their y position,

so either x or y could be used as the integration variable! We will leave it as an exercise

for you to re-do the calculations in this coordinate system — it will be one of the exercises

in the workbook.)

5.3.3 Finding the centre of mass of composite bodies

The following very useful rule makes it very easy to find the centre of mass of bodies which

have been put together from objects whose centres of mass we already know. Such a body

is called a composite body. Suppose that a body can be divided into two separate parts

(components) 1 and 2 with masses M1, M2 and centres of mass G1 and G2, respectively.

M1 M2

Region 1 Region 2

G2
G1

(Another way of looking at this is to consider the body as a system composed of two bodies

labelled 1 and 2, respectively.)

Let R1 and R2 be the position vectors of the centres of mass G1 and G2 in our chosen

coordinate system.
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R2

R1

G2
G1

0

If R is the position vector of the centre of mass of the whole body, then by (3.1) we have

R =

n∑
i=1

mir i

n∑
i=1

mi

(5.6)

where we sum up over all the particles in both parts. Here, n is the number of particles in

the entire system, mi is the mass of particle i and r i is its position vector.

Let n1 and n2 denote the number of particles in part 1 and part 2 respectively, then n1 +
n2 = n, and we can of course number the particles such that particles numbered i = 1 to

i = n1 are in part 1, and particles i = n1 + 1 to i = n1 + n2 are in part 2. Then

M1 =
n1∑

i=1

mi ,

M2 =
n∑

i=n1+1

mi .

Since we have denoted the position vectors of the parts 1 and 2 by R1 and R2 respectively,

the following must hold:

R1 =

n1∑
i=1

mir i

M1

,

R2 =

n∑
i=n1+1

mir i

M2

.

But now, we can re-group the terms of the sums in (5.6) by writing separate sums for the

particles which belong to part 1 and part 2:

R =

n1∑
i=1

mir i +
n∑

i=n1+1

mir i(
n1∑

i=1

mi +
n∑

i=n1+1

mi

) .
This means that

R =
M1 R1 + M2 R2

M1 + M2

.

This reasoning can be extended to any number of components forming the entire object.

We get the following result:

Result 5.4
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Suppose that a body is composed of N separate parts, with masses M1,M2, . . . ,MN and

centres of mass with position vectors R1, R2, . . . , RN respectively. Then the position

vector for the centre of mass of the whole body is

R =

N∑
i=1

Mi Ri

N∑
i=1

Mi

=
M1 R1 + · · · + MN RN

M1 + · · · + MN

. (5.7)

In coordinate form, the centre of mass lies at the point (x, y, z) where

x =
M1x1 + · · · + MN x N

M1 + · · · + MN

(5.8)

y =
M1 y1 + · · · + MN yN

M1 + · · · + MN

(5.9)

z =
M1z1 + · · · + MN zN

M1 + · · · + MN

(5.10)

if (x1, y1, z1), . . . , (x N , yN , zN ) give the coordinates of the separate parts.

Remarks

• It follows that if an object can be divided into separate components, we can then find

the centre of mass of the whole object by simply treating each of the parts as if it were

a particle, located at its centre of mass, and with the mass of the component. (Compare

this result with the formulas for calculating the centre of mass of a system of particles

– the formulas look very similar!)

• This result can often greatly simplify the job of finding the centre of mass of compli-

cated objects. We can try to divide the object into components whose centres of mass

are easy to find (e.g. symmetrical objects, the centre of mass of which is at their geo-

metric midpoint). Once the centres of mass of the components have been found, and

expressed in terms of the chosen coordinate system, we just apply equations (5.7) to

(5.10) to find the centre of mass of the whole body.

Example 5.5

A uniform lamina can be divided into three rectangles as shown in the figure below.

M1
M3

M2
G2 G3

G1

Y

X

Assume that the centres of the rectangles are at G1 = (−3, 2) , G2 =
(

0, 1
2

)
and G3 =

(3, 1). The masses of the rectangles are M1 = 8, M2 = 4 and M3 = 4 respectively. Find

the centre of mass of the lamina.

Solution:

The centres of mass of the three rectangles are at their midpoints, G1, G2 and G3. If
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R = xi + y j denotes the centre of mass of the whole lamina, then according to (5.8), (5.9)

x =
8 (−3)+ 4 (0)+ 4 (3)

8+ 4+ 4
= −

3

4

y =
8 (2)+ 4

(
1
2

)
+ 4 (1)

8+ 4+ 4
=

11

8
.

Thus, the centre of mass has the position vector

R = −
3

4
i +

11

8
j .

Example 5.6

A hammer can be considered to approximately consist of a rod of mass m, at one end of

which a rectangle of mass M is fixed. Suppose that the centre of mass of the rod has the

position vector r1 and that the rectangle has the position vector r2 from the origin. If R is

the position vector of the centre of mass, we have, according to (5.7)

R =
mr1 + Mr2

m + M
.

O

r1
r2

r

We will re-write this into a more informative form. If we denote by r the vector from the

centre of the rod to the centre of the rectangle, that is, r = r2 − r1 (see the figure above),

we see that in fact

R =
mr1 + M

(
r1 + r

)
m + M

=
(m + M) r1 + Mr

m + M

= r1 +
M

m + M
r . (5.11)

That is, the centre of mass is located by starting at r1 (the centre of rod) and moving along

the vector r towards the centre of the rectangle. This expresses the idea that the centre

of mass of the hammer is always along the line joining the centres of mass of the two

components, the fraction M/ (m + M) of the distance towards the rectangle. Note that if

m << M (if m is much smaller than M), then m+M is approximately equal to M , written

as m + M ≈ M . Then

R ≈ r1 +
M

M
r = r1 + r = r2.

This is as expected; if m << M, then most of the mass of the system is concentrated

at the centre of mass of the rectangle of mass M , and so the centre of mass of the entire
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system would be approximately equal to r2. More generally, we can see from (5.11) that

the smaller M is, the closer R is to r1; and the larger M is, the closer R is to r2.J

5.3.4 Objects with parts removed

The rule for the centres of mass of composite bodies, Result 5.4, also gives a convenient

way to calculate the centres of mass of uniform objects with “holes” in them. For example,

consider the object shown below: a square lamina made of uniform material with sides of

length 2a, from which a circle with radius a/2 has been cut off, as shown.

Of course we can still find the centre of mass of the lamina by slicing the lamina into thin

strips, but the calculation of the lengths of these strips would be quite complicated! A very

simple alternative way to find the centre of mass, based on the idea of composite bodies,

uses the fact that we can very easily find the centres of mass of the square and the circle.

Firstly, let us assume that the object lies on the XY -plane, as shown below.

Y

X
2a

2a

The lamina, let’s call it object A, consists of the entire square (object B) minus the circle

(object C). Put in another way, the square B can be composed of our object A and a circle

C made of the same material.

C
AB

Let MA, MB and MC be the masses of the objects A, B and C respectively, and let their

centres of mass have the position vectors R A, RB and RC , respectively.
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Y

X

2a

RB RC

Then the rule for the centres of mass of composite bodies tells us that

RB =
MA R A + MC RC

MA + MC

.

We wish to find R A, so let’s solve it from this equation; we get

R A =
(MA + MC ) RB − MC RC

MA

=
MB RB − MC RC

MB − MC

We have thus derived an expression for the centre of mass we wish to find, expressed in

terms of the masses of the square and the circle cut off from it, and the centres of mass of

the square and the circle which was cut off — both of which are simple to find since the

square and the circular hole are nice, straight forward objects!

To find the mass of the square and the circle, we need to find their areas. Let the density of

the material be ρ; then (from the well know geometric formulas for the area for a square

and a circle) for square B, we have

MB = ρ · 4a2

and for the circle C ,

MC = ρπ (a/2)
2 .

The centres of mass of objects B and C lie at their midpoints, so that we have

RB = ai + a j,

RC =
3

2
ai +

1

2
a j .

(These are the coordinates of the square and the circle in the coordinate system given

above!)

Hence, we have

R A =
MB RB − MC RC

MB − MC

=
ρ4a2

(
ai + a j

)
− ρπ a2

4

(
3
2
ai + 1

2
a j

)
ρ4a2 − ρπ a2

4

=
a

16− π

[(
16−

3

2
π

)
i +

(
16−

π

2

)
j

]
.

The steps above can be followed for any object A which consist of an entire object B from

which another object C has been removed, in one, two or three dimensions. We therefore

get the following general rule for dealing with these kinds of situations.
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Result 5.5 (The centre of mass of objects with parts removed)

Let an object A consist of an object B from which a part, another object C, has been re-

moved. Let MA, MB and MC be the masses of the objects A, B and C respectively, and

let their centres of mass have the position vectors R A, RB and RC . Then

R A =
MB RB − MC RC

MB − MC

In coordinate form, if the centres of mass of the objects A, B and C have the coordinates

(xA, yA, z A), (xB, yB, zB) and (xC , yC , zC ) respectively, then

xA =
MB xB − MC xC

MB − MC

,

yA =
MB yB − MC yC

MB − MC

.

xA =
MB zB − MC zC

MB − MC

.

Activity 5.6

In this activity, you can use the formulas in Result 5.5 directly. Remember that you have to introduce a coordinate

system first!

A disc with radius R has been removed from a circular metal plate with radius 2R, as shown below. Find the

centre of mass.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the centre of mass will be the distance R/3 from the centre of the large metal plate.

The result generalises easily to include objects from which several pieces have been re-

moved. We must assume that the object A is made of uniform material, since this enables

us to find the mass of the “missing piece” C!

All the methods listed in this section, for simplifying the job of finding centres of mass,

should always be considered first, before you rush to integrate or write down sums. In fact,

they are so useful that we will write them down as a general toolbox.

TOOLBOX FOR SIMPLIFYING THE TASK OF FINDING CENTRES OF MASS

OF RIGID SYSTEMS OR BODIES

1. Draw a sketch of the system (or body). Remember that you can turn a rigid

system around any way you like, and therefore there are many possible ways

to draw the system! A well-chosen orientation in you sketch may make it easier

for you to decide on a coordinate system later on, but you can always re-do

your sketch if necessary.

2. Are there axes or planes of symmetry?
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3. What is the dimension of the system?

4. Can the system be expressed as a composite body, where the centres of mass

of the components are easier to find?

5. Select a final coordinate system, based on all the considerations above. (This

may involve re-drawing the system in another orientation.)

The following example illustrates the use of this toolbox.

Example 5.7

Three thin rods of equal length are arranged in an inverted ∪. The two rods on the arms of

the ∪ each have a mass M ; the third rod has a mass 3M . Where is the centre of mass of

the system?

Solution:We have assumed that the rods are at right angles with each other. If the rods are

very thin, it does not really matter what happens at the corners (whether the rods are neatly

joined together as shown here, or whether they just touch each other at the corners). All

the rods have the same length, denoted by L .

1. Draw a sketch of the system. Such a sketch could look like this:

3M

M M

2. Are there axes or planes of symmetry? Yes. Looking at the sketch of the system,

we see that it is symmetrical about the vertical line through the middle of the 3M-rod.

(The M-rods and the two halves of the 3M-rod are situated symmetrically on either

side of this line, so that one side is a mirror image of the other about this line.)

3M

M M

Line of symmetry

3. What is the dimension of the system? The system here is two-dimensional.

4. Can the system be expressed as a composite body, where the centres of mass

of the components are easier to find? Yes. The system consists of three rods, and

assuming that the rods are uniform, the centre of mass of each rod is at its midpoint.

5. Select a final coordinate system, based on all the considerations above. Since

the vertical line through the middle of the system is an axis of symmetry, the centre

of mass must lie on this axis. So, if we call this axis the Y -axis, then the centre of

mass lies on this axis, and we only need to find its Y -coordinate, y. (Thus by a suitable
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choice of the coordinate system, based on symmetry, we have reduced the problem to

a “one–dimensional” one!) We still have to decide on the direction of the Y -axis and

where the origin of the Y -axis lies. Let us choose the origin to be at the 3M–rod, and

let the Y -axis go downwards, as shown below.

3M

M M

Y

0

L/2

L

Then the 3M-rod has 0 as its Y -coordinate, and the two M-rods both have L/2 as their

Y -coordinates. Hence, according to (5.9), the Y -coordinate of the centre of mass of the

entire system is y =
3M · 0+ M · L

2
+ M · L

2

3M + M + M
=

L

5
.

Note that although any coordinate system will identify the same point as the centre of

mass of the assembly, calculations are easier in some coordinate systems than in others.

To illustrate this, we will re-do the calculations here with a different coordinate system.

Let us for instance see what happens if we simply choose the origin of the XY -plane to lie

in the lower left corner of the assembly.

3 M

M M

Y

X

L

L0

In this coordinate system, the leftmost rod of mass M has its centre of mass at (x1, y1) =(
0,

L

2

)
, the top rod of mass 3M has its centre of mass at (x2, y2) =

(
L

2
, L

)
, and the

rightmost rod of mass M has its centre of mass at (x3, y3) =

(
L ,

L

2

)
. Therefore, accord-

ing to equations (5.8) and (5.9), the whole system has its centre of mass at (x, y) where

x =
M · 0+ 3M · L

2
+ M · L

M + 3M + M
=

1

2
L ,

y =
M · L

2
+ 3M · L + M · L

2

M + 3M + M
=

4

5
L .

Alternatively, using unit vectors, the centres of mass of the rods have position vectors

R1 =
L

2
j, R2 =

L

2
i + L j, R3 = Li +

L

2
j,

and hence, according to (5.7), the centre of mass of the whole system has the position
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vector

R =
M · L

2
j + 3M

(
L
2

i + L j

)
+ M

(
Li + L

2
j

)
M + 3M + M

=
L

2
i +

4

5
L j .

Thus, both coordinate systems identify the same point as the centre of mass of the system:

the point which lies the distance of L/5 below the middle of the 3M-rod.J

Activity 5.7

Now you are ready to find the centres of mass of complicated objects, using the rules listed above. Write the full

solution to the following problem in your exercise book. Please include the following: Go through and comment

on the five steps in the simplifying-toolbox above, as they apply in this case. After that, draw a sketch of your

coordinate system and the object within it. Express the centre of mass both as a point in your coordinate system,

and explain also where it is in relation to the object.

The object shown below is constructed of four uniform thin rods, each of length a and mass M, joined together

at right angles at their ends. Find the centre of mass of the object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The centre of mass is at the point which lies the distance a/4 above and to the right of the point where

the two middle rods intersect. The coordinate point you get will depend on which coordinate system you selected.

What is important is that you made it clear what your selected coordinate system was, and then expressed the

centres of mass of all the components in relation to your selected system!

Activity 5.8

Solve the following problem, again using first the simplifying procedures listed in the previous toolbox.

Two uniform squares of sheet metal of dimensions L × L are joined at a right angle along one edge. One of the

squares has twice the mass of the other. Find the centre of mass.



85 APM1612/1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the centre of mass will be the distance L/6 from the heavier plate and the distance L/3 from the

lighter one.

Activity 5.9

Solve the following problem, again using first the simplifying procedures listed in the toolbox above.

Three uniform square pieces of sheet metal are joined along their edges so as to form three of the sides of a cube.

The dimensions of the squares are L × L . Where is the centre of mass of the object?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the coordinates will be (L/3, L/3, L/3) if origin is at the corner, with coordinate axes at the joints

between the squares.

CONCLUSION

In this unit you have learned:

• what is meant by a rigid system and a rigid body, and how finding the centre of mass

of these objects differs from finding it for a general system

• how to use integration to find the centre of mass of a system with continuous structure

• how to use density to link mass to length, area or volume

• how to use symmetry, the dimension of the problem and the selection of coordinates to

simplify finding the centre of mass

• how to find the centre of mass of a composite body from the centres of mass of the

components

• how to find the centre of mass of objects with parts removed

• how to apply all the tricks you learned in this unit to find centres of mass

For more practice on all these skills, we recommend you do more exercises from the work-

book!

Remember to add the following tools to your toolbox:
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• the principle of using integration to find the centre of mass of a rigid body

• the principles of symmetry and the dimension of a system

• determining the centre of mass of a rigid body as an integral over particle-like

elements

• the formula for the centre of mass of a composite body

• The formula for the centre of mass if an object with parts removed

• the toolbox for simplifying the task of finding the centre of mass of a rigid

body/system

After working through this unit, you should have a general idea of how we are going to

find the centres of mass of rigid bodies by integration, and you should be able to do the

integration in the case of the simplest objects (rods.). You should also be able to use

the simplifying rules: a good choice of coordinates, symmetry, and using the rule for

composite bodies to reduce finding the centres of mass of complicated objects to their

simpler components. You will need all these skills throughout the rest of the module!

In the next unit we will continue to learn how to find centres of mass by integration, for

more complicated objects than rods. This we will do by combining the idea of integration

you encountered in this unit with the rule of composite bodies – this will lead to a tech-

nique of "slicing and integrating" which we can use to find the centres of mass for quite

complicated objects!
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Unit 6 MORE ON INTEGRATION

TO FIND CENTRES OF MASS

Key questions:

• So far, the only rigid bodies we have encountered have been rods.

What about more complicated objects?

Combining the integration idea with the simplifying rules of the last section of the previous

unit, we can tackle the job of finding the centre of mass of almost any object. In this unit

we will explain how!

Contents of this unit:

6.1 Finding the centre of mass by slicing and integrating – laminas

6.2 The centre of mass of a lamina bounded by a curve

6.3 Finding the centre of mass by slicing and integrating – three-dimensional objects

6.4 Finding the centre of mass by using polar coordinates

6.5 The centre of mass of a solid of revolution

What you are expected know before working through this unit:

You will need more and more advanced integration skills here, but you will also need to

use a bit of trigonometry — that is, using properties of similar triangles, and recalling some

facts of polar coordinates and trigonometric functions!

6.1 Finding the centre of mass by slicing and integrating – laminas

We will start by introducing the idea of “slicing and integrating”, and showing how it can

be used to find the centre of mass of simple geometrical objects. In this section we will

start first with laminas (that is, two-dimensional "flat" objects) and will then move on to

more general (three-dimensional) objects in a later section.

The idea behind slicing and integrating is again to use integration instead of summing up,

just as we did previously, but now starting not with a system of particles but rather with

the result on finding the centres of mass of compound bodies. That result also gives a

summing-up rule for finding the centre of mass of a system to use as a starting point for

deriving the integration rules, but now the summing up is for more general objects rather

than just particles! Read on to find out how this will work!

Remember that in Result 5.1 (centre of mass by integration) we divided the object into

small mass elements dm, each of which is approximately a particle with position vec-

tor r =
(

xi + y j + zk

)
, and then integrated over all the elements. While this does in
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principle always work, the integration can get quite complicated if the object is two- or

three-dimensional. For instance, consider the task of finding the centre of mass of a square,

using Result 5.1.

Y

X
x

y

dm

We can easily divide the square into small particle-like elements (for example into small

squares), but each of them can only be identified by giving both its X - and Y -positions

(compare this with the case of the rod, where each small mass element is fully defined by

just giving its X -coordinate). Therefore both x and y have to be our integration variables,

considering that integrating over all the mass elements now involves integration over all

possible x-values and simultaneously also over all possible y-values. This leads to a double

integral of the type
∫∫
(· · · )dxdy, which is beyond the scope of a first-year module!

But all is not lost, as we have one trick still available for us — namely Result 5.4 (how to

find the centre of mass of composite bodies)! This result tells us that the mass elements

dm do not necessarily have to be particle-like (that is, of very small size), but in fact,

they can be any parts which the object can be divided into, as long as their masses are

infinitely small – the move from sums to integrals at limit will then still work! For instance,

the small mass elements can be long slices which are infinitely thin. The vector r =(
xi + y j + zk

)
should now be the position vector of the centre of mass of dm. As an

example, we might consider slicing the square into very thin strips, each of which is then

approximately a rectangle. The centre of mass of each slice is easy to find, as it is known

to lie at the midpoint of that slice.

Y

X
x

dm

Now, each thin slice is fully defined by its X -coordinate x , and therefore we only have to

integrate over all the x-values.

Here is the re–formulated result (which, of course, also incorporates Result 5.1, since the

centre of mass of a particle is just the position of the particle!)
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Result 6.1

For a rigid body, the centre of mass is given by

R =

∫
rdm∫
dm

(6.1)

or, in coordinate form, the centre of mass lies at the point (x̄, ȳ, z̄) where

x =

∫
xdm∫
dm

(6.2)

y =

∫
ydm∫
dm

(6.3)

z =

∫
zdm∫
dm

(6.4)

Here, r =
(

xi + y j + zk

)
is the centre of mass of a small mass element dm, and we inte-

grate over all the disjoint mass elements that the object is composed of.

In a typical application of this result, we divide the object into thin slices. The slicing

should be done in such a way that the slices are objects for which the following are easy

to find:

• The centre of mass of the slice. (If the object is of uniform density, then this is easy to

find if the slices are simple, symmetrical geometric objects such as rectangles, discs,

etc.)

• The mass of the slice. (Assuming uniform density, this means that we must be able to

find the area/volume of the slice easily)

The selection of the coordinates will now often be linked to the way the object will be

sliced: For instance, if the slicing is done perpendicularly to one of the coordinate axes,

say the X -axis, then each slice can be identified by just giving its X -coordinate x . The

integrating variable will then be x, and the integral will be a single integral which we can

easily evaluate.

The following toolbox provides a systematic way to approach the task of finding the centres

of mass by integration.

TOOLBOX FOR SLICING AND INTEGRATING TO FIND CENTRES OF MASS

1. Draw a sketch of the body.

2. Check whether you can apply any of the simplifying tricks:

• symmetry; dimension of the problem

• interpreting the object as a composite body — in which case you should

proceed to slice and integrate the components first

• suitable selection of coordinates; re-drawing the system if necessary.

3. Decide what would be the best way to slice the object.

4. Select the coordinate system, taking into account the considerations above.

5. Identify your integration variable. Find the centre of mass and the position of the
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centre of mass of each slice in terms of density and the variable of integration.

Identify the upper and lower limits of integration.

6. Evaluate the integrals to find the centre of mass with respect to the chosen

coordinate system.

7. Express the position of the centre of mass in relation to the object.

8. Check the solution.

As you will learn, the important thing here is to make sure that the slicing is done such that

we can easily find the centre of mass, and the mass, of any given slice. Often the length of

a slice varies with the position of the slice – and finding the length might therefore be a bit

tricky! The next example illustrates a case where this happens.

Example 6.1

A uniform triangle with two sides of the same length has height h and a base of length a.

Find its centre of mass.

Solution

Draw a sketch of the body. The triangle looks like this (of course, the exact proportions

depend on the values of a and h):

Check whether you can apply any of the simplifying tricks: symmetry; dimension

of the problem; interpreting the object as a composite body; suitable selection

of coordinates; re-drawing the system if necessary. Interpreting the triangle as a

composite body will just lead to more triangles, so we will just have to tackle the triangle

as it is! We must now decide on the coordinate system, and also how the triangle should

be situated on the coordinate system. The triangle is a two-dimensional object, so we can

draw it on the XY -plane. Let us then consider symmetries: clearly a vertical line through

the apex of the triangle above is an axis of symmetry. Therefore, we should make sure that

one of the coordinate axes, either X or Y, coincides with this line. We have decided here

to select the X -axis to concur with the axis of symmetry; which means that we will draw

the triangle on its side. (Remember that for a solid body, we can turn the object any way

we want!) For convenience we can always draw the triangle so that it starts from the origin

and ends at point x = h on the X -axis. Now we have just one more decision to make:

should the apex or the base of the triangle be at the origin? That is, which of the following

two cases should we choose?
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Y

X
h0

Y

X
h0

It turns out that the calculations are a little bit easier if we choose the one on the right —

see your workbook for an exercise on this!

Decide what would be the best way to slice the object. Select the coordinate

system. To proceed with the solution, let us therefore assume that the triangle lies on the

XY -plane as shown.

Y

X

dx

x h
0

a/2

a/2

The X -axis is an axis of symmetry, so that the centre of mass lies somewhere on the X -axis

and we only have to find the X -coordinate of the centre of mass. We will slice the triangle

into thin slices perpendicular to the X–axis (that is, parallel to the Y –axis). Is this a good

way to slice the triangle? We will need to find the length of each slice which certainly

should be possible, using a bit of geometric reasoning.

Identify your integration variable. Find the centre of mass and the position of the

centre of mass of each slice in terms of density and the variable of integration.

Identify the upper and lower limits of integration. We will divide the triangle into

small mass elements dm, each of which consists of a thin strip of the triangle, parallel to

the Y -axis. Each slice (strip) is completely defined by its position x along the X–axis, so

that x will be our integration variable. The strips are approximately narrow rectangles, and

therefore their centres of mass and their areas, and hence their masses, are easy to find: the

centre of mass lies in the middle of the rectangle, and the area can be found as length times

width. Note that here, unlike in the example of the square we discussed earlier, the length

of the strip, and therefore its area and its mass, depend on the position of the strip on the

X -axis. The strip shown in the figure, situated at position x on the X -axis has a width dx

and length ` = ax/h. This follows from similar triangles, as shown in the sketch below:

h

a
=

x

` x
h

l a

h
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Thus, this strip has a mass

dm = density × area

= density × length× width

= ρ ·
ax

h
· dx .

if ρ denotes the density of the object (mass per unit area). The X -coordinate of the centre

of mass of this strip is simply x . Finally, if we wish to integrate over all the mass elements

(strips), then we must integrate from x = 0 to x = h.

Evaluate the integrals to find the centre of mass with respect to the chosen coor-

dinate system. Applying (6.2) then gives us as the X -coordinate of the centre of mass of

the whole triangle

x =

∫
xdm∫
dm

=

∫ h

0
xρ ax

h
dx∫ h

0
ρ ax

h
dx

=
ρa
h

∫ h

0
x2dx

ρa
h

∫ h

0
xdx

=

(
1
3

x3
)]h

0(
1
2

x2
)]h

0

=
1
3

h3

1
2

h2
=

2

3
h.

So, the coordinates of the centre of mass in our coordinates system, are (x, y) = ( 2h
3
, 0).

Express the position of the centre of mass in relation to the object. Interpretation:

The centre of mass of the triangle is situated on its axis of symmetry, one-third of the

height of the triangle from the base of the triangle. Check the solution. The answer is

credible: The centre of mass lies along the axis of symmetry, and we would expect the

centre of mass to be closer to the base than to the apex of the triangle!J

Note that in the calculations in the last example, we sliced the triangle parallel to the basis

of the triangle. Usually there are also several ways of slicing an object to find its centre

of mass. As with the choice of coordinates, some methods are easier than others — as an

illustration, we will re-do the calculations in the previous example, this time slicing the

triangle into thin strips parallel to the X -axis, rather than the Y -axis.

Example 6.2

Example 6.1, Solution — Method 2:
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Y

X

y

x

We have not changed the coordinate system, so that the X -axis is still an axis of symmetry,

and we just have to calculate the X -coordinate of the centre of mass. But this time we have

divided the triangle into small mass elements, each of which consists of a thin strip of the

triangle, parallel to the X -axis. Note that this time each strip is identified by its position

on the Y -axis, so that y will have to be our integration variable! The strip shown in the

figure, situated at position y > 0 of the Y -axis has a width dy. It reaches from x = 2h
a

y to

x = h on the X -axis, and therefore it has a length (h − 2h
a

y), and mass

dm = ρ(h −
2h

a
y)dy

and the X -coordinate of the centre of mass of this strip is

x =
2h

a
y +

(h − 2h
a

y)

2
=

1

2
h

2y + a

a
.

A similar strip, with the same mass and same X -coordinate for its centre of mass, is sit-

uated at (−y). If we wish to integrate over all the mass elements (strips), then we must

integrate from y = −a/2 to y = a/2. Applying (6.2), the X -coordinate of the centre of

mass of the whole triangle then is

x =

∫
xdm∫
dm

=

∫ a/2
−a/2

(
1
2

h
2|y|+a

a

)
ρ(h − 2h

a
|y|)dy∫ a/2

−a/2 ρ(h −
2h
a
|y|)dy

=
2

3
h.

(The absolute value signs are there because y, marking the position of the strips in our

coordinate system, gets both negative and positive values, while x needs to be positive.)

This confirms the result that the centre of mass is situated one-third from the base of the

triangle.J

Activity 6.1

This problem also involves a triangle. Hint: do not just try to fit the triangle into the previous example — rather

use the toolbox for slicing and integrating to figure out the best way to tackle this particular triangle!

Problem: Find the centre of mass of the triangle shown below by slicing and integrating. Remember to select and

indicate in a sketch an appropriate coordinate system.
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a

a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the centre of mass will again lie along the line from the apex to the middle of the hypotenuse, the

distance 2a/3 from the apex.

We have now dealt with two different kinds of triangles (isosceles and straight). In each of

them, we used the properties of the triangle to select the most appropriate way of orienting

and slicing. The next example deals with a general triangle, and uses a clever trick, rather

than straightforward calculation, to find the centre of mass!

Example 6.3

Find the centre of mass of an arbitrary uniform triangular lamina.

Solution:

For a general triangle, we cannot assume any symmetries. We could draw the triangle

on the XY -plane, e.g. with the longest side along the X -axis to make calculations a bit

easier, but to proceed from there we would have to assume that we know the proportions

of the triangle. We will, instead, use a clever trick which does not require us to decide on

a coordinate system.

Let the corners of the triangle be A, B and C, and let I, J and K then be the centre points

of the three sides, as shown below. Imagine now that the triangle is divided into thin strips

parallel to side AB, as shown.

A
B

C

I

K
J

If the strips are very narrow, they can be treated as thin rods (or narrow rectangles) with

their centres of mass at the centre of each rod. But then the centre of mass of each rod

will lie on the dotted line I C , which bisects AB and is therefore a median of the triangle.

It follows that the centre of mass of the whole triangle must also lie on this median I C . By

repeating similar reasoning, when the triangle is divided into thin strips parallel to BC and

AC , we see that the centre of mass must also lie on the two other medians, K B and J A.

The conclusion is that the centre of mass of the triangle must lie at the intersection of the

three medians of the triangle. And geometry tells us that this intersection lies two–thirds

along any median, measured from one of the corners of the triangle. J
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Note that the result here confirms what we already found as the centres of mass for the

other two types of triangles we dealt with earlier!

6.2 The centre of mass of a lamina bounded by a curve

We will next apply the idea of “slicing and integrating” to find a general rule for the centre

of mass of a lamina on the XY -plane, which is bounded by the X -axis and the curve of a

given function y = f (x) between the lines x = a and x = b. This lamina is the shaded

region in the sketch below. We will assume the lamina is made of some uniform material.

Also, to get a well-defined object, we will assume that f (x) is not negative on the interval

[a, b]!

To find the centre of mass, we will use the “slicing” principle of Result 6.1. Imagine the

lamina divided into thin strips, parallel to the Y -axis. Then each strip is approximately a

rod, or a narrow rectangle. The one situated at position x of the X -axis has a height f (x);
if its width is dx then the rectangle has an area of f (x) dx and a mass of

dm = ρ f (x) dx

where ρ is the surface density of the lamina (the mass per unit area). The centre of mass

of this strip is at point
(

x, 1
2

f (x)
)

.

xa b

f(x)/2

Y

X

y = f(x)

a b
X

y = f(x)

Finally, integrating over all these strips means integrating with respect to x , over the in-

terval [a, b]. Result 6.1, equations (6.2) and (6.3), now give as the centre of mass of the

lamina the point (x, y) where

x =

∫
xdm∫
dm
=

∫ b

a
xρ f (x) dx∫ b

a
ρ f (x) dx

=

∫ b

a
x f (x) dx∫ b

a
f (x) dx

and

y =

∫
ydm∫
dm
=

∫ b

a
1
2

f (x) · ρ f (x) dx∫ b

a
ρ f (x) dx

=
1
2

∫ b

a

[
f (x)

]2
dx∫ b

a
f (x) dx

.

Result 6.2

The centre of mass of a uniform lamina bounded by the X -axis and the curve y = f (x)
between the lines x = a and x = b is at the point (x̄, ȳ) on the XY -plane, where

x =

∫ b

a
x f (x) dx∫ b

a
f (x) dx

(6.5)

y =
1
2

∫ b

a

[
f (x)

]2
dx∫ b

a
f (x) dx

(6.6)
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Warning: Do not use these formulas unless you are sure that they apply in a given situa-

tion! You should also be able to derive the formulas.

Example 6.4

Find the centre of mass of a uniform lamina bounded by the X -axis, the curve y = x2 and

the lines x = 0 and x = 12.

Solution:

A sketch of the lamina looks like this.

Y

X

120

Applying equations (6.5) and (6.6) with f (x) = x2, a = 0 and b = 12 we get

x =

∫ 12

0
x f (x) dx∫ 12

0
f (x) dx

=

∫ 12

0
x · x2dx∫ 12

0
x2dx

=

∫ 12

0
x3dx∫ 12

0
x2dx

=

(
1
4

x4
)]12

0(
1
3

x3
)]12

0

=
5184

576
= 9,

y =
1
2

∫ 12

0

[
f (x)

]2
dx∫ 12

0
f (x) dx

=
1
2

∫ 12

0

(
x2
)2

dx∫ 12

0
x2dx

=
1
2

∫ 12

0
x4dx∫ 12

0
x2dx

=

1
2

(
1
5

x5
)]12

0(
1
3

x3
)]12

0

= 43.2.

The centre of mass is therefore at point (9, 43.2). J

Activity 6.2

The following exercise is a straightforward application of these rules!

Find the centre of mass of a uniform lamina bounded by the X–axis, the lines x = 0, x = 5, and the curve

y = 2
√

x .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the centre of mass is at
(

3, 3
4

√
5
)
.

Finding the centres of mass for these laminas by integration is something you must learn

to do routinely — please do more practice examples from your workbook, until you feel

you have mastered the technique!

Here is a last chance to apply this technique which also reminds you to always use all the

tricks you know to simplify finding centres of mass!

Activity 6.3
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Here you can apply the result for laminas bounded by a curve in a novel situation. You must introduce a XY –

coordinate system, and find a function to describe the triangle as a lamina!

Use the concept of a lamina bounded by a curve, to find the centre of mass of the triangle shown below.

triangle

54.pd f

a

a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: compare your answer to where you know the centre of mass of a triangle to be!
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6.3 Finding the centre of mass by slicing and integrating – three-dimensional
objects

In the previous section we discussed only two-dimensional objects, that is, laminas. How-

ever, the procedure of slicing and integrating can equally well be applied to a three–

dimensional rigid body. The difference is that the “slices” will then be thin three-dimensional

objects (e.g. discs), rather than rectangles etc. (Imagine for instance slicing an apple —

in the middle of the apple, slices are roughly thin cylinders!) The process is really very

similar to the two-dimensional case. The difference is that since the slices are now three-

dimensional, to find their masses we shall have to find their volumes, rather than their

areas. And of course you must now think in three dimensions, which might make select-

ing coordinate system and drawing pictures of the situation a bit more complicated!

Example 6.5

A solid cone has a radius a and height h. Find its centre of mass.

Solution:

Draw a sketch of the body, select the coordinate system and how to slice the

object. Let us choose XY Z coordinates as shown in the figure below. Now both the

XY -plane and Y Z -plane are planes of symmetry (since each of them cuts the cone into

two identical parts which are mirror images of each other).Therefore, the centre of mass

must be situated at the intersection of the XY - and Y Z -planes, that is, on the Y -axis. So,

we just have to find the Y -coordinate of the centre of mass; and we can slice the object into

thin slices parallel to the X Z -plane, as shown.Identify your integration variable. Find

the centre of mass and the position of the centre of mass of each slice in terms

of density and the variable of integration. Identify the upper and lower limits of

integration. Evaluate the integrals to find the centre of mass with respect to the

chosen coordinate system. Each slice is identified by its position on the y–axis, so y

will be the integration variable.

X

Y

ydy

h

Z

For the slice at position y of the Y -axis , the centre of mass is at point y on that axis. Each

slice is approximately a disc, with thickness dy. To calculate its mass, we need its radius.

By similar triangles,

h − y

radius
=

h

a

so that

radius =
a

h
(h − y) .

The mass of the slice/disc is now given by

mass = density × volume
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where

volume = thickness× area

= thickness× π (radius)2 .

Thus, the mass is

dm = ρπ
(a

h
(h − y)

)2

dy

where ρ is the density (mass per unit volume). (We are assuming here that the cone

is made of uniform material!) Integrating (“summing”) over all of these discs means

integrating from y = 0 to y = h. So, according to (6.3), we get

y =

∫
ydm∫
dm

=

∫ h

0
yρπ

(
a
h
(h − y)

)2
dy∫ h

0
ρπ

(
a
h
(h − y)

)2
dy

=
ρπ a2

h2

∫ h

0
y (h − y)2 dy

ρπ a2

h2

∫ h

0 (h − y)2 dy

=

∫ h

0

(
yh2 − 2y2h + y3

)
dy∫ h

0

(
h2 − 2yh + y2

)
dy

=

(
h2

2
y2 − 2h

3
y3 + 1

4
y4
)]h

0(
h2 y − hy2 + 1

3
y3
)]h

0

=

(
1
2
− 2

3
+ 1

4

)
h4(

1− 1+ 1
3

)
h3
=

1

4
h.

The centre of mass of the cone is at position
(

0, 1
4

h, 0
)

, in the coordinate system given

above. Express the position of the centre of mass in relation to the object. The

centre of mass is one–fourth of the height of the cone, above the base of the cone. Check

the solution. The answer does seem likely — we would expect the centre of mass to lie

closer to the base that the apex to the cone, since the cone is thicker at the base! Compare

this with the similar result for the triangle in two dimensions (Example 6.1), where we

found the centre of mass at the distance 1
3

h above the base. Note also that both for the

cone and the triangle, the length/radius of the base makes no difference!J

Activity 6.4

Find the centre of mass of a uniform solid pyramid with height h and a square a × a base.

Hint: A cross-section of the cone at the height z above the base (with 0 ≤ z ≤ h) forms a square with sides of

length h−z
h

a.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Feedback: the centre of mass will be along the axis of symmetry, the distance h/4 above the base.

6.4 Finding the centre of mass by using polar coordinates

Note: In this section, the integration gets a bit more complicated, since we are dealing with

objects where polar coordinates work better than the usual rectangular ones! Indeed the

integration techniques in this section do not form a part of the outcomes of this module, so

you will not be asked to do integration using polar coordinates in the assignments nor in

the examination. This section is only for your information; and later on you will need to

refer to some of the results in this section.

In some cases, the “slicing and integrating” is easiest to do if we use a polar coordinate

approach. This is especially the case with objects such as circles or sectors of circles,

spheres, etc. The idea is then to divide the object into small mass elements, each corre-

sponding to a small angle dθ . So, we are subdividing the object into mass elements as in

the figure on the left, rather than as in the figure on the right.

Each small mass element now corresponds to a unique angle θ, and integration over all

the elements will correspond to integration over all the relevant θ -values — that is, our

integration variable is now θ. The following examples show various modifications of this

idea. Note that various geometric results will be needed in this polar coordinate approach;

some of these are listed below.

If a circle has a radius r , then an angle θ determines a sector of the circle. The length of

the corresponding arc is ` = θr, and the area of the sector is A = 1
2
r2θ.

Example 6.6

A thin uniform rod is bent in the shape of a semicircle of radius R. Where is the centre of

mass of the rod?

Solution:

Let us assume that the semicircle lies on the XY -plane, as shown.
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The Y -axis is then the axis of symmetry, and the centre of mass therefore lies somewhere

on the Y -axis. To find y, the Y -coordinate of the centre of mass, we will divide the rod into

small mass elements, each consisting of a short segment of the semicircle. If a segment

corresponds to a small angle dθ , then its length is

d` = Rdθ

and its mass is

dm = ρd` = ρRdθ

where ρ denotes the density of the rod (the mass per unit length). The Y -coordinate of the

segment, the position of which is given by the angle θ , (see the figure above) is

y = R sin θ.

Finally, if we wish to integrate over all the small segments, then we have to integrate over

θ ∈ [0, π] . Now, (6.3) gives

y =

∫
ydm∫
dm

=

∫ π
0

R sin θ · ρRdθ∫ π
0
ρRdθ

=
ρR2

∫ π
0

sin θdθ

ρR
∫ π

0
dθ

=
R (− cos θ)]π0

θ ]π0

=
2

π
R.

Thus, in our coordinate system the centre of mass lies at the point (0, 2R/π) . Interpreted

with respect to the object itself, we see that the centre of mass of a thin rod bent into a

semicircle with radius R lies on its axis of symmetry, the distance 2R/π from the diameter

of the semicircle.J

Note that you can also solve the problem in the previous example by using the usual tactic

of slicing the rod parallel to the Y -axis, into thin slices of width dx . But in that case, you

must consider very carefully the question of what is the length, and hence the mass, of

each such slice!

Example 6.7

Find the centre of mass of a uniform lamina with the shape of a sector which forms an

angle 2α of a circle of radius r .

Solution:

Let us assume that the sector of the circle corresponds to an angle 2α where α ≤ π/2. If
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the XY -plane is chosen as in the figure, then the X -axis is the axis of symmetry and the

centre of mass lies on the X -axis. To find where on the X -axis the centre of mass is, let

us divide the sector into small strips, each corresponding to a small angle dθ , as shown in

the figure.

If dθ is very small, then each of these strips is approximately a triangle, with a centre of

mass situated at a distance 2
3
r from the origin (according to Example 6.1). For the strip

which forms the angle θ with the positive X -axis (see picture), the X -coordinate of the

centre of mass is 2
3
r cos θ . The mass of this sector is obtained by

mass = density × area

so that the mass is

dm = ρ
1

2
r2dθ

where ρ denotes the density.

Finally, we have to integrate from θ = −α to θ = +α. From equation (6.2), we can

determine the X -coordinate of the centre of mass as

x =

∫
xdm∫
dm

=

∫ α
−α

2
3
r cos θ · ρ 1

2
r2dθ∫ α

−α ρ
1
2
r2dθ

=
1
3
r3ρ

∫ α
−α cos θdθ

1
2
r2ρ

∫ α
−α dθ

=
2

3
r
(sin θ)]α−α
(θ)]α−α

=
2

3

sinα

α
r.

The centre of mass lies on the axis of symmetry of the sector, at a distance 2
3

sinα
α r from

the origin (the centre of the corresponding circle).J

Example 6.8

Of special interest is the case where α = π/2, giving us a lamina shaped like a semicircle.

We then get the following result: the centre of mass of a uniform lamina, in the shape of a

semicircle with radius R, lies along its axis of symmetry, at a distance 4R
3π from the centre

of the circle. (Note that this is approximately 0.4R.)J
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Example 6.9

Find the centre of mass of a thin, uniform hollow hemisphere with radius r .

Solution:

Make sure that you can imagine in your mind what the object here looks like! Think of

a tennis ball or soccer ball, hollow inside, cut in half. Let us assume that the hemisphere

lies on the XY Z system, as shown. In terms of symmetry, the centre of mass lies on the

X -axis, so y = 0 and z = 0, and we only have to find the X -coordinate x of the centre of

mass. To calculate x , we divide the hemisphere into thin strips, each corresponding to a

small angle dθ on the XY -plane.

The position of the strip shown in the figure is fully described by the angle θ on the

XY -plane. In the figure above, the angle between the X -axis and O D is θ, and the angle

between O A and O D and between O B and OC is the small angle dθ . Then this strip

is approximately a thin band, with width AD = rdθ , with radius DC/2 = r sin θ , and a

centre of mass situated on the X -axis at the position x = r cos θ . If the density is ρ, then

the mass of this band is given by

mass = density × area,

area = circumference× width

so that the mass is

dm = ρ · 2πr sin θrdθ

= ρ2πr2 sin θdθ.

Note that here, 0 ≤ θ ≤ π/2. From (6.2)

x =

∫
xdm∫
dm

=

∫ π/2
0 (r cos θ) · ρ2πr2 sin θdθ∫ π/2

0
ρ2πr2 sin θdθ

=
ρ2πr3

∫ π/2
0

cos θ sin θdθ

ρ2πr2
∫ π/2

0
sin θdθ

.

But d
dθ sin2 θ = 2 sin θ cos θ ; so

x =
r

(
1
2

sin2 θ
)]π/2

0

(− cos θ)]
π/2
0

=
r
(
sin2

(
π
2

)
− sin2 (0)

)
2
(
− cos

(
π
2

)
+ cos (0)

)
=

r

2
.

The centre of mass lies at the position x = r
2

on the X -axis, that is, the distance r/2 from

the base of the hollow hemisphere. J



106

This concludes our section on finding centres of mass by slicing and integrating, using

polar coordinates. Again, please note that this section you can just read through since you

will not be asked to use integration using polar coordinates to find centres of mass in this

module! We showed the calculations here to derive the centres of mass of certain special

objects, and you will need to use the results derived in this section later on in the study

guide.

We have dealt with arcs and sectors of circles, and a hollow hemisphere. What about the

centre of mass of a corresponding solid hemisphere? In that case, we can actually slice

the object parallel to the X -axis, using x as the integration variable; polar coordinates are

not needed! The reason is that we are going to get thin discs, the volume of which is fully

determined by the width of the disc! We will deal with the solid hemisphere in the next

section, and will then further generalise the technique used for it for more general objects.

6.5 The centre of mass of a solid of revolution

In the last subsection, we used slicing and integration, with polar coordinates, to find the

centre of mass of a hollow hemisphere. You might have wondered what we would then do

to deal with a solid hemispheres. We now proceed to deal with that object; it turns out that

we can just apply straight forward slicing and integrating. Further, it will turn out that this

is a special case of a more general type of object, called a solid of revolution. Following

the procedure for the solid hemisphere, we will derive a result for finding the centre of

mass of any such solid of revolution!

But let us first start, as promised, with finding the centre of mass of a solid hemisphere. To

imagine what this object is like, consider for instance an orange cut in half!

Example 6.10

Find the centre of mass of a uniform, solid hemisphere with radius r .

Solution

The object is shown below, together with a good choice of the coordinate system.

X

O

Y

dx

x

Choosing the X -axis as in the figure, it follows from symmetry considerations that the

centre of mass lies on the X -axis. We will take the origin to be on the “cut” surface of the

hemisphere (at what would be the centre of the corresponding complete sphere). To find

x , we proceed as follows.

Consider the object being sliced into thin discs, parallel to the Y Z -plane. The figure shows

one of these thin discs, situated at the position x on the X -axis and with thickness dx . The

radius of this disc is
(
r2 − x2

)1/2
(this follows from the equation of a circle, y2+x2 = r2).
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Now we can calculate the mass of the disc:

mass = density × volume,

volume = area× thickness

= π (radius)2 × thickness, (6.7)

so that

dm = ρπ

((
r2 − x2

) 1
2

)2

dx

= ρπ
(

r2 − x2
)

dx .

To integrate over all the slices, we need to integrate over x from 0 to r. Then, according to

(6.2), the X -coordinate of the centre of mass is

x =

∫
xdm∫
dm

=

∫ r

0
xρπ

(
r2 − x2

)
dx∫ r

0
ρπ

(
r2 − x2

)
dx

=
ρπ

∫ r

0

(
r2x − x3

)
dx

ρπ
∫ r

0

(
r2 − x2

)
dx

=

(
r2

2
x2 − 1

4
x4
)]r

0(
r2x − 1

3
x3
)]r

0

=
r4
(

1
2
− 1

4

)
r3
(

1− 1
3

)
=

3

8
r.

The centre of mass of the solid hemisphere lies a distance 3r/8 from the base of the

hemisphere.J

Now, in the calculations above we sliced the object into small mass elements in the shape

of discs, and then used the expression (6.7) to determine the volume of these discs. This

method is not restricted to the hemisphere, but can also be applied more generally to a

special type of symmetrical objects called solids of revolution.

To see what this means, consider the curve of a function shown below.

X

Y
y2 = a2  x2

0

This represents a part of a circle in the first quadrant of the XY -plane. Imagine now this

curve and the region below it being rotated through a full circle about the X -axis. (That

is, imagine picking the figure above up by the Y -axis, and spinning it around the X -axis).

The resulting three-dimensional object will be a hemisphere, as in the previous example.

Any object which can be formed by rotating a region bounded by a curve of the type

y = f (x) is called a solid of revolution. What all these objects have in common is that

they have an axis of rotation about which the object is symmetric, and that if they are cut

in slices perpendicular to the axis of rotation, the slices will be thin discs. The method

used in Example 6.10 can then be adapted to find the centre of mass of any such solid.

If we assume uniform density then to find the masses of the thin slices we just need their
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volumes. Since the slices are discs, we need to know the radius of each disc, which is

given directly by the expression of the curve, y = f (x).

The following example illustrates the process.

Example 6.11

Find the centre of mass of the solid of revolution formed when the curve y = x + 1 is

rotated about the X -axis in the region 0 ≤ x ≤ 6.
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Solution:

x

Y

X

dx

1

6x

Y

X

dx

1

6

Since rotation is about the X -axis, the X -axis is the axis of symmetry and therefore y = 0.

To calculate x , we divide the solid of revolution into thin discs. The one at position x on

the X -axis (see picture) has a thickness dx and radius f (x) = x+1. We want to calculate

its mass, dm. Because we assumed uniform density,

mass = volume × densi ty

and for a disc,

volume = thickness× area

= thickness× π (radius)2 .

So, if ρ denotes density,

dm = ρ · dx · π (x + 1)2 .

The centre of mass of this small element has the X -coordinate x . To calculate the X -

coordinate of the whole solid, we use (6.2):

x =

∫ 6

0
xdm∫ 6

0
dm

=

∫ 6

0
ρπx (x + 1)2 dx∫ 6

0
ρπ (x + 1)2 dx

=

∫ 6

0

(
x3 + 2x2 + x

)
dx∫ 6

0

(
x2 + 2x + 1

)
dx

=

(
1
4

x4 + 2
3

x3 + 1
2

x2
)]6

0(
1
3

x3 + x2 + x

)]6

0

=
81

19
.

So, the centre of mass of the solid of revolution is at
(

81
19
, 0, 0

)
. J

Activity 6.5

Here is your chance to find the centre of mass of a solid of revolution.

Problem: Find the centre of mass of the solid of revolution formed by rotating the curve y = 2a
√

x about the

X -axis for 0 ≤ x ≤ b.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the centre of mass will be at
(

2
3
b, 0, 0

)
.

The approach given in this section gives another way to approach certain types of objects.

Namely, if an object has the property of having an axis of symmetry such that any cross
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section of it cut perpendicular to the axis is a circle, then it is a solid of revolution and the

approach given in this section can be used to find its centre of mass. All that needs to be

done is to identify its “profile” in terms of the function f (x) which determines its radius

at any given point x along its axis! The following activity is of this kind.

Activity 6.6

Use the technique of finding the centre of mass of a solid of revolution, by slicing it into discs, to locate again the

centre of mass of a solid cone with a base with radius a and height h. Hint: you must place the cone in the XY Z

coordinate system such that its axis of symmetry lies along the x axis! A well-chosen decision on where the apex

should be will make calculations easier.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Compare your result with the findings in Example 6.5!

Warning: you have now come across two specific integration formulas dealing with func-

tions: those for finding the centre of mass for a lamina bounded by a function, and those

for finding the centre of mass of a solid of revolution determined by a given function. Note

that these two objects are very different! Do not try to memorise the formulas, since you

may then use the wrong one — rather, you should be able to derive each set of formulas

from the definitions of the objects!

CONCLUSION

In this unit you have learned

• how to find the centres of mass of rigid bodies by slicing and integrating

• how to find the centres of mass of laminas bounded by curves, and solids of revolution

Remember to add the following tools to your toolbox:

• determining the centre of mass of a rigid body as an integral over general mass

elements

• the principle of using slicing and integrating to find the centre of mass of a rigid

body

• the toolbox for the task of slicing and integrating

• the concept of objects formed as solids of revolution

• determining the centre of mass of laminas bounded by curves

• determining the centre of mass of solids of revolution

In this unit, we continued finding centres of mass by slicing and integrating, using more

general and more effective techniques. You should now have an idea on how to find the

centre of mass of quite complicated rigid bodies. But, it is time to remember why we are

so interested in finding the centres of mass: we wish to use it to help us analyse the motion

of objects. In the next unit we will return to this topic.
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Unit 7 THE MOTION OF THE

CENTRE OF MASS — THE

GENERAL CASE

We are now able to tie up Learning Unit 2 of the study guide. Remember that our main

goal in this Learning Unit of the study guide was to derive, and show how to apply, the

law of motion which describes how the centre of mass of any object or system of objects

moves.

So far in this section we have done the following: In Unit 3, we defined the centre of mass

for a system of particles, and showed how to find it, and in Unit 4 we explained why the

centre of mass is important: because the motion of the centre of mass of a collection of

particles can be described by a very simple equation when all the external forces acting

on the system are known. We then turned our attention to rigid bodies (that is, everyday

objects) and reasoned that since they are really just collections of very many particles,

the concept of a centre of mass is valid for them as well, but due to the large number

of particles, we should rather use the mathematical shortcut of slicing-and-integrating to

find their centres of mass. Units 5 and 6 were then dedicated to learning how to slice and

integrate in various situations to find the centres of mass. And along the way we discussed

various shortcuts which make finding the centres of mass easier, such as using symmetry or

selecting the coordinate system suitably. Also, we learned to use the ideas of viewing the

object as a composite body, or an object with parts removed, to simplify the calculations.

We can now find the centre of mass of any rigid body or system of rigid bodies, and can

analyse the motion of the centre of mass. We shall first state the results for a rigid body,

and later we will do one final generalisation into a system of rigid bodies. Applications of

all these skills will then follow!

Contents of this unit:

7.1 The motion of the centre of mass of a rigid body

7.2 Systems of rigid bodies and particles

What you are expected know before working through this unit:

Into this unit, you need to bring the idea you came across in Unit 4 about combining

Newton’s second law describing the motion of individual particles, to one law describing

the motion of the centre of mass directly. Here we will extend this result to rigid bodies

and systems! Also, you will need all the techniques you have learned so far for finding

centres of mass in various situations, since this unit combines everything you have done

so far in this Learning Unit 2 of the study guide!
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7.1 The motion of the centre of mass of a rigid body

A rigid body is also a system of particles, so Result 4.2 can be applied to describe the

motion of its centre of mass. For a rigid body, the only internal forces that can act on the

body are the forces holding all the particles of the body together, so that the body does not

fall apart. All other forces, such as the force of gravity or hitting it with a hammer, are

external forces. The following result follows directly from what happens in the case of a

system of particles.

Result 7.1

Let a rigid body have a mass M , and let R be the position vector of its centre of mass.

Then

F = M R̈ (7.1)

where F is the sum of all the external forces acting on the rigid body.

It follows that to find the acceleration of the centre of mass of the body, we only have to

find the total mass of the body and the sum of all the forces acting on the system. Note

that, according to this result, the motion of the centre of mass only depends on the resultant

force F , that is, the sum of all the forces acting on the body. The motion of the centre of

mass does not depend on the points of application of the forces! The following examples

illustrate this.

Example 7.1

A uniform rod AB with mass m moves on a frictionless plane. Initially the rod is at rest,

parallel to the Y -axis, with the centre of the rod at the origin. Then two identical constant

forces

F1 = i , F2 = i

parallel to the X -axis are applied to it. Describe the motion of G, the centre of mass of

the rod, in the following cases:

(a) If F1 acts at point A, and F2 at point B,

(b) if F1 and F2 act at point A,

(c) if F1 and F2 act at point G.

Solution:

The centre of mass of the rod, G, is initially at the origin of the XY -plane.
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The resultant force acting on the rod in all four cases is

F = F1 + F2 = 2i .

According to Result 7.1, in all four cases the centre of mass then moves with acceleration

a where

ma = 2i,

that is, G moves along the X -axis with the same acceleration 2/m in all four cases. J

It follows from the result above that if no external forces act on a rigid body, then the

centre of mass will not move; and if only vertical external forces act on a rigid body, then

the centre of mass can only move vertically; it can not move horizontally (sideways)! This

is quite important to keep in mind, since sometimes you need to use this fact to solve

problems. The following example, and the activities that follow, all use this principle!

Example 7.2

A rectangular box with mass m is held with one corner resting on a smooth (frictionless)

table and is gently released. Find the trajectory of the centre of mass of the box.

Solution:

The external forces acting on the box are the force of gravity mg downwards, and the

normal force of the table N , upwards. (Since the table is frictionless, no frictional forces

apply!) Neither of these forces has a horizontal component, so that the centre of mass

can only accelerate vertically. For a uniform box, the centre of mass is at the geometrical

midpoint. If the box is released from rest, then it can only fall in such a way that the centre

of the box falls straight down!J
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Activity 7.1

Solve the following problem, by using the way that the centre of mass of the rigid body behaves. You must

introduce a coordinate system! Use the result of Example 6.8 to find the centre of mass of the object.

Problem: The sketch below shows a lamina in the shape of a semicircle with radius R.

A

Assume that initially the rigid body is kept at rest as shown, on top of a smooth table top, with only corner A of

the semicircle touching the table. The object is then released. Assuming that it stays upright, find the vertical and

horizontal displacement of point A of the lamina when the lamina comes to a standstill.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: If the origin of the coordinate system is at the original position of A, then after the object comes to a

standstill, A will be at the point ( 4R
3π − R, R).

7.2 Systems of rigid bodies and particles

In this section we will combine all the results we have up to now, to deal with a final,

completely general case of systems consisting of one or more rigid bodies and/or particles

put together. We will learn how to find the centre of mass in such a case, and also how the

centre of mass behaves in such as case. Note that this is just the final, trivial generalisation

of all we have done up to now, but the situations will be more complex in the problem

solving, and to deal with them we will introduce several tools for you to use!

7.2.1 Finding the centre of mass of a general system

Up to now we have learned how to find the centre of mass of a rigid body (with a continu-

ous structure) on the one hand, and a system of particles, on the other hand. A combination

of both, or of several separate rigid bodies must be handled by the rule for the centres of

mass of composite bodies.

When we adapt our standard toolbox in Unit 1 to the particular problem of finding the

centre of mass of a general system, it can be re-written as follows:

TOOLBOX FOR FINDING CENTRES OF MASS

1. UNDERSTANDING THE PROBLEM

• What is the system like? What are the shapes, sizes, masses, composi-

tions, positions of the parts? Where are the parts in relation to each other?

• Can you describe the system in your own words?
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You could make use of the following tools:

• Knowledge of the language of mechanics problems, and using keywords for

clues about the positions and properties of objects

• Sketches and diagrams

• Real-life examples

• Using symbols for referring to parts of the system, positions, distances etc.

2. PLANNING A SOLUTION

We have the following principles, definitions, results and sub-toolboxes avail-

able to us for finding centres of mass:

• The original definition, using a sum, for a system of particles

• Slicing and integrating, applicable to bodies with continuous structure

• The equation for the centre of mass of a composite system, put together

from any kinds of components

• We have sub-toolboxes for

• selecting coordinate systems

• simplifying the task of finding centres of mass

• slicing and integrating

• Also, we have a special trick for dealing with objects with parts removed.

• If we need to integrate, we may use polar coordinates.

• Finally, we have ways of finding the positions of the centres of mass of

various objects, including those of solids of revolution and laminas bounded

by functions.

To decide on which of these you should apply to a particular system, ask your-

self:

• Can you find similar, already solved examples and problems?

• Are all the components particles? If not, we shall have to find the centres of

mass of the components with continuous structure, and then the following

list of questions applies:

•Do we already know where the centre of mass of the object is, based on

an already solved example?

•Can the toolbox for simplifying be applied? Is this an object with parts

removed?

• If all else fails, we can use slicing and integrating. If this is necessary, is

the case similar to one we have already done?

• Can the toolbox for simplifying be applied to the entire system?

3. EXECUTING THE PLAN

To complete the calculation of the centre of mass, you will have to

• introduce mathematical notation

• find the centres of mass and the masses of the components , if necessary

• introduce a suitable coordinate system, draw a sketch of the entire system

with the coordinates, and express the centres of mass of the components

in terms of this coordinate system

• apply the relevant formula to find the centre of mass of the entire system in

terms of the coordinates
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• express the centre of mass in relation to the system itself.

4. ANALYSING THE SOLUTION

To check the correctness of the solution you can

• see whether the solution makes sense. Compare the end result to the cen-

tre of mass of other similar objects

• try to think of alternative ways to find the centre of mass

• re-do the calculations with a different coordinate system

• compare your solution with experiments and guesses based on real-life ob-

jects

• work in a group and compare your results with those of others

If your solution seems to be wrong, you should

• find out where you went wrong, by checking the argument and the calcula-

tions

• go back to step 1 or step 2

To reflect and learn from the solution, you can

• think of other systems where a similar approach would work; compare this

problem with other systems that you have come across: what are the differ-

ences and similarities?

The following examples and activities illustrate the use of this toolbox.

Example 7.3

A uniform rod of length 2` and mass 3m has a particle of mass m attached at one end of it,

and a particle of mass 5m attached at the other end. Find the centre of mass of the object.

Solution:

1. UNDERSTANDING THE SYSTEM: The system consists of the rod and the two

particles which are attached at its ends. The rod is made of a uniform material, and the

masses of the rod and the two particles are given. We are just told that the particles are

attached at the end points, which means that we can assume that they are, for instance,

glued on. We should be able to draw the system quite easily, as shown below.

A
Rod: mass 3m, length l

Particle with
mass m

B

Particle with
mass 5m

A and B denote the ends of the rod. So, now we can say that the system consists of

the uniform rod AB with length l and mass 3m, a particle of mass m at point A, and a

particle of mass 5m at point B.

2. PLANNING A SOLUTION: Can we find similar, already solved examples? We

do know how to find the centre of mass of a uniform rod, which we can perhaps utilise

here. However, we certainly cannot use that result directly — we cannot just pretend

that this system is a uniform rod with mass 3m+m+5m, since that would be a different



118

case altogether! Are all the components particles? No, there is also the rod which

has a continuous structure. We will have to find the centre of mass of the rod. But we

do already know where the centre of mass of a uniform rod is: it is in the middle of

the rod. Can the toolbox for simplifying be applied to the entire system? Yes, it

certainly can: the system is clearly one-dimensional. However, beyond that there are

no axes of symmetry.

3. EXECUTING THE PLAN: We already know where the centres of mass of the three

components are. Since the system is one-dimensional, we need only one coordinate

axis, which should go along the rod. One possibility is to take the origin of this axis to

coincide with the end point A of the rod. This gives us the sketch below:

X
0 2ll

5mm 3m

In terms of this coordinate system, the object is a compound body consisting of a

particle of mass m at position x = 0, a particle of mass 5m at position x = 2`, and

the rod which has a mass of 3m and its centre of mass at x = `. Applying the rule for

finding the centre of mass of a compound body, we find that the centre of mass of the

whole object is at

x =
m · 0+ 5m · 2`+ 3m · `

m + 5m + 3m
=

13

9
` = 1

4

9
`.

This means that the centre of mass is at a distance 4l/9 or 2/9 of the length of the rod

(remember that the rod had length 2l), from the centre of the rod towards the heavier

particle.

4. ANALYSING THE SOLUTION – checking the correctness: Does the solution

make sense? It certainly does – adding the two particles at the ends of the rod, the

centre of mass of the system should no longer lie in the middle of the rod, but rather a

distance further, towards the heavier particle. Can we think of alternative ways to

find the centre of mass? Not really – the only rule to use here is that of composite

bodies. Re-do the calculations with a different coordinate system. This we can

certainly do. Assume, for instance, that we take the origin of the X -axis to lie at the

midpoint of the rod, so that the system and the coordinate axis look as follows:

X
0 ll

5mm 3m

In terms of this coordinate system, the system consists of a particle of mass m at posi-

tion x = −l, a particle of mass 5m at position x = `, and the rod with mass 3m and

centre of mass at x = 0. Applying the rule for the centre of mass of a compound body,

we find that the centre of mass of the whole object is now at

x =
m · (−l)+ 5m · `+ 3m · 0

m + 5m + 3m
=

4

9
`.

Again, this means that the centre of mass is at a distance 4l/9.or 2/9 of the length of

the rod (remember that the rod had a length of 2l), from the centre of the rod, towards

the heavier particle. So, we do get the same result. Think of other systems where a

similar approach would work. The same approach will work in any case where par-

ticles of mass are attached to objects of continuous structure. Compare this problem

with other systems that you have come across: what are the differences and

similarities? This is the first time we have come across a rod with particles attached
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to it, but we can compare it with other rods with a continuous structure. For instance,

we have already established that the situation here is very different from the case of a

uniform rod of length 2l and mass 3m + m + 5m = 9m, since the centre of mass of

such a rod would be at the centre of the rod.J

Activity 7.2

Solve the following problem, working through the steps of the toolbox given earlier.

Problem: A uniform circular disc with radius r and mass M has two particles attached to it. One of the particles

has mass 2M and is attached at the centre of the disc, and the other particle has mass M and is attached at a point

at the rim of the disc. Where is the centre of mass of the object?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: You should get a point which lies on the line from the centre of the disc towards the particle on the

rim, at the distance 1
4
r from the centre.

Example 7.4

Find the centre of mass of the lamina of uniform density in the figure below.

Y

X

2cm

3cm

4cm

6cm

Solution:

1. UNDERSTANDING THE SYSTEM: There is just one object here, a uniform lam-

ina (thin plate) of the shape shown in the figure. We already have a picture, and the

coordinate system is also already in place.

2. PLANNING A SOLUTION: We have to find the centre of mass of the lamina with con-

tinuous structure. Do we already know where the centre of mass of the object is?

No. Can the toolbox for simplifying be applied? There are no symmetries involved

here. The object is two-dimensional, but then it is already set in a two-dimensional

coordinate system. But we certainly could use the trick of considering this to be a

composite body, put together of rectangles: 4×3 plus a 2×3 rectangle; or a 2×6 plus

a 2× 3 rectangle; or three 2× 3 rectangles! Is this an object with parts removed?

This could also apply here: the lamina could be considered to be a 4×6 rectangle with

a 2× 3 rectangle cut off from the corner.

We have identified two possible approaches: we can either consider the lamina as put

together from two rectangles (the centres of mass of which are very easy to find), or a

rectangle with another rectangle removed from it (again, these objects are easy to deal

with). Either way, we do not expect to have to do any integration!

3. EXECUTING THE PLAN. We will show both approaches here.

Method 1 Assume that the lamina is a composite body. Introduce mathematical no-

tation; find the centres of mass of the components and their mass; introduce

a suitable coordinate system; draw a sketch of the entire system with the co-

ordinates; and express the centres of mass of the components in terms of this

coordinate system. We shall assume that the lamina is put together from a rectangle
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A and a rectangle B as shown below, and we shall let (xA, yA) and (xB, yB) denote

the centres of mass of these components, and let MA and MB be the masses of A and

B. Because the lamina is of a uniform density, the centres of masses of the rectangles

are simply the geometric midpoints of the rectangles. We already have a coordinate

system in place.

j  i

A

B

3

3
2

2

0

(xB,yB)

(xA,yA)

y

x

From the sketch above, we can easily see that the centres of mass of A and B are at

(xA, yA) = (1.5, 2)

(xB, yB) = (4.5, 1) .

To apply the equation for the centre of mass of composite bodies, we also need the

masses of A and B. But because of the uniform density, the mass of a rectangle is

density times area, so when we let ρ denote the (unknown) density, we get

MA = ρ · (3 · 4) = 12ρ

MB = ρ · (3 · 2) = 6ρ.

The rule for finding the centre of mass of composite bodies now gives as the centre of

mass for the whole lamina the point (x, y) , with

x =
MAx A + MB x B

MA + MB

=
12ρ(1.5)+ 6ρ(4.5)

18ρ
=

5

2
,

y =
MA y A + MB yB

MA + MB

=
12ρ(2)+ 6ρ(1)

18ρ
=

5

3
.

Method 2: Alternatively, we can view the lamina as an object with a part of it removed.

Let A denote the big rectangle with sides 4 cm and 6 cm, with its midpoint at (3, 2) and

let B denote the cut-off piece, a rectangle with sides 2 cm and 3 cm with its midpoint

at
(

4 1
2
, 3
)
.
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A

B

Our lamina L consists of A minus B, or, put in another way, A can be composed of

L and B. Let MA, MB and ML be the masses of the three objects, and let R A, RB and

RL denote the position vectors of their centres of mass, respectively. Then, according

to the rule for calculating the centres of mass of compound bodies, we have

R A =
ML RL + MB RB

ML + MB

(7.2)

We know R A = 3i + 2 j, RB = 4 1
2

i + 3 j . Since the lamina is uniform, the mass of

each object is (density) × (area). Denoting density by ρ, we get MA = 24ρ, MB =
6ρ. Since L = A minus B, ML = MA − MB = 18ρ. Thus (7.2) becomes

3i + 2 j =

18ρ RL + 6ρ

(
9

2
i + 3 j

)
24ρ

∴ RL =
1

18ρ

[
(24ρ(3i + 2 j)− 6ρ

(
9

2
i + 3 j

)]
=

5

2
i +

5

3
j

Therefore, both methods have given as the centre mass

(x, y) =

(
5

2
,

5

3

)
.

4. ANALYSING THE SOLUTION: Is it correct? Does the solution make sense?

Compare the end result to the centres of mass of other similar objects. Yes, the

result does make sense. For a whole 4 × 6 rectangle without the corner cut out, the

centre of mass would be at the point (3, 2) . Now, the centre of mass still lies along the

diagonal of the large 4× 6 rectangle, but some distance from the centre, away from the

cut-off corner, as we would expect.

Try to think of alternative ways to find the centre of mass. We have already used

two different methods. Just for the sake of illustration, let us try another method —

direct slicing and integrating.

Is the case similar to one we have already done? Yes, in fact, we can view the

object as the lamina bounded by the X -axis and the step function

y = f (x) =

{
4, 0 ≤ x ≤ 3

2, 3 ≤ x ≤ 6

between x = 0 and x = 6. Then, in terms of equations (6.5) and (6.6),

x =

∫ 6

0

x · f (x) dx∫ 6

0

f (x) dx

=

∫ 3

0

x · 4dx +

∫ 6

3

x · 2dx∫ 3

0

4dx +

∫ 6

3

2dx

=
5

2

y =
1
2

∫ 6

0
[ f (x)]2dx∫ 6

0
f (x)dx

=
1
2

∫ 3

0
(4)2dx + 1

2

∫ 6

3
(2)2dx∫ 3

0
4dx +

∫ 6

3
2dx

=
5

3
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Again, we got the same result.

Re-do the calculations with a different coordinate system – this should also be

easy to do. If we, for instance, take the origin to be in the middle of the big 4 × 6

rectangle, while keeping the directions of the X - and Y -axis the same, then the centre

of mass will have the coordinates (x, y) =
(
− 1

2
,− 1

3

)
, which clearly refers to exactly

the same point on the lamina.

Compare with experiments and guesses based on real-life objects. We could

roughly check our solution by using a cardboard cut-out for the lamina. Cut out an

object with the same proportions as our lamina here from thick, uniform cardboard,

and check that you can balance it at the end of a pencil situated exactly at the alleged

centre of mass.

Think of other systems where a similar approach would work. Try to generalise

the result. Our approach (all three of them) will of course apply in many other situ-

ations. One interesting question might deal with generalisations of the result we have

derived here. Firstly, what if we have any rectangular lamina, and out of one of its

corners we cut a smaller rectangle with the same proportions as the big one. Does the

centre of mass of the lamina obtained always lie on the diagonal of the big rectangle,

as it did here? Secondly, where did the values 5/2 and 5/3 come from? To clarify this,

we could see what happens if we replace the “number problem” we have here with a

more general “letter problem”. So, we could instead solve the following problem: a
1
2
a × 1

2
b rectangle has been cut off from the corner of an a × b rectangle. Find the

centre of mass of the lamina thus obtained.

Another possible generalisation could go as follows: cut off a ca × cb rectangle from

an a×b rectangle, where c can be any number between 0 and 1.We can find the centre

of mass of such a lamina for all values of c and b, and check that taking c = 1/2
gives the same value as here; and that the case c = 0 gives the midpoint of the a × b

rectangle. (What about c = 1?)J

Activity 7.3

A 2 × 2 square has been cut off from one corner of a 8 × 10 rectangle made from thin uniform metal. Find the

centre of mass of the remaining object.

Remember to specify your coordinate system! In addition to giving the coordinate position of the centre of mass,

describe also where on the rectangle it lies.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The centre of mass is at the distance 4/19 parallel to the longer side, and the distance 3/19 parallel to

the shorter side, away from the cut–off corner.

Example 7.5

The uniform lamina shown below consists of a semicircle of diameter 2a, on top of a

square with sides 2a. Find the distance of the centre of mass from the base of the square.
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Solution:

1. UNDERSTANDING THE PROBLEM: The sketch shows clearly the shapes, size and

relative positions of the two parts forming the lamina. Since the object is described as

a lamina, we know that the semicircle here is half of a circular lamina, not just a thin

rod in the shape of a semicircle. We are not given the masses of the two parts. But,

we are told that the lamina is uniform, so that we can assume a value for the density ρ,
and then should be able to find the masses from the areas of the objects.

2. PLANNING A SOLUTION: We shall have to use the formula for finding the centre

of mass of composite bodies, and for that we need to find the centres of mass of the

two laminas: the square and the semicircle. But we already know where their centres

of mass are: the centre of mass of the square is at its centre (in terms of symmetry) and

for the semicircle, we can use the result in Example 6.8, which states that the centre of

mass of a uniform lamina, in the shape of a semicircle with radius a, lies at a distance

4a/3π from the diameter.

Can the toolbox for simplifying be applied to the entire system? Yes, it is clear

that a vertical line through the centre of the lamina is a line of symmetry, and if we

select a coordinate axis to go along this line, then we only have to find one coordinate

of the centre of mass.

3. EXECUTING THE PLAN: Introduce a suitable coordinate system, and draw a

sketch of the entire system with the coordinates. Take the X -axis to go along the

middle of the lamina, as shown. In terms of symmetry, the centre of mass must be on

the X -axis. Since we are told to find the distance of the centre of mass from the base,

we might just as well take the origin to be at the base of the square.

0

X

a

2a

3a

Introduce mathematical notation. Let x1 and x2 denote the X -coordinates of the

square and the semicircle, and let M1 and M2 denote their masses, respectively. Ex-

press the centres of mass of the components in terms of this coordinate sys-

tem. The centre of mass of the square is in the middle of the square, so that it has the

X -coordinate x1 = a. The centre of mass of the semicircle lies a distance of 4a
3π above

its diagonal, so in terms of our coordinate system it has the X -coordinate x2 = 2a+ 4a
3π .
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(Remember that the X -axis starts at the bottom of the square!) Find the masses of

the components. The area of the square is 4a2, so that its mass is M1 = 4ρa2 where

ρ is density (mass per unit area). The semicircle has an area of 1
2
πa2 and therefore its

mass is M2 =
1
2
ρπa2 . Hence, for the whole lamina the centre of mass is

x =
M1x1 + M2x2

M1 + M2

=

(
4ρa2

)
a +

(
1
2
ρπa2

) (
2a + 4a

3π

)
4ρa2 + 1

2
ρπa2

=
2

3

14+ 3π

8+ π
a

The centre of mass of the lamina lies a distance of 2
3

14+3π
8+π a, or approximately 1.

4016 a from the bottom of the square.

4. ANALYSING THE SOLUTION: The solution is credible: we would expect the centre

of mass to lie somewhere within the upper half of the square. To check the solution,

we could try alternative approaches (e.g. view this as a lamina bounded by a curve),

or change the coordinate system, but all the other methods are much more complicated

than the one presented here!J
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Activity 7.4

The uniform solid shown below consists of a hemisphere of radius a on top of a cylinder of height h with a base

radius a. Find the distance of the centre of mass from the base of the cylinder.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: you should get (3a2 + 8ah + 6h2)/(8a + 12h).

7.2.2 The motion of the centre of mass of a general system

The motion of the centre of mass is again described by the same equation,

F = M R̈

where F is the sum of all the external forces acting on the system (that is, of all the external

forces acting on any bodies or particles which form a part of the system), M is the total

mass of the system and R̈ is the acceleration of the centre of mass.

However, in this case we need to be careful about what forms part of the system and what

does not; and which forces are internal and which external to the system. To illustrate the

possible problems, consider the following situation.

Example 7.6

Atwood’s machine consists of two masses of masses m and M hanging from a string which

runs smoothly over a pulley.

For the system consisting of the two masses, there are no internal forces; all the forces are

external. (At least, if we ignore the very very small gravitational pull that the two masses

exert on each other!)

If, on the other hand, we decide to look at the system consisting of the two masses plus

the string, then the tension of the rope is an internal force, while the external forces are the

forces of gravity and a normal force from the pulley on the rope. Note that if the string is

very light, the centre of mass of this system is more or less the same as that of the system

consisting of the two masses alone!
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For the system consisting of the pulley, the string and the two masses, the external forces

are the forces of gravity on all the components, plus a normal force at the centre of the

pulley (the force which holds the pulley in the place).J

Here is a checklist of what you have to do in order to apply the equation of motion above.

TOOLBOX FOR APPLYING THE EQUATION FOR THE MOTION OF THE

CENTRE OF MASS OF A SYSTEM

The equation for the motion of the centre of mass of a system, given by F = M R̈

links

• the acceleration of the centre of mass,

• the external forces acting on the system, and

• the total mass of the system.

Thus, given two of these we can find the third. Usually, we wish to find the accel-

eration of the centre of mass from the mass and forces acting on the system, so

we shall design our toolbox around that problem and leave it for you to modify the

toolbox for the other two cases!

To find the acceleration of the centre of mass of a system, we shall have to identify

the mass and the resultant external force acting on the system. The following

checklist will help you do that.

1. UNDERSTANDING THE SYSTEM

Here, you must understand what the system is like:

• What are the components? (size, shape, consistency: uniform, massless,..)

• How are the components related to each other? (relative positions, do they

touch each other, linked by a string, is there friction between them...)

You must also make sure that the system is what you think it is. Change your

definition of the system if necessary.

You might make use of the following tools:

• knowledge of the language of mechanics problems, and using keywords for

clues about positions, objects and their properties, types of motion etc.

• sketches and diagrams

• real-life examples and experiments

• mathematical notation for known and unknown quantities

2. PLANNING A SOLUTION

To be able to apply the equation of motion, we need to find the mass of the sys-

tem and the external forces acting on it. Do we have the information necessary

for doing that?

MASSES:

• Are we given the masses of all the components? If not, can we calculate

them? Or do we know the relative sizes of the masses?
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FORCES:

• For each component which forms a part of the system, identify all the forces

acting on it. (List them, and also draw them in your sketch.) Categorise the

forces acting on the component into internal ones (due to another compo-

nent which forms part of the system) and external ones.

• Check your categorisation: All internal forces should appear in action-reaction

pairs.

• Now, ignore all the internal forces, but list all the external forces acting on

the various components. These all form the external forces acting on the

system.

• Are some of the external forces unknown? If so, then we may need further

information linking the motions of the components of the system.

If you cannot identify the masses and/or the forces, you may have to check that

you have chosen your system correctly.

3. EXECUTING THE PLAN

To apply the equation of motion, you will have to

• introduce mathematical notation and symbols for the masses and forces.

• calculate the masses of the components, if necessary

• introduce a suitable coordinate system; draw a sketch of the entire system

and the external forces with the coordinate system; express the vectors of

the external forces in terms of this coordinate system; introduce notation for

the acceleration of the centre of mass based on this system

• write down the equation for the motion of the centre of mass of the entire

system in terms of the coordinate system

• add equations describing extra information about the motion of the system

if some of the forces are not known

• solve the equation(s) for the acceleration of the centre of mass

• express this acceleration in relation to the system itself, if required

4. ANALYSING THE SOLUTION

• Does the solution make sense? Compare it with experiments and guesses

based on real-life objects.

• Try to think of alternative ways to solve the problem.

If your solution seems to be wrong, you should

• find out where you went wrong, by checking the argument and the calcula-

tions

• make sure that your system is as you intended

To reflect and learn from the solution, you can

• think of other systems where a similar approach would work; try to gen-

eralise the result; compare this problem with other systems that you have

come across: what are the differences and similarities?

If some of the forces are unknown, and if you need information relating to the

relative motion of the components, then you may also have to write down the

equations of motion for the individual components!
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Example 7.7

A system consists of a block with mass M placed on top of a plank of mass 2M. The

coefficient of friction between the plank and the block is µ. The plank in turn rests on

a smooth, horizontal surface. Initially, the system is at rest. The plank is pulled with a

constant horizontal force F .

(a) Find the horizontal acceleration of the centre of mass of the system.

(b) How does the plank move if there is no friction between the plank and the block?

Solution:

UNDERSTANDING THE SYSTEM: The system consists of the plank (mass 2M) and

the block (mass M). The block is on top of the plank, and the plank is on top of a smooth

surface. Thus, the following sketch describes the situation:

ForceF
Block

Surface

Plank

The coefficient of friction between the block and the plank is given, and there is no friction

between the plank and the surface. The plank is now pulled with a constant horizontal

force F . The direction of F is not given, but we can assume that it is towards the right.

(a) Find the horizontal acceleration of the centre of mass of the system. To answer this

question, we shall apply our toolbox.

PLANNING A SOLUTION: We have to find the mass of the system and the ex-

ternal forces acting on it. Masses: The masses of the plank and the block are given.

Forces: All the forces acting on the block and the plank are shown below. Note that we

have left a gap between the block, the plank and the surface, in order to make it easier to

see which object each force acts on.

The forces on the plank are the horizontal force F towards the right, gravity 2Mg down-

wards, the normal force N 1 from the block downwards, the normal force N 2 from the
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surface upwards, and friction f from the block, in the direction opposite to F, that is, to-

wards the left. The forces on the block are gravity Mg downwards, the normal force N 1

from the plank upwards, and friction f from the plank, towards the right. Categorise the

forces into internal and external one: The external forces are the force F, the forces

of gravity 2Mg and Mg, and the normal force N2 on the plank from the surface. All the

other forces are internal. Check: The forces f and N 1 appear in action-reaction pairs,

as internal forces should. Are some of the external forces unknown? The normal

force N 2 is in principle unknown, but can be solved very quickly from the fact that we

know that the plank-block system will travel along the surface, and therefore the upwards

force N 2 must be just sufficient to counter the downwards forces Mg and 2Mg; that is,

N 2 = 3Mg. (Similar reasoning gives N 1 = Mg.) Anyway, we are only told to find the

horizontal acceleration of the centre of mass, so we could just ignore the vertical forces.

We have already introduced notation for the forces. The total mass of the system is

(M + 2M) = 3M. Introduce a suitable coordinate system, draw a sketch of the

entire system and the external forces with the coordinate system, and express

the vectors of the external forces in terms of this coordinate system. Introduce

notation for the acceleration of the centre of mass based on this system. Let us

introduce a coordinate system where the X -axis lies along the surface, and the Y -axis is

perpendicular to it, as usual. A sketch with the external forces shown in it looks as follows:

The forces can be written as F = Fi, 2Mg = −2Mg j, Mg = −Mg j and N 2 = N2 j .

Let ẍ and ÿ denote the horizontal and vertical acceleration of the centre of mass, so that

R̈ = ẍ i + ÿ j . Write down the equation of motion:

Fi − 2Mg j − Mg j + N2 j = 3M

(
ẍ i + ÿ j

)
or, in component form (combining and matching the coefficients of i and j),

F = 3Mẍ,

−2Mg − Mg + N2 = ÿ.

After applying the result N2 = 3Mg, this gives us

ẍ =
F

3M
,

ÿ = 0.

That is, the centre of mass of the system starts to move towards the right, with acceleration



130

F
3M
.

(b) How does the plank move if there is no friction between the plank and the block? So

far, we have only found a description of how the centre of mass of the entire system

moves. To investigate motion of the individual components, we would have to apply

the equations of motion to the components separately. In this case of zero friction

between the components, this turns out to be particularly easy. Namely, looking at the

sketch above, showing all the internal and external forces acting on the block and the

plank, we see that if we remove the forces f towards the left and the right (no friction

acting between the block and the plank), then the only horizontal force acting on the

plank is the force F pulling it towards the right. But then the horizontal acceleration

ẍ plank of the plank alone must be given by the equation of motion

F = (2M) ẍ plank

and therefore, if there is no friction between the plank and the block, the plank will

have the acceleration

ẍ plank =
F

2M

towards the right. To check this result, we can compare it with the acceleration of the

centre of mass we have calculated earlier. If there is no friction, then no horizontal

forces act on the block, and therefore the horizontal acceleration of the block is zero (it

stays in its initial position). It follows that the acceleration of the centre of mass should

be equal to

ẍ =
(2M) ẍ plank + Mẍblock

2M + M
=

2M · F
2M
+ M · 0

3M
=

F

3M

and this is exactly what we got earlier.J

Example 7.8

Two identical containers of sugar are connected by a massless cord that passes over a

massless, frictionless pulley with a diameter of 50 mm. The two containers are at the

same level. Each originally has a mass of 500 g.

(a) Locate the horizontal position of the centre of mass of the two containers.

(b) 20 g of sugar is transferred from one container to the other, but the containers are

prevented from moving. Locate the new horizontal position of their centre of mass.

(c) The two containers are then released. In what direction does the centre of mass of the

two containers move? What is its acceleration?

Solution:

A sketch of the system might look like this:
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The shapes of the containers do not matter, but it is important to note that their centres of

mass are a distance of 50 mm apart. Since the masses of the containers differ in (a) and (b),

we have just labelled the containers as 1 and 2. The containers are shown in their initial

positions, which is valid for (a) and (b) — in (c), the containers will move.

Example 7.9

We will have to introduce a coordinate system to be able to answer the questions. Let us

choose a coordinate system such that the origin is in the middle of the left–hand container,

container 1, in the initial position, as shown below. The units on the X - and Y -axes are in

millimetres.

(a) The positions of the centres of mass of the two containers are (x1, y1) = (0, 0) and

(x2, y2) = (50, 0) . Since initially the containers have the same mass, their centre of

mass is halfway between them, at position (x, y) = (25, 0).

(b) Let us now move 20g from container 1 to container 2, but keep the positions of the

containers the same as before. The two containers will then have the masses m1 = 480,
m2 = 520. We still have y = 0, but now

x =
0 · 480+ 50 · 520

480+ 520
= 26.

The new centre of mass is at (26, 0) . That is, the centre of mass is now 1 millimetre

from the midpoint, towards the heavier container (container 2).

(c) We will use our toolbox to answer this question.

UNDERSTANDING THE SYSTEM: What are the components? How are the
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components related to each other? We wish to analyse the system consisting of

the two containers, so the components are the two containers. The masses of the two

components are m1 = 480 and m2 = 520 grams, respectively. The size and shape

are irrelevant here. The components are linked by the following condition: they are

suspended at the two ends of a massless cord which passes over a massless, friction-

less pulley, with a diameter of 50 mm. This means, firstly, that there is always a link

between the positions of the two containers: they always move vertically, not horizon-

tally, so that the horizontal distance between their centres of mass is always 50 mm;
and they always move in such a manner that if one container goes up by the distance d,
then the other container must go down by the same distance d. Secondly, the fact that

the cord passes smoothly over the pulley means that the tensions on the rope on each

side of the pulley are the same. This result we shall need later on!

PLANNING THE SOLUTION: Masses: We do know the masses of the components:

m1 = 480 and m2 = 520 grams, respectively. Forces: The forces acting on the

containers are shown in the sketch below.

T

m1 g m2 g

T

On container 1, they are the tension of the cord, T, upwards and gravity, m1g down-

wards; and on container 2, the tension of the cord, T, upwards and gravity, m2g down-

wards. The tensions on the cord are the same for both containers, since the cord passes

over the pulley without friction. All the forces listed here are external to the system,

there is no internal force on one container directly due to the other container! The con-

tainers affect each other only indirectly, through the tension on the cord. Note that the

tensions T acting on the two containers do not form an action-reaction pair – they act

in the same direction, not in opposite directions! Thus, the resultant external force on

the entire system is the sum of 2T upwards, plus (m1 + m2)g downwards.

EXECUTING THE PLAN: We already have a coordinate system in place and, in terms

of this coordinate system, the total external force acting on the system is given by

F = 2T j − (m1 + m2)g j .

The total mass of the entire system is M = m1 + m2. Finally, let R denote the centre

of mass of the system and let R̈ denote its acceleration. The equation for the motion of

the centre of mass then tells us that

M R̈ = F

which in our case gives us the equation

(m1 + m2)R̈ = 2T j − (m1 + m2)g j . (7.3)

If R̈ =
(

ẍ i + ÿ j

)
, so that ẍ and ÿ are the vertical and horizontal components of the

acceleration of the centre of mass, respectively, then by separating (7.3) into its i and

j components, we see that

(m1 + m2)ÿ = 2T − (m1 + m2)g,

ẍ = 0.

Now, the force T is still unknown, which means that we have to add at least one other

condition about the way that the containers move. (Remember that the number of
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equations should be the same as the number of unknowns!) We need another condition

where T appears. This can be included by also considering the equation for the motion

of one of the containers. Let us look at the lighter one, container 2. The equation of

motion for that one is

T − m1g = m1a

if a denotes the acceleration of the container (positive acceleration being upwards).

Adding this equation added another unknown quantity, a, so we need yet another con-

dition. But, we have not yet used the fact that one container must always go up at

exactly the same rate that the other container goes down. This fact states that if the

vertical acceleration of container 1 is a, the vertical acceleration of container 2 must be

−a.We would like to link this condition to our already existing variable ÿ, the vertical

acceleration of the centre of mass of the two containers. This is easy to do, simply by

expressing the acceleration ÿ in terms of the acceleration of the containers:

ÿ =
m1a + m2 (−a)

m1 + m2

=
m1 − m2

m1 + m2

a.

Now we have three unknowns (ÿ, a, T ) and three equations,

(m1 + m2)ÿ = 2T − (m1 + m2)g

ÿ = m1−m2

m1+m2
a

T − m1g = m1a

Solving these equations for ÿ, we find that the acceleration of the centre of mass is

R̈ = −
(m2 − m1)

2

(m1 + m2)2
g j . (7.4)

In particular, using the values m1 = 480, and m2 = 520 and g ≈ 9.81 m/s2, we get

R̈ ≈ −0.016 j
m

s2
.

We see that the acceleration of the centre of mass is in the negative y direction, which

means that the centre of mass moves straight down.

ANALYSING THE SOLUTION: Does the solution make sense? We would expect

the centre of mass to move downwards, since no horizontal forces act on the system.

Also, if we look at the solution in (7.4) in terms of m1 and m2, we see that

• if m1 = m2 (i.e. if both containers have the same mass) then the acceleration of the

centre of mass is zero, which is as we would expect (neither of the containers will

move when the system is released)

• regardless of the sizes of m1 and m2, the centre of mass will always accelerate

downwards when m1 6= m2

• the bigger the difference between the masses m1 and m2, the bigger the acceleration

of the centre of mass

All these observations give credibility to the result (7.4), and again show that it is often

preferable to solve a “letter problem” rather than a “number problem”!

Try to think of alternative ways to solve the problem. The acceleration of the centre

of mass can alternatively be found as

R̈ =
m1 r̈1 + m2 r̈2

m1 + m2

where r̈1 and r̈2 are the accelerations of the centres of mass containers 1 and 2. So,

one alternative approach here is to apply the equations of motion separately to the two

containers, and then apply this equation to find the acceleration of the centre of mass
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of the system. In the following we will give the solution using this method.

Since the containers are joint together by a rope, clearly the accelerations are in the

Y -direction, and r̈1 = −r̈2 (if one container moves the distance x up, the other one

must move down by the same distance). Denoting r̈1 = a j, we have

R̈ =
m1 − m2

m1 + m2

a j .

To find the value of a, we apply Newton’s second law to both containers. The forces

acting on each container are gravity downwards, and the tension of the rope upwards.

The tension of the rope is the same (T j) for both containers, because the rope passes

over a massless, frictionless pulley.

The equations of motion are therefore{
T j − m1 g j = m1 a j

T j − m2 g j = −m2a j
⇒

{
T − m1g = m1a

T − m2g = −m2a

from which we can solve a to get

a =
m2 − m1

m1 + m2

g.

This will again give

R̈ =
(m1 − m2)

2

(m1 + m2)
2

j .

Note that in this case, it was perhaps easier to use the second method, and just look at

all the components separately! This is because we had to sort out the unknown force

T, which is an external force on our system.
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Think of other systems where a similar approach would work. Try to gener-

alise the result. Compare this problem with other systems that you have come

across: what are the differences and similarities? We have already generalised

the problem, when we solved it for general masses m1 and m2, rather than the given

specific numerical values.J

The following activities give you a chance to practice all these ideas.

Activity 7.5

Solve the following problem, by using the way that the centre of mass of the whole system behaves.

Problem: Two people, one with a mass of 60 kg and the other one with a mass of 80 kg, stand on a smooth,

frictionless surface holding a pole with a length of 10 m and negligible mass. Starting from the ends of the pole,

they pull themselves along the pole until they meet. How far will the 60 kg person move?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The answer is: 5.7 metres.

Activity 7.6

(Note: In this question, consider carefully what you coordinate system will be!)

A 75 kg man climbs the stairs from the ground to the 20th floor of a building, a height of 60 m. How far

does the Earth recoil in the opposite direction? (The mass of the Earth is M = 5.98 × 1024 kg and its radius,

R = 6.4× 106m.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: 7.53×10−22 metres.

CONCLUSION

In this unit you have learned

• how to find the centres of mass of a rigid body and of a system consisting of rigid

bodies and/or particles

• how the centre of mass of a rigid body moves, and how the centre of mass of a general

system moves

Remember to add the following tools to your toolbox:

• The principle that the resultant external force acting on a body, or a system of

bodies/particles, is proportional to the acceleration of the centre of mass

• the fact that zero external force implies zero acceleration for the centre of mass

• the toolbox for finding the centre of mass of a general system

• the toolbox for analysing the motion of the centre of mass of a system
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CONTENTS OF LEARNING UNIT 3

Study unit 8 The moment of a force

Study unit 9 Angular momentum

Study unit 10 A rigid body rotating about a fixed axis

Study unit 11 More calculations of moments of inertia

Study unit 12 Applications of the equation for pure rotation

Introduction

In Learning Unit 2 we learned how the motion of a system of particles or a rigid body

can partially be described by the simpler motion of its centre of mass. But of course the

behaviour of the centre of mass does not tell the whole story, as it cannot describe the

motion of the particles in the system relative to each other.

For a general system of particles, the motion of the particles with respect to each other

and with respect to the centre of mass can be very complicated (consider, for instance,

a handful of rice tossed into the air!) We will not even try to describe the situation for

a general system. However, we certainly wish to be able to understand and describe the

motion of simpler objects such as pencils or bottles, which should be easier to deal with!

Even for these kinds of objects, it is clear that knowing the motion of the centre of mass is

not enough for a full description of the motion of the object. The reason for this is that the

motion of the centre of mass does not take into account where on the object the forces are

applied – but this does clearly make a big difference! Consider, for instance, the action of

kicking an empty cardboard box: depending on where you kick it, you can make it rotate

clockwise or counterclockwise, or you can make it move straight forward. Yet, if the force

in your kick does not vary, the centre of mass of the cardboard will always move in an

identical way.

Another dramatic illustration of this is seen by applying two equal, but opposing forces to

an object. As an example, consider the rod shown below, acted on by two opposing forces

of magnitude f. In all the cases shown below, the total force acting on the rod is zero, so

that according to the results in Learning Unit 2, the centre of mass has zero acceleration.

However, the actual motion of the rod is very different in each case.
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f f
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f

f
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In this section, we will concentrate on the case of rigid systems or bodies, where all the

particles which form the system are held in fixed positions with respect to each other and

with respect to the centre of mass. In this case, the only way the particles or parts of the

system can move with respect to each other is by rotation.

For a rigid system or body, the situation is simple. It can be proved that the motion of a rigid

body can be fully described by a combination of two independent motions, translation

and rotation. Each of these can be analysed separately. The translational motion can be

described in terms of the motion of the centre of mass, as described in Learning Unit 2.

The rotation is described in terms of the rotation of the rigid body about its centre of mass.

Here, in Learning Unit 3, we will develop techniques to deal with the rotational motion of

rigid bodies.

To describe and analyse translational motion, we used the concepts of force, linear mo-

ment, mass and acceleration, and Newton’s laws of motion were used to describe how

acceleration is caused by force. For rotational motion we shall introduce the analogous

concepts of the moment of a force, angular momentum, moment of inertia and angular

acceleration, and we shall derive an equation of rotation to describe how angular accel-

eration is caused by the moment of a force.

To describe how force causes rotation, we shall have to introduce various concepts: vector

products, the angular momentum, the moment of a force, and moments of inertia. Some

of these concepts may well be new to you, and may appear difficult, but the final equation

of rotation is very simple to use — so please be patient!

The outcomes of Learning Unit 3

When you have worked through this Learning Unit of the study guide, you should

be able to

• calculate the vector product of given vectors by using the direct definition and

by using the unit vectors

• calculate the moment of a force acting at a point about any given point of ref-

erence

• find the angular momenta of particles and systems of particles, explain the

connection between the moments of forces and the angular momentum of a

system of particles, and explain how the equation of rotation of a rigid body

rotating about a fixed axis follows from this

• find the moment of inertia of a system of particles or a rigid body by using the

definition, together with the techniques of integration, parallel and perpendicu-

lar axis theorems, and the rule for composite bodies

• apply the equation of rotation for a rigid body rotating about a fixed axis, to

solve problems
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Unit 8 THE MOMENT OF A

FORCE

Key questions:

• How is the moment of a force found?

• What does it mean?

To change the way the centre of mass of a rigid body moves, a non-zero resultant force has

to act on the body. Similarly, to change the way that a rigid body rotates about a point, a

non-zero resultant moment of force must act on it. The moment of a given force about a

given point measures the turning effect of the force relative to that point, and will depend

not only on the magnitude and direction of the force, but also on where on the body it acts.

It turns out that the perfect way to measure the turning effect of a force is by means of a

mathematical concept called the vector product. In this unit, we will introduce the vector

product and define the moment of a force.

Contents of this unit:

8.1 The vector product

8.2 The moment of a force

What you are expected know before working through this unit:

In this unit, we introduce to you the vector product; to be able to make sense of it, you

should know how to work with vectors in three dimensions. Also, it will be important that

you can express and understand forces as vectors.

8.1 The vector product

Various quantities relating to rotation are defined as vector products, so we will start by

introducing this concept. The vector product of two vectors is also a vector, with a direction

and a magnitude. (Compare this with the scalar product of two vectors, which just gives a

real number as a result).

Consider two vectors a and b, as shown in the figure below.
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To define the vector product of the two vectors a and b, denoted by a × b, we need the

following:

• the magnitudes of the two vectors, that is, the values |a| and |b|

• the smaller angle from a to b, which we will denote by θ

• a unit vector nab, also shown in the diagram

The vector nab is a unit vector at right angles to the plane containing a and b, such that the

vectors a, b and nab form a right-handed system. What this means is illustrated below.

Three vectors a, b and c (in that order) are said to form a right-handed system if the

following holds: Put the fingers of your right hand along vector a, and curl them toward

b in the direction of the smaller angle from a to b; then your thumb points in the direction

of c. Or, to put it another way, if vector c is grasped by the right hand with the thumb lying

along c, then the fingers wrap around c in the direction from a to b through the smaller

angle. Note that, depending on the orientation of the vectors, the hand may have to be

upside down!

Alternatively, if we imagine looking “down” from the end of vector c to the plane where a

and b are, then the motion from a to b through the smaller angle between them is always

counterclockwise.

Note that the X -, Y - and Z -coordinate axes, in the way we draw them in this study guide,

form a right-handed system, and so do the combinations Y, Z , X and Z , X, Y.
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Use your three-dimensional model of the coordinate system to make sure that you

understand this! See unit 2.

However, the vectors a, b and c do not have to be at right angles to each other to form

a right-handed system. What is important is their “relative directions”. Also, always

remember that the order of the vectors is significant here! For instance, Y, X, Z is not

a right-handed system!

The vector product a × b is now defined as follows:

Definition 8.1 (vector product)

Let a and b be vectors. Then the vector product of a and b is defined as the vector

a × b =
∣∣a∣∣ ∣∣b∣∣ sin θ nab, (8.1)

where
∣∣a∣∣, ∣∣b∣∣ are the magnitudes of the vectors a and b, θ is the smaller angle from a to

b, and the vector nab is a unit vector such that a, b and nab form a right–handed system.

Thus, the vector product a × b is a vector, with a magnitude and a direction. Hence the

name “vector product”. (Another name sometimes used for the vector product is the cross

product, because of the notation.)

The magnitude of the vector a × b is
∣∣a∣∣ ∣∣b∣∣ sin θ , so that it depends on the lengths of the

vectors a and b and on the angle between them.

The direction of the vector a × b is determined by the direction of the unit vector nab.

The unit vector nab must be perpendicular to the plane formed by the vectors a and b.

There are two possible unit vectors which are perpendicular to that plane. Which one

is nab depends on the relative positions of a and b, as we must choose the unit vector

which satisfies the condition that a, b and nab form a right-handed system. Compare the

following (these are side-views of a three-dimensional system):

To make this even more clear, we will re-draw these pictures such that a and b are on the

plane of this page.
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b

a b

a

Now, since a and b are parallel to the page, the unit vector nab must be perpendicular to

the page and must thus be either directed out of the page or into the page. The right-hand

rule (that is, requesting that we get a right-handed system) states that in the case shown on

the left, the unit vector is directed out of the page (towards you) and in the case shown on

the right, the unit vector is directed towards/into the page (away from you).
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Activity 8.1

Use the right-hand rule to answer the following question.

The two vectors a and b lie on the plane of this page, as shown. In each case, is the vector product a× b oriented

towards the viewer or away from the viewer? (You may wish to re-draw some of the vectors to start from the

some point!)

A.

b
a

B.

ba

C.

b
a

D.

b
a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Towards the viewer in A and D, away in B and C.

Properties of the vector product

1. From the definition of the vector product, it follows that the vector a × b is always

perpendicular to both vector a and vector b .

2. From the way the unit vector nab was defined, it is at once clear that

nab = −nba .

Also, the smaller angle θ from a to b is trivially the same as the smaller angle from b
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to a. Therefore it follows that

b × a =
∣∣b∣∣ ∣∣a∣∣ sin θ

(
−nab

)
.

Thus, we have

a × b = −
(
b × a

)
. (8.2)

Note that this means that the vector product is not “commutative”: a×b is not the same

vector as b × a, but is instead its opposite (that is, a vector with the same magnitude

as a × b, but with opposite direction). It is very important to remember that the order

of the two vectors is significant (unlike, for instance, in the ordinary product of real

numbers, where the order does not matter: 3 · 2 = 2 · 3 = 6, or the scalar product or

two vectors, where a · b = b · a also always holds).

3. If either a or b or both of them are zero vectors, that is, have length zero, then of course

a × b = 0.

4. If a and b are parallel (travelling in the same or opposite directions) to each other, that

is, their directions are either the same or opposite, then the smaller angle between them

is either θ = 0◦ or θ = 180◦. Either way, sin θ = 0, and thus in this case we also have

a × b = 0.

That is, the vector product of any two parallel vectors is zero. In particular, for any

vector a, the vector product of the vector with itself vanishes:

a × a = 0. (8.3)

5. Inversely, if a×b = 0 then there are two possibilities: Either at least one of the vectors

a or b is zero, or else sin θ = 0, which means that the vectors a and b are parallel. This

gives us a useful criterion for determining whether two non-null vectors a and b are

parallel, namely, we must have a × b = 0. (Compare this with the scalar product of

two vectors: there, a · b = 0 for two non-zero vectors if, and only if the vectors are

perpendicular to each other.)

6. Let a and b be two vectors of magnitudes
∣∣a∣∣ and

∣∣b∣∣. The magnitude of a × b, given

by
∣∣b∣∣ ∣∣a∣∣ sin θ, will then still depend on the smaller angle θ between the two vectors.

We see that the magnitude of a × b obtains its maximum value when a and b are

perpendicular to each other, since sin θ obtains its maximum absolute value (sin θ = 1)

when θ = 90◦.

7. The following properties hold for the vector product and are stated here without proof:

(a) For any vectors a, b and c the following equalities hold:

c ×
(
a + b

)
= c × a + c × b(

a + b
)
× c = a × c + b × c (8.4)

This means that, just like with ordinary products, we can take the cross products

of the terms of a sum separately — just as we do in ordinary multiplication, where

2 · (3+ 4) = 2 · 3+ 2 · 4 and (2+ 3) · 4 = 2 · 4+ 3 · 4.

(b) If A is any number, then(
Aa
)
× b = A

(
a × b

)
a ×

(
Ab
)
= A

(
a × b

)
. (8.5)

From property number 7 above, we see that the vector product does behave very much like

any other product — but with the very important difference that the order of the vectors in

the product does make a difference to the end result. Also, please keep in mind that in the

notation of the vector product we always use the “cross” for the product — you can’t just
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drop it or replace it by a dot (even if this can be done in ordinary products). The “dot” or

scalar product a · b of two vectors is a completely different thing from the vector product!

8.1.1 How to calculate a vector product directly

Assume that we are given two vectors a and b. To calculate their vector product a × b

directly from the definition, we need the magnitudes of the two vectors and the size θ
of the smaller angle between them. From these we can determine the magnitude of the

vector product a × b. To find the unit vector nab, which gives the direction of the vector

product, we can, for instance, first find the two unit vectors which are perpendicular to

both a and b. (This can, for example, be done by setting up the equations x · a = 0 and

x · b = 0 which must be satisfied by a vector x which is perpendicular to both vectors;

or by determining first the plane generated by a and b and then finding the corresponding

“normal unit vectors”, that is, the unit vectors perpendicular to the plane.) We can then

decide which one of the two unit vectors satisfies the right-hand rule.

Example 8.1

Find the following vector product directly from the definition:(
2i
)
×
(
− j

)
where i, j and k are the unit vectors of the XY Z coordinate system.

Solution: The vector
(
2i
)

has a magnitude of 2, and the vector − j has a magnitude of 1.

The smaller angle between the two vectors is 90 ◦. Both the vectors are on the XY -plane,

and therefore any vectors which are perpendicular to both of them (and perpendicular to

the XY -plane) must be parallel to the Z -axis. This gives us two candidates for the unit

vector giving the direction of the vector product, namely k and −k. But
(
2i
)
,
(
− j

)
and(

−k
)

form a right-handed system, while
(
2i
)
,
(
− j

)
and k do not. (Check it out yourself!

For instance, looking down along from the end of the unit vector k, the vectors
(
2i
)

and(
− j

)
are situated like this:

j
2i

We see that motion from
(
2i
)

to
(
− j

)
over the shorter angle is clockwise, as indicated in

the sketch.) We conclude that(
2i
)
×
(
− j

)
= 2 · 1 · sin

(
90 ◦

) (
−k
)
= −2k.

The vector product is −2k. J

Activity 8.2

Find the vector product
(
k
)
×
(

3 j

)
directly from the definition (that is, by finding the magnitudes of the vectors,

the angle between them, the perpendicular unit vectors, and by using the right hand rule).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Feedback: you should get −3i .

8.1.2 How to calculate a vector product using unit vectors

In practice, we rarely use (8.1) directly to calculate vector products, but instead work with

the XY Z -components of the vectors. That is, we first express both the vectors a and b

in terms of the unit vectors i , j and k. The vector products of the unit vectors are easily

calculated and remembered:

i × j = k, j × k = i, k × i = j .

This follows from the fact that X, Y, Z , as well as Y, Z , X and Z , X, Y all form right-

handed systems.

Note that these are the only ones we need to remember; (8.2) can then be applied to get

j × i = −
(

i × j

)
= −k,

k × j = −
(

j × k

)
= −i,

i × k = −
(
k × i

)
= − j, (8.6)

and rule (8.3) gives

i × i = 0, j × j = 0, k × k = 0.

Now, using (8.4) and (8.5), it is very easy to reduce the vector product of any two vectors

to the vector products of these unit vectors. The following examples should make this

clear.

Example 8.2

If a =
(

2i − 3 j − k

)
and b =

(
i + 4 j − 2k

)
, find

(a) a × b

(b)
(
a + b

)
×
(
a − b

)

Solution:

(a)

a × b =
(

2i − 3 j − k

)
×
(

i + 4 j − 2k

)
= 2

(
i × i

)
+ 8

(
i × j

)
− 4

(
i × k

)
− 3

(
j × i

)
−12

(
j × j

)
+ 6

(
j × k

)
−
(
k × i

)
− 4

(
k × j

)
+ 2

(
k × k

)
(rules (8.4) and (8.5))

= 2 · 0+ 8k − 4
(
− j

)
− 3

(
−k
)
− 12 · 0+ 6i − j − 4

(
−i
)
+ 2 · 0

(rules (8.2), (8.3) and (8.6))

= 10i + 3 j + 11k
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(b) (
a + b

)
×
(
a − b

)
=

(
a × a

)
−
(
a × b

)
+
(
b × a

)
−
(
b × b

)
((8.4) and (8.5))

= 0−
(
a × b

)
−
(
a × b

)
− 0

((8.2) and (8.3))

= −2
(
a × b

)
= −2

(
10i + 3 j + 11k

)
= −20i − 6 j − 22k

Note in the calculations above how we used parentheses to clarify the order of the calcu-

lations. Remember that it is very important to pay attention to the order of the vectors

in the vector products! Also, remember to always denote the vector product with the “×”

symbol — you must not forget to write it down!

Example 8.3

If

a = 3i − j + 2k

b = 2i + j − k

c = i − 2 j + 2k,

calculate

(a)
(
a × b

)
× c,

(b) a ×
(
b × c

)
where the product in the brackets should be evaluated first.

Solution:

(a) (
a × b

)
× c

=
((

3i − j + 2k

)
×
(

2i + j − k

))
×
(

i − 2 j + 2k

)
=

(
−i + 7 j + 5k

)
×
(

i − 2 j + 2k

)
= 24i + 7i − 5k

(b)

a ×
(
b × c

)
=

(
3i − j + 2k

)
×
((

2i + j − k

)
×
(

i − 2 j + 2k

))
=

(
3i − j + 2k

)
×
(
−5 j − 5k

)
= 15i + 15i − 15k

Note that these results prove that the vector product is not associative — compare with the

ordinary multiplication of real numbers, where (1 · 2) · 3 = 1 · (2 · 3) always holds. In

ordinary multiplication, we can just write 1 · 2 · 3 to mean either one of the products, since

we know that the order does not matter. This cannot be done with the vector product!
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Again we are reminded of the fact that when calculating vector products, we must pay

close attention to the order of the vectors!

8.1.3 How to calculate vector products using determinants

If you are familiar with matrices and their determinants, you can use the following method

to evaluate the vector products of three-dimensional vectors: if x = ai + b j + ck and

y = di + e j + f k, then the vector product x × y is given by the determinant:

x × y = det

 i j k

a b c

d e f

 =
∣∣∣∣∣∣

i j k

a b c

d e f

∣∣∣∣∣∣ .
That is, to find the vector product of two vectors we create a matrix with the unit vectors

as the top row, the coordinates of the first vector as the next row, and the coordinates of

the second vector as the last row. The determinant of this matrix will then give the vector

product of the two vectors. The following example illustrates this.

Example 8.4

(
3i − j + 2k

)
×
(

2i + j − k

)
=

(
3i + (−1) j + 2k

)
×
(

2i + j + (−1)k
)

=

∣∣∣∣∣∣
i j k

3 −1 2

2 1 −1

∣∣∣∣∣∣
= i

∣∣∣∣ −1 2

1 −1

∣∣∣∣− j

∣∣∣∣ 3 2

2 −1

∣∣∣∣+ k

∣∣∣∣ 3 −1

2 1

∣∣∣∣
= (1− 2)i − (−3− 4) j + (3+ 2) k

= −i + 7 j ++5k.

The following activity gives you a chance to practice finding vector products. This is

something you must learn to do accurately, without much thought, so if you struggle,

please do more practice using the exercises provided in your workbook!

Activity 8.3

Calculate the following vector products:

(a)
(

3i + j − k

)
×
(
2k
)

(b)
((

i × j

)
× i

)
× i

(c)
(
2k
)
×
((

2i + k
)
+
(

j − k

))
(d)

(
2i + 2 j

)
×
(
−i − j + 5k

)
(e)

((
−i + 5k

)
×
(
6i + k

))
×
(

i + j

)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) 2i − 6 j,(b) −k; (c) −2i + 4 j ; (d) 10i − 10 j; (e) −30k.

By now, you should be able to calculate the vector products of any two vectors, but you

may have trouble visualizing what exactly the vector product means. (We certainly do!)

Perhaps one good way to describe the concrete meaning of a vector product is in terms of

the “turning effect”, as follows: Assume that we arrange the vectors a and b, both lying on

the plane of this page, one after the other, such that vector b starts the end point of vector

a.

O
b

a

If we now imagine that a represents a thin rod, nailed down to this page at its initial

point O, and that vector b is a force pulling at the end point of the rod a, then the end

result is that rod a will rotate about point O. The direction of the rotation (clockwise or

counterclockwise) now corresponds to the direction of the vector product a×b as follows:

the rotation will be counterclockwise if and only if a × b is directed out of the page,

towards the reader, and clockwise if and only if a × b is directed into the page, away from

the reader. If a and b are parallel to each other, there is no rotation, and a × b = 0. The

magnitude of the vector product a× b measures how effectively b will be able to turn a —

this depend on the lengths of the two vectors, but also the angle between them.

8.2 The moment of a force

The moment of force is now defined as a vector product, as follows. Let a reference point

O be given, and assume that a force F acts at a point P. Then the moment of the force

about point O is defined as follows:

Definition 8.2 (The moment of a force)

The moment of F about a point O is defined to be

M = r × F (8.7)

where r = O P is the position vector from O to the point P where the force F acts. In par-

ticular, the moment of a force is a vector, perpendicular to the plane containing both r and

F .

O

P

F
r

Note that the moment of a given force, acting at a point P , depends on the choice of

the reference point O: we must talk about the moment of F about a point O . If O is

changed, then the moment of the force will also change, even if it still acts at the same point

P. Likewise, for any force F , we can make the moment of the force about O disappear
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simply by choosing O = P , i.e. by taking the point of action P itself as the reference

point, since then the position vector is a zero vector: we have r = 0!

An important consequence of Definition 8.2 is that if the vectors F and r are parallel, then

r × F = 0 and thus M = 0.

O P
r F

M = 0

That is, if the line of action of the force passes through point O , then the moment of the

force about O is zero. (The line of action of a force being a line you get if you extend the

vector indefinitely in both direction. )

Since the moment of a force is defined as a vector product, it is a vector, perpendicular

to the plane containing both r and F . Since it is a vector, it has both a magnitude and a

direction.

For an illustration of the physical meaning of the moment of a force as a vector, consider

the situation where O and P are two separate points on a rigid body. If the body is fixed

at point O but free to turn in any direction around that point, then the effect of F acting

on the body at point P is to cause the body to rotate about O . The magnitude of M ,

i.e.
∣∣r ∣∣ ∣∣F∣∣ sin θ, gives a measure of the “turning effect” of the force on the body. The

magnitude is maximal when r is perpendicular to F (that is where sin θ reaches its largest

value, sin θ = ±1) and the magnitude is minimal (equal to zero) when r and F are parallel

(that is where sin θ = 0).

The magnitude of M in this case agrees with the torque of the force F about point O,
which you may have come across before (“the length of the lever arm times the size of the

perpendicular force” — note that
∣∣F∣∣ sin θ gives the length of the component of F which

is perpendicular to vector r ). The significance of the direction of the vector M on the

other hand is that it indicates the axis of rotation as well as the direction of rotation. By

the axis of rotation we mean a line through the point O about which the object will rotate
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at the given moment (the axis of rotation may change in time). The direction of rotation

tells us whether the rotation is clockwise or counterclockwise relative to some frame of

reference.

Assume, for instance, that both r and F are parallel to the XY -plane, in which case M is

parallel to the Z -axis. If O is the origin, then in fact the axis of rotation is the Z -axis it-

self. If O is some other point on the XY -plane, then the axis is some other line parallel to

the Z -axis. Now, if M is in the direction of the positive Z -axis, then the rotation is coun-

terclockwise on the XY -plane (as seen from the direction of positive Z -values). If M is in

the direction of the negative Z -axis, then the rotation is clockwise. This direction of rota-

tion (that a moment of force which is a positive multiple of the k unit vector corresponds to

counterclockwise rotation on the XY -plane) follows logically if we assume that our XY Z

coordinate system obeys the right-hand rule.

Here is another way to look at the link between the direction of the moment of a force

and the corresponding direction of rotation: Assume that the plane of this page is the XY -

plane, with the Y -axis going up and the X -axis extending towards the right. Then the

Z -axis is situated in such a way that it goes up from the page, towards the reader. Assume

now that O and P are on the plane of the page, so that the position vector r from O to

P is also along the plane of the page; and assume also that the force F is along the plane

of this page. Then the moment of the force is always either up from the page, towards

the reader, or into the page, away from the reader. The former holds if the rotation is

counterclockwise, and the latter if the rotation is clockwise. To determine whether the

rotation is clockwise or counterclockwise, imagine that the line from O to P is one of the

hands of a clock, with the fixed end at O . Now, if it is pulled at point P in the direction of

the force F, does the hand of the clock move clockwise or counterclockwise? Look at the

cases shown below, and make sure that you agree with the directions of rotation!

P

O

OO

O

P

P

P

F

FF

F
r

r

r

r

Clockwise

Counterclockwise

Clockwise

Counterclockwise

Note that the moment of a force as such does not necessarily have to be related to rotation;

a constant force acting on a freely moving particle will also have a non–zero moment about

a point O (e.g. the origin), as long as the force is not parallel to the position vector of the

particle. But in this case, the moment of the force will not cause the particle to rotate

about the origin; rather, it will move along a straight line with an acceleration determined

by Newton’s second law. Actual rotation can only arise when the force acts on a rigid

system. (However, even in the case of a particle the moment of a force does involve a

certain sense of rotation with respect to O , in the same way that we may say that an object

went past “clockwise” if it went past from left to right, and “counterclockwise” if it went
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past from right to left.)

It is important to remember that the forces and moments of forces are entirely different

quantities, despite the fact that moments of forces are caused by forces. For one thing, a

force is an absolute quantity, whereas the moment of a force is always defined with respect

to some specified point O. In particular, it is possible to have a system where the sum of

the forces (as vectors) is zero, but the sum of the moments of the forces is not zero, and it

is also possible to have a system where the sum of the moments of forces is zero but the

sum of the forces themselves is not zero. These two possibilities are illustrated below.

f
ff

f

O O

How can we calculate the moment of a force, then, if we have to do so? We might proceed

like this:

HOW TO FIND THE MOMENT OF A FORCE

• Firstly, we must make sure that the question is well defined — remember the

moment of a force is only defined with respect to a point of reference O. We’ll

have to identify the point O (about which we plan to take the moment), the point

P (at which the force acts), and the force F (its magnitude and direction).

• If a coordinate system is already given, fine; otherwise we will have to introduce

one.

• Next, we shall express the vectors r = O P and F in terms of the unit vectors

i, j and k.

• Finally, we shall calculate the value of the cross product M = r×F .

Must we really always introduce a coordinate system to find the moment of a force? After

all, the vector product itself was originally defined without any reference to a system of

coordinates! It is indeed possible to figure out the magnitude of the moment of a force

directly if we know just the lengths of the vectors r and F and the angle between them.

However, introducing a coordinate system and using the unit vectors to calculate the vector

product gives us a systematic way of finding the moment, decreasing the likelihood of

errors. Also, a coordinate system enables us to describe the moment vector in a more exact

way, without having to use phrases such as “the vector perpendicular to those two ones,

towards the left”.

Example 8.5

A force F = i + 2k acts at a point P with position vector i + 2 j − k. Find the moment

of F about (i) the origin, (ii) the point with position vector i − j .

Solution:

Identify the point O (about which we plan to take the moment), the point P (at

which the force acts), and the force F (its magnitude and direction). Here, P and

F are given, but O has different values in (i) and (ii). If a coordinate system is already

given, fine. The information in the question is already given in terms of a coordinate

system: we have F = i + 2k, and the point P has the position vector i + 2 j − k.
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(i) If we wish to find the moment about O = origin, then r = O P = i + 2 j − k, and

therefore the moment of F acting at P about O = origin is

M = r × F

=
(

i + 2 j − k

)
×
(
i + 2k

)
=

(
i × i

)
+ 2

(
i × k

)
+ 2

(
j × i

)
+ 4

(
j × k

)
−
(
k × i

)
− 2

(
k × k

)
= 0+ 2

(
− j

)
+ 2

(
−k
)
+ 4i − j − 20

= 4i − 3 j − 2k

(ii) If O is the point with position vector i − j , then

r = O P =
(

i + 2 j − k

)
−
(

i − j

)
= 3 j − k,

and this time the moment is

M = r × F =
(

3 j − k

)
×
(
i + 2k

)
= 3

(
j × i

)
+ 6

(
j × k

)
−
(
k × i

)
− 2

(
k × k

)
= −3k + 6i − j − 2 · 0

= 6i − j − 3k.

Activity 8.4

Two forces F = i − j − k and G = 2i + k act at P which has the position vector i + 2 j . Find the moments of

(i) F , (ii) G and (iii) F + G about the origin.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (i) −2i + j − 3k; (ii) 2i − j − 4k; (iii) −7k.

Activity 8.5

A force F = i − j + 2k acts through a point P with position vector 2i + k. Find the magnitude of the moment

of F about the point Q with position vector j − 2k. (Remember that the magnitude of a vector is its length!)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the magnitude is
√

3.

Activity 8.6

In the following calculation, remember that the force is in two dimensions, so you have to find both components

of the force! So, you will need to write F = xi + y j, for instance, and set up two equations from the given

moments to solve x and y from!

A force F acts parallel to the XY -plane and has moments

2a Pk and − 4a Pk
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about the origin when it acts at the points

ai − a j and 2ai + 3a j,

respectively. Calculate the magnitude of the force F .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the magnitude will be 2
√

17P/5.

Example 8.6

Consider a horizontal rod AB of length `.

(a) Calculate the moment about point A of a downwards force F of magnitude 1, which is

applied at the midpoint of the rod.

(b) We wish to achieve the same moment about A by applying a downwards force G at

point B. What should the magnitude of G be to achieve this?

(c) Assume that we wish, instead, to achieve the same moment about A by applying a force

G with unit magnitude at point B. In what direction should G be applied to achieve

this?

Solution:

Assume that the rod lies along the X -axis, with the endpoint A at the origin.

(a) The force F = − j is applied at the point with position vector 1
2
`i from the origin;

hence the moment of F about the origin is

M = r × F =

(
1

2
`i

)
×
(
− j

)
= −

1

2
`
(

i × j

)
= −

1

2
`k.

F

BA

O

X

Y

(b) If G is applied at point B, then its moment about the origin is
(
`i
)
× G.
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BA

O

X

Y

G

For this to equal the moment of the force in (a), we must have(
` i
)
× G = −

1

2
` k

∴ i × G = −
1

2
k. (8.8)

If G is parallel to force F, then we must in fact have G = a j for some a. But then

(8.8) tells us that we must have

i × a j = −
1

2
k

⇔ a = −
1

2
.

The force G should be equal to G = − 1
2

j .

(c) Assume that the force G, of unit length, forms the unknown angle θ with the rod.

G

BA

O

X

Y

Then, by applying (8.1), we see that for (8.8) to hold, we must have
∣∣i∣∣ ∣∣G∣∣ sin θ = 1

2

niG = −k

where θ is the smaller angle between i and G, and niG is the unit vector such that i,G,
niG form a right-handed system. The first condition means that

sin θ =
1

2
⇔ θ =

1

6
π

(since i and G both have unit length). The second condition tells us that the Y -

component of G must be negative, that is, G must point “downwards” in the figure.

Together, these facts tell us that G can be either one of the two vectors marked with a

dotted line in the figure, which form the angle π/6 with the X -axis.

Alternatively, let us write G = ai + b j for some unknown values a and b. Then (8.8)

tells us that b = − 1
2

must hold, and the value of a can be solved from the condition

that a2 + b2 = 1. J

This example illustrated the following two facts, which can easily be proved from the

definition of the moment of a force:
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• The moment of any force about a point can be duplicated by using a force with half the

magnitude of the original force, but applied at a point twice as far away; or by applying

a force with twice the magnitude of the original force at a point at half the distance.

• Assume that various forces, all with the same magnitude, are applied at the point P.
The ones which give the largest magnitude to the moment about a point O are the ones

where the force acts perpendicularly to the line O P.

CONCLUSION

In this unit you have learned

• how to calculate the vector product of two vectors

• what is meant by the moment of a force about a point, and how to calculate it

Remember to add the following tools to your toolbox:

• the definition of a vector product

• the definition of the moment of a force

• the toolbox for how to find the moment of a force
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Unit 9 ANGULAR MOMENTUM

We will see in the rest of this Learning Unit of the study guide that the moment of a force

plays a role in the rotational motion of rigid bodies analogous to that played by the force

in translational motion — it produces angular acceleration, just as force produces linear

acceleration. The equation of motion describing this can easiest be derived in terms of

the angular momentum of the system, so we will introduce this concept next — first for

particles, then for systems of particles, and finally, in the next unit, for rigid bodies. Also,

we will first introduce the more general concept of angular momentum about a point,

before limiting ourselves to the more straightforward and practical case of rotation about

an axis.

Angular momentum is a property that describes to rotational motion of a particle or a

system of particles; the next step is to explain how it changes when forces act on the

system. We will derive the relevant result (the law of change of angular momentum) here;

again it is really just Newton’s laws of motion re-written by utilizing the definition of

angular momentum.

The concept of angular momentum is quite a complex one, and for many students this unit

is easily the most difficult to follow in the entire study guide — especially the last section

of this unit, where we consider the angular momentum with respect to the fixed axis and

the law of how it changes. However, in the next unit, everything becomes concrete again,

when we shall see what all this means for actual rigid bodies — we end up deriving the

equation of rotation of rigid bodies.

What you must understand thoroughly from this unit is the definitions of the angular mo-

mentum for particles and for systems of particles (sections 9.1 and 9.2). The laws of how

the angular momentum changes, as described in these two sections, and all of section 9.3

you should read through as background information on how we get to the very practical

formulas in the next unit.

Contents of this unit:

9.1 The angular momentum of a particle

9.2 The angular momentum of a system of particles

9.3 The angular momentum with respect to a fixed axis

What you are expected know before working through this unit:

In this unit, we also make some references to the concept of linear momentum, which

should be familiar to you from previous physics modules; however reference is all it is,

the concepts in this module do not build on that at all. Instead, they build on the concepts

of position and velocity vectors. You will also need Newton’s second law here. We will

again be using the moments of forces, and vector products, as defined in Unit 8.
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9.1 The angular momentum of a particle

Let a particle P have a mass m and position vector r = O P with respect to some fixed

origin O . Remember that the linear momentum of the particle is then

p = mṙ ,

and that Newton’s second law of motion can then be expressed as

F =
d p

dt
. (9.1)

Now, we define the angular momentum of the particle as follows:

Definition 9.1 (The angular momentum of a particle)

The angular momentum of the particle P (above) about point O is

` = r × p = r × mṙ = m
(
r × ṙ

)
.

The angular momentum depends on the choice of the point O . As with the moment of

a force, the angular momentum is only defined with respect to some specified reference

point O . Changing O changes the position vector r and thus the angular momentum

` = mr × ṙ . The linear momentum, on the other hand, is an absolute quantity which

does not depend on the chosen coordinates (since the vector ṙ does not change, even if the

coordinate system does).

By its definition, ` is a vector, with a magnitude and a direction. The vector ` is always

perpendicular to the plane where r and ṙ are. If r and ṙ lie on the XY -plane, then ` is

parallel to the Z -axis.

(Does this remind you of the moment of a force? It should, since we arrived at the angular

momentum from the linear momentum through the same process that we arrived at the

moment of the force from the force! This process is one of “taking moments” — we take

moments of a vector X “acting” at a point P about a point O, by finding the vector (cross)

product of the position vector from O to P and the vector X. In fact, another name for the

angular momentum is the moment of momentum!)

Activity 9.1

A particle with mass m moves on the XY -plane with velocity 30i + 60 j as it passes through the point 3i − 4 j .

(a) What is its angular momentum relative to the origin at this moment?

(b) What is its angular momentum relative to the point with position vector −2i − 2 j at this same moment?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) 300mk, (b) 360mk.
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9.2 The angular momentum of a system of particles

The angular momentum of a system of particles is defined to be the sum of the angular

momenta of the individual particles — of course all must be about the same point of

reference O.

Definition 9.2 (The angular momentum of a system)

Let the point O be fixed. If a system consists of n particles, where mi and r i are the

mass and the position vector from O of the i th particle, then the angular momentum of the

system about point O is

L =
n∑

i=1

`i =
n∑

i=1

r i × mi ṙ i . (9.2)

Example 9.1

Particle 1 at point (0, 1) on the XY -axis and particle 2 at point (0,−1) both move in the

direction of the positive X -axis with a velocity of 1. Both particles have a mass m. Find

the following:

(a) The angular momentum of particle 1 about origin.

(b) The angular momentum of particle 2 about a point O with position vector 2i .

(c) The angular momentum of the system consisting of the two particles,

(i) about the origin,

(ii) about the point O with position vector − j .

Solution:

We have ṙ1 = ṙ2 = +i , but the position vectors r1 and r2 depend on which point is the

reference point O.

(a) If O is the origin, then the position vector from O to particle 1 is r1 = j . Therefore,

`1 = mr1 × ṙ1 = m j × i = −mk.
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(b) If O has the position vector 2i, then the position vector from O to particle 2 is
(
− j

)
−(

2i
)
= −2i − j . In this case,

`2 = mr2 × ṙ2 = m

(
−2i − j

)
× i = mk.

(c)

(i) When O is the origin, the position vector from O to particle 1 is r1 = j and the

position vector from O to particle 2 is r2 = − j . Therefore,

L = mr1 × ṙ1 + mr2 × ṙ2

= m j × i + m

(
− j

)
× i = −mk + mk = 0

(ii) The position vector from O to particle 1 is now r1 =
(

j

)
−
(
− j

)
= 2 j and the

position vector from O to particle 2 is r2 =
(
− j

)
−
(
− j

)
= 0. Hence

L = m

(
2 j

)
× i + m

(
0
)
× i = −2mk.

Activity 9.2

Find the velocity of the centre of mass Ṙ and the angular momentum L of the following systems of two particles:

(a)

Particle 1, mass = m : r1 = +i, ṙ1 = + j

Particle 2, mass = m : r2 = −i, ṙ2 = − j .

(b)

Particle 1, mass = m : r1 = +i, ṙ1 = + j

Particle 2, mass = m : r2 = −i, ṙ2 = + j .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: In (a), Ṙ = 0 and L = 2mk, in (b) Ṙ = j but L = 0. Note that you have to calculate and add together

`1 and `2, there is no shortcut here!

The above activity reminds you that it is NOT true that L = R × M Ṙ! This is one place

where you cannot generalise from particles to the system — which should in fact be obvi-

ous, since the motion of the centre of mass summarises the average motion of the particles

in the system, but loses all detail in how the particles might move in relation to the centre

of mass – and this includes any rotation around the centre of mass! In particular, you have

now seen that it is possible for a system to have zero velocity for the centre of mass, but

non-zero angular momentum (so that although the centre of mass does not move, there is

“rotation” in the system), and alternatively, it is possible to have non-zero velocity for the

centre of mass but zero angular momentum (so that the system as a whole moves but does

not rotate).

The concept of angular momentum is not a particularly “natural” or easily understandable

one. It can be interpreted to measure a sense of rotation of a moving particle or an entire

collection of moving particles about the point O .

Imagine you are situated at point O. Particles may pass by you in any direction. But,

for each particle at any particular moment you can define a momentary imaginary “axis
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of rotation” as a line which is perpendicular to both the position vector from O to the

particle, and the particle’s velocity vector. For a concrete interpretation, imagine a rod

attached at O with the other end at the position of the particle. For the loose end of the

rod to be able to follow the particle along its path, how should the hinge at O be situated?

Now, the vector l for the particle about O is parallel to that “axis of rotation” and its

magnitude and sign depend on the momentary “angular velocity” of the motion. For in-

stance, a particle passing directly over your head from left to right would have an angular

momentum vector which extends behind you, and a particle which overtakes you from the

right would have an angular momentum vector which goes up. But of course the “axis of

rotation” of the particle may change from moment to moment, except in the case where the

particle always moves on the same plane!

However, the very nice thing about L is that it obeys a very simple equation of change.

Remember that Newton’s second law for a particle can be re-written as

F =
d p

dt

where p is the linear momentum of the particle and F the force acting on it. In Unit 2 we

derived a similar result for a system of particles:

F =
d P

dt

where P is the total linear momentum of the system and F the resultant of all the external

forces acting on the system. In words,

The sum of all the forces

acting on the system

}
=


rate of change of

linear momentum

of the system

Now, we are going to prove a similar result for the angular momentum, namely

The sum of the moments

of all the forces

acting on the system

 =


rate of change of the

angular momentum

of the system

(provided that the quantities on both sides are with respect to the same fixed point O!)

In order to prove this result, we shall simply calculate d L/dt for the system using the

definition (9.2).

d L

dt
=

d

dt

(
n∑

i=1

mir i × ṙ i

)

=
n∑

i=1

mi

[
d

dt

(
r i

)
× ṙ i + r i ×

d

dt

(
ṙ i

)]
(Note that we used here the product rule of differentiation, which holds for the vector

product also!)

=
n∑

i=1

mi

[
ṙ1 × ṙ i + r i ×

..
r i

]
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But ṙ i × ṙ i = 0 according to (8.3), and so we have

d L

dt
=

n∑
i=1

mi

(
r i ×

..
r i

)
=

n∑
i=1

r i ×
(
mi

..
r i

)
. (9.3)

According to Newton’s second law we have for particle number i

F i = mi
..
r i (9.4)

where F i is the resultant of all the forces on the particle. We shall assume that the moments

of all the internal forces cancel out, in which case we may assume that F i represents the

sum of all the external forces acting on the i th particle. Using (9.4) we can rewrite (9.3)

as

d L

dt
=

n∑
i=1

r i × F i .

Result 9.3 The law of change of angular momentum

Let the point O be fixed, and let L be the angular momentum of the system about point O.
Then

d L

dt
=

n∑
i=1

r i × F i (9.5)

where the right-hand side represents the sum of the moments of all the external forces

about the chosen point O .

Note that this is not a new law of nature, but just a consequence of Newton’s second law of

motion — we have derived from that law an explanation of how the quantity called angular

momentum changes, due to forces acting on a system.

Equation (9.5) is a very general result, which applies to any system of particles in arbitrary

motion. This generality, however, also means that (9.5) is a bit difficult to understand. In

this module we are, in any case, mainly interested in describing the rotation of a rigid body

about an axis; and then equation (9.5) takes a much more concrete form!

9.3 The angular momentum with respect to a fixed axis

Remember that L is a vector, with both direction and magnitude. Accordingly, its deriv-

ative (i.e. its change in time) d L/dt can involve change in both the magnitude and the

direction of the vector L . The situation would be simpler if we could assume that the di-

rection of the vector L does not change, because then only a change in the magnitude and

sign of L would be involved. The quantities L and d L/dt can then be interpreted in terms

of rotation about an axis, as we will attempt to explain in the following.

Firstly, let us assume that we wish to investigate the “rotation” of the system about a given

fixed axis. Remember that L was defined earlier in respect of a point O , with each of the

particles having its own instantaneous “axis of rotation” in relation to this point. Assume

now that we specify a fixed axis instead, that is, any line in the three-dimensional space,

and wish to consider how the particles rotate around this axis. The angular momentum L
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can be used to make sense of this as well, by considering the component of the angular

momentum which is parallel to the axis of rotation, as we will explain now.

First, note that we can always choose our coordinate system so that the fixed axis we are

interested in is parallel to the Z -axis. Now, we could analyse the angular momentum of

the system about any point O situated on the axis. The vector L obtained would then

depend on the choice of the point O . However, the Z -component of L is always the same,

and does not depend on which particular point O we choose.

Z

O

L
Lz

r

r

Z

O

LLz

r
r

m
m

We are therefore justified in simply calling the component of the angular momentum par-

allel to the chosen fixed axis the angular momentum of the system with respect to the

given axis, denoted by L z . (Remember that we chose the axis to go in the Z -direction!).

L z will then be parallel to the Z -axis.

To calculate L z , we simply need to replace in (9.2) the position vectors r i from O to

particle number i , with position vectors from the axis to particle number i , perpendicular

to the axis. The vector r i will then be in the XY -plane. Similarly, ṙ i should be replaced

with its component parallel to the XY -plane. (This follows from the fact that in a vector

product a × b, only the X - and Y -components of a and b contribute to the Z -component

of a × b; the Z -component of a × b does not depend at all on the Z -components of a and

b!) The following definition can therefore be used:

Definition 9.4 (The angular momentum about an axis)

Let a system consist of n particles, and let an axis parallel to the Z -axis be given. Then

the angular momentum of the system about the given axis is

L z =
n∑

i=1

mir i × ṙ i

where mi is the mass of particle i , r i = xi i + yi j is the position vector from the axis to

particle i , and ṙ i = ẋi i + ẏi j is the velocity of particle i on the XY -plane.

Note that r i and ṙ i as defined above will be parallel to the XY -plane, and the vector L z

will be parallel to the Z -axis.

We can apply (9.5) to find a differential equation for L z by simply considering the Z -

component of

n∑
i=1

r i × F i .

Again this means looking only at the XY -components of r i and F i . It follows that

d L z

dt
=

n∑
i=1

r i × F̂ i
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where F̂ i is the projection of force F i into the XY -plane.



165 APM1612/1

Result 9.5 The law of change of angular momentum about an axis

Let an axis parallel to the Z -axis be given, and let L Z be the angular momentum of the

system of n particles about the axis. Then

d L z

dt
=

n∑
i=1

r i × F̂ i

where the summing is over all the external forces F i acting on the system of particles,

F̂ i is the projection of force F i into the XY -plane, and r i is the position vector on the

XY -plane from the axis of rotation to the point where the force F i acts.

Of course, if L is always parallel to the Z -axis, then we automatically have L z = L . This

holds if we assume that each particle in the system can only move parallel to the XY -

plane. And this can only be true if we assume that all the forces acting on the system also

act parallel to the XY -plane.

From now on we will assume that the following condition holds:

It is possible to introduce an XY Z coordinate system such that the velocities of all

particles, and forces acting on them, will always be parallel to the XY -plane.

This assumption implies that each particle will always move on the same plane, parallel to

the XY -plane. It follows that the angular momentum with respect to any axis parallel to

the Z -axis is always well defined as

L =
n∑

i=1

mir i × ṙ i (9.6)

where r i is the distance from the axis to particle number i; and

d L

dt
=

n∑
i=1

r i × F i (9.7)

holds. We are justified to drop the subscript Z when it is assumed the forces and velocities

are always parallel to the XY -plane, as in this case L and
d L

dt
are always parallel to the

Z -axis. In particular, it follows that L will never change its direction; only its magnitude

and sign may change.

The assumptions above are true in the special cases that we are most interested in, namely

• a rigid body constrained to rotate about a fixed axis, or

• a rigid body rotating about a moving axis when the direction of the axis does not

change.

In the next unit we shall proceed to look at the case of rigid bodies, and find that in that

case the expression for L and d L/dt can be replaced with something a lot more easy to

understand!
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CONCLUSION

In this unit you have learned

• what is meant by the angular momentum of a particle, and of a system of particles

• how the moment of a force acts to change the angular momentum
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Unit 10 A RIGID BODY ROTATING

ABOUT A FIXED AXIS

Key questions:

• What is the promised simpler equation for rotation in the case of a rigid body?

• How do we use it to analyse rotational motion?

Now it is time to move from the general system-of-particles case to the special case we

are really most interested in, namely that of rigid bodies. In the rest of Learning Unit 3 we

will consider the case of a rigid body rotating about a fixed axis. We assume, in particular,

that the axis of rotation does not move, but that the axis can be considered to be at rest.

Examples of this type of behaviour are doors or windows rotating about their hinges — or

any objects which can be considered to be “nailed” to an unmoving floor, wall, etc. by a

long nail, rotating about the nail! This motion is called pure rotation. (In Learning Unit

4 of the study guide we will consider a more general case, where the axis of rotation is

also allowed to move — such as the door of a car, opening on its hinges, when the car is

driving along a road!)

In this special case of pure rotation, we can re–write the angular momentum of the system

in terms of the rotational velocity θ̇ , and the derivative of the angular momentum in terms

of the rotational acceleration θ̈ and a quantity called the moment of inertia, which is spe-

cific to the particular object and axis. In this unit, we will derive the appropriate equation

of motion, and explain how moments of inertia are found.

Contents of this unit:

10.1 Describing the rotation of a rigid body

10.2 The equation of motion of a rigid body rotating about a fixed axis

10.3 Moments of inertia

What you are expected know before working through this unit:

This section starts off with the result of the previous unit, and derives from there the equa-

tion of rotation for rigid bodies. So, it is assumed that you have gone through that unit.

10.1 Describing the rotation of a rigid body

In what follows, we will always assume that the fixed axis of rotation is parallel to the

Z -axis. In that case, since the rigid body rotates about an unmoving axis, it follows that

each particle can only move parallel to the XY -plane, travelling in a circle around the axis

of rotation. Also from the fact that the body is constrained in such a manner that it can only

rotate about the axis, it follows that we may assume that all external forces acting on the
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body are also parallel to the XY -plane. (After all, we know that any external force trying

to act on any of the particles e.g. in the Z -direction, cannot cause acceleration into the

Z -direction since the particles are constrained to move on the XY -plane only — therefore

any such force must be cancelled out by another force. For instance, trying to pull down

on a door which is hanging on its hinges will not move the door downwards, but will just

cause extra strain on the hinges!)

Remember that a rigid body is a system of particles where strong internal forces keep each

particle in a fixed position with respect to all the other particles. When a rigid body rotates

about a fixed axis, then every point of the body moves in a circle, the centre of which lies

on the axis of rotation. Also, every point moves through the same angle during a particular

time interval.

It follows that we can fully describe the motion of a rigid body rotating about a fixed axis

in terms of a angular position, or angle of rotation, θ , which is specified as follows: We

select one point of the body and use it as a reference point; any point will do — as long as

it is not on the axis of rotation. The circular motion of this particle is then representative

of the rotational motion of the entire rigid body, and the angular position of this particle

is representative of the angular position of the entire body. To determine the angular

position of the representative point P , and hence the angular position of the entire body,

we determine the angle θ that the line from the axis to P makes with some fixed (non-

rotating) reference axis, and we then say that the angle of rotation of the body is θ (with

respect to our chosen reference system).

We will always measure the position angle θ in radians, not degrees, and we will always

measure the angle of rotation θ counterclockwise on the XY -plane; see the figure below.

(Remember that the axis of rotation is assumed to be parallel to the Z -axis!)

The reason for measuring the angle of rotation counterclockwise is that it will then match

the right-hand rule for defining vector products. Once we have decided how we shall mea-

sure θ , then the behaviour of the rigid body as it rotates about the fixed axis is completely

known at all times if we are given θ (t), the angle of rotation of the body as a function of

time t . Remember that we consider only pure rotation here, so that the only motion is that

of the body rotating about the axis; the axis itself is not moving.

Angular velocity, denoted by
.
θ, is the rate of change of the angle of rotation:

θ̇ =
dθ

dt
.
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Angular acceleration,
..
θ is similarly defined:

θ̈ =
d2θ

dt2
.

You may have come across the notations ω and α for the angular velocity and acceleration

elsewhere; we will mostly to use the notations
.
θ and

..
θ here as a reminder of how these

quantities are linked to each other.

If the rotating body has an angular velocity θ̇ , then every point of the body is moving with

the same angular velocity. Since we have decided to measure θ counterclockwise, we see

that a positive angular velocity means counterclockwise rotation, and a negative angular

velocity means clockwise rotation on the XY -plane.

If the angular acceleration
..
θ = α is constant, then integration gives us the familiar looking

formulas

θ̇ (t) = θ̇ (0)+ αt

θ (t) = θ (0)+ ω (0) t +
1

2
αt2

(
θ̇ (t)

)2
−
(
θ̇ (0)

)2
= 2α (θ (t)− θ (0)) .

Compare these with the similar formulas for linear position, speed and acceleration in

kinematics!

In general, the angular velocity and acceleration can be functions of time; in the following

example they are specified as given functions of time. Note that in the rest of the study

guide, this will very rarely be the case as instead our job will be to figure out (usually)

the value of the angular acceleration from the equations of motion, or the angular velocity

through energy considerations, in a given situation! However, you must be aware of the

meanings of the angle of rotation (angular position) , the angular velocity and the angular

acceleration, hence the inclusion of the following example and the activity after it!

Example 10.1

The angular position of a reference point on a spinning wheel at time t is given by

θ = t3 − 27t + 4.

(a) Find the angular velocity θ̇ and the angular acceleration θ̈ . Is there ever a time when

ω = 0?

(b) Describe the wheel’s motion for t ≥ 0.

Solution:

Let us assume that the wheel lies on the XY -plane, and that the angular position is mea-

sured, as usual, as the angle θ from the positive X -axis to a line from the origin to the

reference point on the wheel. A positive angle is taken to be counterclockwise.
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If, for convenience, the angle is measured in degrees and time t in seconds, then at time

t = 0, the reference point has the angular position of 4 degrees; after 1 second it has the

angular position of −22 degrees, and after 10 seconds it has an angular position 734 =
2× 360+ 14 degrees.

(a) The angular velocity is the derivative of the angular position:

θ̇ (t) =
dθ (t)

dt
= 3t2 − 27.

The angular acceleration is the derivative of the angular velocity:

θ̈ (t) =
dω (t)

dt
= 6t.

We see that θ̇ = 0 when

3t2 − 27 = 0

∴ t2 = 9

∴ t = ±3,

that is, θ̇ = 0 at time t = 3 (and at time t = −3, three time units before the starting

time).

(b) The motion of the wheel is easiest to figure out by following how its angular velocity

changes as a function of time. Below are plots of the angular velocity θ̇ (t) and the

angular acceleration θ̈ (t) as functions of time, starting at t = 0:
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At time t = 0, the wheel is at the positive angle θ (0) = 4. The initial angular velocity

is θ̇ (0) = −27, meaning that the wheel is initially in motion, rotating clockwise.

However, the velocity of the motion is decreasing, until at last the wheel comes to a

momentary stop at time t = 3. The angular position of the wheel when this happens is

at

θ (3) = (3)3 − 27 (3)+ u = −50.

The wheel then starts to rotate counterclockwise, with ever–increasing angular velocity

and ever–increasing angular acceleration.J

Activity 10.1

The angle of rotation of a wheel varies in time according to the function

θ (t) = −t +
1

2
t2.

Find the angular velocity and angular acceleration as functions of time, and explain how the wheel moves for

t ≥ 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The wheel will start with a zero angle of rotation, will rotate clockwise but slower and slower, will

come to a standstill at t = 0, and after that will rotate counterclockwise, faster and faster. The angular velocity

is constant, so the angular velocity will grow linearly.

10.2 The equation of motion of a rigid body rotating about a fixed axis

We are now ready to derive the equation of motion to describe pure rotation. We start off

with the angular momentum L of a system of particles with respect to the fixed axis (9.6)

and its equation of change (9.7), since these apply in our case of the pure rotation of a rigid

body. Remember that according to (9.6), we have

L =
n∑

i=1

mir i × ṙ i

where r i is the position vector from the axis of rotation to particle number i of the system.

In terms of polar coordinates, we can write

r i = ri

(
cos θ i i + sin θ i j

)
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(where ri =
∣∣r i

∣∣ and θ i is the angle r i makes with the X -axis, measured counterclockwise).

Since the particles form a rigid body, each ri must be constant (each particle rotates about

the axis along a circle). Hence we have

ṙ i =
d

dt
r i =

d

dt

(
ri

(
cos θ i i + sin θ i j

))
= ri

(
−θ̇ i sin θ i i + θ̇ i cos θ i j

)
,

and thus

L z =
n∑

i=1

miri

(
cos θ i i + sin θ i j

)
× ri

(
−θ̇ i sin θ i i + θ̇ i cos θ i j

)

=
n∑

i=1

mir
2
i θ̇ i

(
sin2 θ i + cos2 θ i

)
k

=
n∑

i=1

mir
2
i θ̇ i k.

But for a rigid body it is also true that all particles move at the same angular velocity:

θ̇ i = θ̇ , for all particles i. Therefore,

L z =

(
n∑

i=1

mir
2
i

)
θ̇k. (10.1)

Note that we have managed to write the angular momentum as the product of two quanti-

ties, one of which (that is, θ̇ ) describes the rotational motion of the object about the axis,

while the other (the quantity
∑n

i=1
mir

2
i ) is an unchanging quantity describing the object

itself. The expression in the brackets is called the moment of inertia of the system for the

given axis, and is usually denoted by I.

Definition 10.1 (The moment of inertia)

Let a rigid body consist of n particles, with masses mi and position vectors r i from some

given axis. Then the moment of inertia I of the system for rotation about the given axis is

defined as

I =
n∑

i=1

mir
2
i

Using the concept of the moment of inertia, we can now write (10.1) as

L z = I θ̇k. (10.2)

The equation of motion (9.7) then becomes

d

dt
L z =

d

dt

(
I θ̇k

)
= I

..
θk =

n∑
i=1

r i × F i .

Result 10.2 (The equation of motion for pure rotation)

The rotation of a rigid body about a fixed axis is described by the equation

n∑
i=1

r i × F i = I
..
θk (10.3)
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when the axis of rotation is parallel to the Z -axis.

Here,
..
θ is the angular acceleration of the rigid body, measured counterclockwise, I is its

moment of inertia for rotation about the given axis, and the left hand side of the equation

is the sum of the moments of all the external forces acting on the body. For a rigid body

constrained to rotate about a fixed axis which is parallel to the Z -axis, these forces can be

assumed to act parallel to the XY -plane. Therefore, the left-hand side of (10.3) will also

be a vector, parallel to the Z -axis.

The sum on the right if the sum of the moments of all the external forces acting on the

system; we could denote it by M and get a very neat equation: M = I
..
θk. The reason we

did not is because really, you do still have to calculate the vector products on the left hand

side, and it is good to be reminded of that fact!

Note that (10.3) is again not a new result, but a reformulation of Newton’s second law in

a form very convenient to describe the rotation of any rigid body. The rotational moment

of inertia I is a rotational equivalent of mass (translational inertia), in that it relates the

moment of a force acting on a rigid body to the resulting angular acceleration. More

generally, we have the following analogies between translational and rotational concepts:

Translation Rotation

Position x Angular position θ

Velocity ẋ Angular velocity θ̇

Acceleration ẍ Angular acceleration θ̈

Translational Rotational inertia

inertia (mass) m (moment of inertia) I

Force F Moment of force M = r × F

Linear momentum p = mẋ Angular momentum L z = I θ̇k

Equation of motion F = mẍ Equation of rotation M = I θ̈k

A final reminder: Please remember that the result M = I θ̈k above only applies to a rigid

body rotating about an axis, since that is the only case where we can summarize the angular

momentum by means of I and the angular acceleration, θ̈ ! In the more general case of an

arbitrary system of particles, the best we can hope for is M = d L

dt
, as given in equation

(9.5).

The equation of motion for pure rotation, derived above, is a key equation which you will

be using a lot in the rest of the study guide. However, before we start working with it,

we will spend a bit of time discussing the newly introduced concept of moment of inertia,

since clearly that will be very important in the applications of the equation of rotation.

This is what we will do in the rest of this unit, and all of Unit 11. However, first we will

look at a little example of a typical situation where we could apply the equation of rotation

derived above!

Example 10.2

A door is roughly a rectangular lamina, rotating about its hinges which can be considered

an axis of rotation which is parallel to one of the longer edges of the lamina. When opening

the door, we apply a force on the doorhandle which is at the opposite side of the lamina

from the axis of rotation. The moment of inertia for the rotation here is known to be

I =
1

3
Ma2
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where M is the mass of the door and a is the width of the door. (We will derive this result

soon.) If the distance from the hinges to the doorhandle is also assumed to be a, and if

we assume that the force F is applied optimally, that is, in a direction which forms a right

angle with the position vector from the axis of rotation to the applying point (i.e. from the

hinges to the door handle), then the angular acceleration of the rotation is θ̈ where

aF =
1

3
Ma2θ̈ ∴ θ̈ =

3F

Ma
.

10.3 Moments of inertia

According to the definition, the moment of inertia I of a body made up of n particles held

rigidly in their places in relation to an axis is given by

I =
n∑

i=1

mir
2
i (10.4)

where ri is the distance from the axis of rotation to particle number i with mass mi . (Re-

member that for a rigid body rotating about a fixed axis, each particle always stays at the

same distance from the axis!)

The moment of inertia I of a system depends on the mass of the rigid body, but also on the

distribution of the mass of the body in relation to the axis of rotation. If the axis changes,

then the moment of inertia will also change.

It is important to remember that the moment of inertia of an object is defined for rotation

about some axis! It makes no sense to talk about “the moment of inertia of a ring” unless

we specify the axis of rotation as well.

Equation (10.4) tells us that the further away from the axis a particle is, the more its mass

contributes to the moment of inertia. This is why, for instance, a ring will turn out to have

a larger moment of inertia than a disk of the same mass and radius about an axis which

goes perpendicularly through the centre of the object. In the ring, all the mass is on the

outmost edge of the object, while in the disc some of the mass is closer to the axis. On the

other hand, it is in principle possible to have an object of an arbitrarily large mass with a

zero moment of inertia, simply by ensuring that all the mass is concentrated at the axis of

rotation.

The definition of the moment of inertia allows us to also define the moment of inertia of

a rigid body which rotates about an axis which does not necessarily go through the body.

In this case, we must imagine the body to be connected rigidly to the axis of rotation with

massless rods, or any other massless structure.
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As the moment of inertia plays a vital Learning Unit in the dynamics of a rotating body,

we shall spend some time on calculating it for various bodies, about various axes. The

moments of inertia of some common objects about certain axes are given in the table on

page 225. We will derive most of these results here, in this study guide!

10.3.1 The moment of inertia of a rigid systems of particles

For a rigid system of particles, we can use the definition (10.4) directly. Note that for a

system of particles to form a rigid body, which rotates about a fixed axis, we must assume

that the particles are rigidly joined to each other and to the axis. We can imagine this

attachment to be by means of massless rods.

In particular, for a one-particle case we have

I = mr2. (10.5)

Again, for one particle to form a rigid body rotating about a fixed axis, the particle would

have to be held rigidly at the distance r from the axis of rotation! In this one-particle case,

we can assume that particle is attached to the axis with a massless rod, or the particle is

attached to some other rigid body rotating about the axis.

Example 10.3

Four particles, each of mass M, are held rigidly together by massless rods. The system

is placed on the XY -plane, in such a manner that the particles have the coordinates P =
(3a, 2a), Q = (7a, 2a), R = (7a, 6a) and S = (3a, 6a), respectively. Find the following

moments of inertia: IX for rotation about the X -axis, IY for rotation about the Y -axis and

Iz for rotation about the Z -axis. In the case of each rotation, we assume that the system is

rigidly attached to the axis of rotation.

Solution:

Here, each particle has the same mass M and their initial positions are P = (3a, 2a), Q =
(7a, 2a), R = (7a, 6a) and S = (3a, 6a) on the XY -plane. To calculate the requested

moments of inertia, we must find the (shortest) distance from each particle to the axis in

question.

Let the axis of rotation be the X -axis. If a particle has the coordinates (x, y), then its

distance to the X -axis is given by the Y -coordinate, y.

Therefore, the moment of inertia about the X -axis is

IX = M(2a)2 + M(2a)2 + M(6a)2 + M(6a)2

= 80Ma2.
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If the axis of rotation is the Y -axis, then the distance from a particle to the axis is given by

its X -coordinate. Therefore, the moment of inertia of the system about the Y -axis is

IY = M(3a)2 + M(7a)2 + M(7a)2 + M(3a)2

= 116Ma2.

Let the axis of rotation be the Z -axis. The Z -axis goes through the origin of the XY -plane,

perpendicular to that plane, so the distance r from a particle at point (x, y) to the Z -axis

equals the distance to the origin, that is,

r =
√

x2 + y2,

and therefore

r2 = x2 + y2.

Hence, the moment of inertia for rotation about the Z -axis is

IZ = M

(
(3a)2 + (2a)2

)
+ M

(
(7a)2 + (2a)2

)
+M

(
(7a)2 + (6a)2

)
+ M

(
(3a)2 + (6a)2

)
= 196Ma2.

Activity 10.2

The masses and coordinates of four particles on the XY -plane are as follows:

• m1 = 50m, at (x1, y1) = (2, 2) ;

• m2 = 25m, at (x2, y2) = (0, 4) ;

• m3 = 25m, at (x3, y3) = (−3,−3) ;

• m4 = 30m, at (x4, y4) = (−2, 4) .

What is the moment of inertia of this system about the (a) X -axis, (b) Y -axis, and (c) Z -axis?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: 1305m; 545m; 1850m.

Activity 10.3

On the XY -plane, a particle of mass m is situated at the point (x, y) = (0, a), and particles with masses 2m are
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situated at points (0,−a), (−a, 0) and (0, 0). What should the mass of a particle situated at point (2a, 0) be, so

that the moment of inertia of the whole system about the Z -axis equals IZ = 7a2m?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the mass should be m/2.

10.3.2 The moments of inertia of rigid bodies

Once again the system of particles is only a stepping stone to what we are really interested

in, namely rigid bodies with a continuous structure! In some very simple cases, the original

definition of the moment of inertia for a system of particles can also be utilised for rigid

bodies with a continuous structure. The next example deals with such a case.

Example 10.4

Calculate the moment of inertia of a uniform ring with mass M and radius r about an axis

through its centre and perpendicular to its plane.

Solution:

mi
r

O

For a thin ring, we can assume that all the mass of the ring is situated at the distance r from

the axis. Let us assume that we divide the ring into n small pieces, each with a mass mi .

If n is quite large, then each small piece is approximately a particle at the distance r from

the axis, and thus we have approximately

I ≈
n∑

i=1

mir
2 =

(
n∑

i=1

mi

)
r2 = Mr2

where M =
n∑

i=1

mi is the total mass. This is only an approximation, since the small pieces

are not really particles. However, the end result did not depend on n, the number of pieces

that we divided the ring into, and therefore we can take n as large as we like. Hence we

can conclude that for a ring with radius r and mass M, we do have

I = Mr2

for rotation about the described axis.J

Note that although the ring in the previous example is a body with a continuous mass

distribution, we could still use the original definition of I for a system of particles with

great success. This was because for this particular object and for this particular axis of

rotation, all the particles that the object consists of happened to be at the same distance

from the axis. In most cases where the object has a continuous mass distribution this will

not be the case, and different particles will be at different distances from the axis. In such
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a case, there are usually just too many particles (atoms) for us to be able to use equation

(10.4) in practice. Fortunately, integration will again come to the rescue.

In the case of a solid object with continuous mass distribution we will start with the

definition

I =
n∑

i=1

mir
2

which is valid for a system of n particles. To apply this to a body with a continuous mass

structure, we shall proceed as we did when calculating the centres of mass by means of

integration. We can divide the body into infinitely many very small, particle-like mass

elements with mass dm, replace summation by integration and get the following result.

Result 10.3 (The moment of inertia calculated by means of integration)

For a rigid body with a continuous structure,

I =

∫
r2dm, (10.6)

where r is the distance from the axis to a small particle-like mass element of mass dm and

integration is over all the small particle-like mass elements.

We will discuss the finer points of applying this integration formula later on, in the next

unit. Meanwhile, here is an example of how it could be applied!

Example 10.5

Find the moment of inertia of a uniform rod of length 2a and mass M about an axis

perpendicular to the rod and through its centre of mass G.

Solution:

We will assume that the rod lies along the X -axis as shown, and that the Y -axis coincides

with the axis of rotation.

X

Axis of  rotation

Oa +ax

dxG

Let ρ be the linear density of the rod. We divide the rod into small mass elements, each

consisting of a small segment of the rod. The one situated at position x , −a ≤ x ≤ a, of

the rod has length dx and thus mass dm = ρdx , and it is at a distance |x | from the axis of
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rotation. Thus, (10.6) gives

I =

∫
r2dm =

∫ a

−a

x2ρdx = ρ
x3

3

]a

−a

=
2

3
ρa3.

We have found an expression for I in terms of the density ρ and the length of the rod. We

would rather wish to express I in terms of the mass M, since most of the time we know

the mass and the length of a rod, rather than its density and length. However, we can of

course convert easily from density to mass, since there is a link between M and ρ when

the length of the rod is known: M = 2ρa and therefore ρ = M
2a
. When we substitute this

into the last equation above, we finally get

I =
Ma2

3
.

10.3.3 General simplifying rules for calculating moments of inertia

Before we consider more examples of using integration to find moments of inertia, we

shall first introduce some results which will often help to shorten some of the calculations.

These results include two theorems which enable us to move from one axis of rotation to

another for the same body; and we will also look at how to find the moment of inertia for

composite bodies. As happened with the calculation of centres of mass, this last result will

lead to a more general way of finding the moments of inertia by integration! But let us

start off with a very trivial, but still useful observation.

For many objects (e.g. discs, spheres and squares) it is possible to choose several axes

which travel through the object in an identical way. Then, clearly, the moment of inertia is

the same for all these axes. As an example, the moment of inertia of a disc is the same for

all of the axes of rotation shown below:

For a rectangle, the following axes are identical:

but the following two are not:
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Since the moment of inertia always depends not only on the object, but also the position of

the axis of rotation in relation to the body, it should be clear that life would be a lot simpler

if we had a way of moving easily from one axis to another. The parallel and perpendicular

axes theorems, which we discuss next, do just this.

Result 10.4 — The Parallel Axes Theorem

If IG is the moment of inertia about an axis through the centre of mass of the body and I

is the moment of inertia about any axis parallel to the first axis, then

I = IG + Md2 (10.7)

where

M = total mass of the body

d = distance between the two axes.

d

G

Proof: Let the centre of mass G be the origin of the XY -plane and let any other point O

be the origin of the XY -plane. In the sketch above, we assume that both the XY - and the

XY -planes are parallel to this page, with the corresponding Z - and Z -axes perpendicular

to the page, towards the reader.

Y

X

Y
_

O

G
d

_
X

Let IG be the moment of inertia of the body about an axis through G parallel to the −axis



183 APM1612/1

(perpendicular to the page), while I is the moment of inertia about a parallel axis through

O .

Let the coordinates of a particle of mass mi at P be (xi , yi ) in the XY system and let G

have coordinates (x, y) in the XY system.

Suppose that the coordinates of P are
(
x ′i , y′i

)
in the XY -system. Then

xi = x + x ′i

yi = y + y′i .

The moment of inertia about O is

I =
n∑

i=1

mi

(
x2

i + y2
i

)

=
n∑

i=1

mi

[(
x + x ′i

)2
+
(
y + y′i

)2]

=
n∑

i=1

mi

(
x2 + y2

)
+

n∑
i=1

mi

(
x ′2i + y′2i

)
+

n∑
i=1

2mi xx ′i +
n∑

i=1

2mi yy′i .

Now consider the term

n∑
i=1

2mi xx ′i = 2x

n∑
i=1

2mi x ′i .

If you refer back to equation (3.2), you will see that(
n∑

i=1

mi

)
x =

n∑
i=1

mi

(
x + x ′i

)
so that

n∑
i=1

mi x ′i = 0

and hence

2x

n∑
i=1

mi x ′i = 0.

Similarly

2y

n∑
i=1

mi y′i = 0.

Since

x2 + y2 = d2

and

IG =
∑

mi

(
x ′2i + y′2i

)
we have proved the theorem.

Note that the parallel axes theorem only applies when one of the two axes goes through the

centre of mass of the object. The moment of inertia I about a second axis, parallel to the

one going through the centre of mass, is now equal to the moment of inertia about the first

axis, IG , plus another quantity Md2, where M is the mass of the object and d the distance

between the axes.

Note that we have in fact decomposed the moment of inertia I into two parts, the first

of which is the moment of inertia for the object rotating about its centre of mass, and
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the second of which is equal to the moment of inertia we would have if the object were

replaced by a particle of mass M situated at the centre of mass, rotating about the given

axis.

Remember also that I is found from IG by adding a term md2 into it. Alternatively, if I

is known, then we can of course also find IG from I by subtracting the term md2. Make

sure you understand which way around this goes, and why the axes in I and IG are not

equivalent!

The following example gives a typical application of the parallel axes theorem.

Example 10.6

Find the moment of inertia of a uniform rod of length 2a and mass M about an axis

perpendicular to the rod and through one of its endpoints, A.

Solution:

In Example 10.5, we have already found the moment of inertia of the rod when it rotates

about any axis perpendicular to the rod and through its centre, and therefore through its

centre of mass G :

IG =
1

3
Ma2.

The axis in this example is parallel to an axis such as the one in Example 10.5, and travels

through the endpoint A which is a distance a from the centre of mass G (since for a uniform

rod, the centre of mass is at the midpoint of the rod).

Axis

Axis

G

A

The parallel axes theorem tells us that the moment of inertia IA for rotation about the

described axis through the point A equals

IA = IG + Ma2 =
1

3
Ma2 + Ma2 =

4

3
Ma2.

Activity 10.4

Use the parallel axes theorem to prove that the moment of inertia of a rod of length 2` and mass 3m about an axis

perpendicular to the rod, through one end of the rod, is 4ma2.

Activity 10.5

A rigid body consists of two particles of mass m connected by a rod of length L and negligible mass.

(a) Find the moment of inertia of this body about an axis through its centre, perpendicular to the rod.

(b) Find the moment of inertia of this body about an axis through one end of the rod and parallel to the axis in

(a),
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(i) through direct calculation of the distance of the particles to the axis,

(ii) by using the result in (a) and the parallel axis theorem.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) 1
2

mL2, (b) mL2. (Note that to apply the parallel axis theorem in (b) (ii), you must use the mass of

the whole object, which is 2m!)
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Example 10.7

Find the moment of inertia of a uniform rod of length 2a and mass M about all possible

axes which are parallel to the rod.

Solution:

We will have to find the moment of inertia when the rod rotates about an axis parallel to

the rod, at a distance D from the rod, for all possible values of D (D ≥ 0). We will first

consider the case D = 0, and then use the parallel axes theorem to find the moment of

inertia for all other values of D.

Axis of rotation
D

In the case D = 0, the rod lies on the axis of rotation. If the rod is very thin, then all the

particles of the rod can be assumed to lie on the axis of rotation. But then the distance

from each particle to the axis is zero, and it follows that the moment of inertia is zero.

Let us then consider the general case, where the axis of rotation is parallel to the rod and

lies at a distance D from it. Let ID denote the moment of inertia of the rod for rotation

about this axis.Now, the axis which coincides with the rod goes through the centre of mass

of the rod, and therefore by the parallel axes theorem, we must have

ID = 0+ M D2 = M D2.

(We could alternatively have reasoned as follows: In this case, all the particles of the rod

lie at a distance D from the axis of rotation, so that a particle i with mass mi will have the

moment of inertia mi D2 about the axis. Summing over all the particles gives M D2 as the

moment of inertia for the whole rod.)

Thus we have proved that the moment of inertia of the rod for rotation about any axis

parallel to it is given by

I = M D2

where D is the distance to the parallel axis. Note that the result does not depend on the

length of the rod!J

Activity 10.6

Use the parallel axis theorem to prove that the axis about which a given rigid body has its smallest moment of

inertia must pass through its centre of mass. (Hint: prove that if it does not pass through the centre of mass, then

the moment of inertia about an axis which does go through the centre of mass will be smaller.)

The parallel axes theorem enables us to start with one result of a moment of inertia IG of

an object about an axis, and to generate from that all moments of inertia for the same body

about all axes parallel to the original one. Next, we will discuss the perpendicular axes

theorem, which similarly links moments of inertia for rotation with respect to mutually

perpendicular axes.

Consider a flat object (lamina) which lies on the XY -plane. The perpendicular axes the-

orem links the moments of inertia for the following three types of rotation: IX about the
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X -axis, IY about the Y -axis, and IZ about the Z -axis.

X

Z

Y

Result 10.5 — The Perpendicular Axes Theorem

Let X , Y and Z be mutually perpendicular axes of rotation. Assume that a rigid body

forms a lamina which lies on the XY -plane. Then

IZ = IX + IY (10.8)

where IX , IY and IZ are the moments of inertia for rotation about the X -, Y - and Z -axes

respectively.

Proof of the perpendicular axis theorem:

P

Z

Y

X

r x
y

O

Let a particle P of mass mi be situated at point (xi , yi ) on the XY -plane. Then, if ri is the

distance from this particle to the Z -axis we have

r2
i = x2

i + y2
i

since the distance to the Z -axis is the same as the distance to the origin of the XY -plane for

all particles on the XY -plane. But then, summing over all the particles to find the moment

of inertia about the Z -axis, we get

IZ =
n∑

i=1

mir
2
i =

n∑
i=1

mi x2
i +

n∑
i=1

mi y2
i

= IY + IX .

Remarks:
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• The axes of rotation could, for instance, be the coordinate axes of the XY Z coordinate

system. Here, it does not matter whether they form a right-handed system or not!

• Note that when we say that the axes are mutually perpendicular, we assume that they

all intersect at one point — as you see, this assumption is important in the proof of the

perpendicular axes theorem! (With a bit of experimentation, you’ll easily see that it is

quite possible to have an axis parallel to the Z -axis, another one parallel to the Y -axis,

and another one parallel to the X -axis, such that the three axes never intersect each

other! Try it, using, for instance, pencils for the axes.)

• Remember that this result only holds if the entire object lies on the XY -plane! The

rigid body must be a lamina. To see why, consider a non-flat object — if a particle

has the coordinates (x, y, z) in the XY Z system, then the distance to the Z -axis is still

given by r, with r2 = x2 + y2, yet y is no longer the distance to the X -axis, but rather

the distance to the X Z -plane, and similarly x is no longer the distance to the Y -axis.

As a first application of the perpendicular axes theorem, we shall re-calculate IZ in Ex-

ample 10.3, with four particles situated on the XY -plane. By finding the distance of each

particle to the X -axis, we found that IX = 80Ma2; by finding the distance of each parti-

cle to the Y -axis, we found that IY = 116Ma2; and finally by finding the distance of each

particle to the origin of the XY -plane, we found that IZ = 196Ma2, as this gives the dis-

tance to the Z -axis. But the perpendicular axes theorem applies here, so as soon as we

have found IX and IY , we can calculate IZ directly from

IZ = IX + IY = 80Ma2 + 116Ma2 = 196Ma2.

Example 10.8

Four particles of mass m are attached to the corners of a thin massless square with sides of

length a. Find the moment of inertia for rotation,

(a) about an axis along one of the sides of the square,

(b) about an axis through the middle of the square, perpendicular to it.

Solution:

(a)

m

m m

m

AxisA

a

The moment of inertia about the axis A described in this question is

IA = m (0)2 + m (0)2 + m (a)2 = 2ma2.

(The moment of inertia of each particle is calculated from md2, where m is the mass

of the particle and d is the distance from the particle to the axis of rotation.).
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(b)

Axis Z

d da

a

Since the distance from each corner to the middle equals

d =

√(a

2

)2

+
(a

2

)2

,

we get for the moment of inertia for rotation about the Z -axis

IZ = 4× m (d)2 = 4m

((a

2

)2

+
(a

2

)2
)

= 2ma2.

Alternatively, we could calculate IZ as follows: Introduce the two axes of rotation

X and Y, which are on the plane of the square, through the centre of the square and

parallel to its edges, as shown below. The Z -axis is then perpendicular to the X - and

Y -axes.

Then the moments of inertia IX and IY are

IX = IY = 4× m

(a

2

)2

= ma2

and by applying the perpendicular axes theorem, IZ = IX + IY = 2ma2. J

The perpendicular axes theorem can also used in the other direction, to find out about IX

and IY when IZ is known. The following example is a typical application.

Example 10.9

The figure below shows a ring with radius R and mass M.
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A BG

Point G is the midpoint of the ring, A and B are points on its rim and AG B is a diameter

of the ring. Then the moment of inertia of the disc for rotation about an axis perpendicular

to the disc, through G, is IG = M R2. Find

(a) IA, the moment of inertia for rotation about an axis perpendicular to the ring and

through point A.

(b) IAB, the moment of inertia for rotation about the diameter AB.

Solution:

(a) The two axes of rotation in IG and IA are parallel, with a distance R between them.

Therefore, according to the parallel axes theorem,

IA = IG + M R2 = 2M R2.

(b) Let C D be another diameter of the ring, which is perpendicular to the diameter AB, as

shown below.

A B

C

D

Then, according to the perpendicular axes theorem,

IG = IAB + IC D

where IAB and IC D are the moments of inertia for rotation about the diameters AB and

C D, respectively. But clearly the rotations about these diameters are identical, so that

IAB = IC D, and therefore in fact

IG = IAB + IAB = 2IAB

IAB =
1

2
IG =

1

2

(
M R2

)
IAB =

1

2
M R2.

Activity 10.7

The moment of inertia of a disc with mass M and radius R, when it rotates about an axis through the centre of

the disc, perpendicular to the disc, is I = 1
2

M R2. Use this result and the perpendicular axis theorem, to find the

moment of inertia of the disc when it rotates about its diameter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Feedback: You should get I = 1
4

M R2

Composite bodies

If a rigid body consists of two or more bodies joined together, then it is called a composite

body. The moment of inertia of such an object about an axis can be found by simply adding

up the moments of inertia of the separate parts that make up the object.

P QA

B

C

Result 10.6 — The moment of inertia of a composite body

If a rigid body is made up of separate parts A, B,C, . . . then the moment of inertia of the

whole body about an axis P Q is

I = IA + IB + IC + ...

where IA, IB , IC . . . are the moments of inertia of A, B,C . . . about the axis P Q.

Proof:

Let us assume that the total number of particles in the body is n. Then the moment of

inertia of the whole body is given by

I =
n∑

i=1

mir
2
i .

where mi is the mass of particle i and ri the distance from that particle to the axis of

rotation. Now, each particle i will belong to one and only one of the objects A, B,C, . . . ,
and thus the sum can be re-arranged so that the particles of each body are summed up

together:

n∑
i=1

mir
2
i =

∑
particles i in A

mir
2
i +

∑
particles j in B

m jr
2
j + · · · ,

but the right-hand side of this is then just the sum IA + IB + . . .

Note that to apply the rule for composite bodies, we may have to calculate the moments

of inertia about an axis for rigid bodies where the axis does not actually go through the

body itself! See, for instance, Learning Unit B in the sketch above. For the concept of

the moment of inertia to make sense, we must assume that the body is rigidly attached to

the axis. If the axis is outside the body, we can imagine that the body and the axis are

connected by massless rigid rods.

Example 10.10

Find the moment of inertia of a body formed from a ring A of mass M , radius a and a

particle P of mass m attached to a point on the circumference of the ring, for rotation

about an axis through the centre of the ring and perpendicular to the plane of the ring.
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Solution:

The moment of inertia of the ring about the given axis is Ma2. The particle is attached

to the ring at its circumference, so that it lies the distance a from the axis. Therefore the

moment of inertia of the particle about the axis is ma2. (See equation (10.5). According to

the rule for compound bodies, the moment of inertia of the entire body is

I = IA + IP = Ma2 + ma2.

Activity 10.8

Find the following moments of inertia:

(a) A rod AB of length 2a and mass M , rotating about an axis perpendicular to the rod, through end point A.

(b) A rod AB of length 2a and mass M , with a particle of mass M attached at its centre and a particle of

mass 2M attached at end B, rotating about an axis perpendicular to the rod, through end point A. (hint:

IA = I rod
A + I

particle 1
A + I

particle 2
A where for the particles you must use I = mr2!

(c) A rod AB of length 2a and and negligible mass, with a particle of mass M attached at its centre and a particle

of mass 2M attached at end B, rotating about an axis perpendicular to the rod, through end point A. (Hint:

here the mass of the rod is zero!)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) 4
3

Ma2, (b) 4
3

Ma2 + Ma2 + (2M) (2a)2 = 10 1
3

Ma2, (c) 9Ma2.

Warning: Integration cannot handle particle masses! This is why in the previous activity,

in point (b) you could not just pretend that the object was a rod with mass M+M+2M —

this would not give you the same result! For a particles we must use the expression md2.
Integration can only be used for bodies with a continuous structure.

Activity 10.9

A rod AB of length 2` and mass M has a particle of mass 2M attached at point B and a particle of mass 4M

attached at point A. Find the moment of inertia for rotation about an axis perpendicular to the rod, (a) through

its centre, (b) through point A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) 1
3

M`2 + (2M) `2 + (4M) `2 = 19
3

M`2, (b) 4
3

M`2 + (2M) (2`)2 + (4M) 02 = 28
3

M`2.

Remark: In the activity above, you might have thought of using the parallel axis theorem

to answer (b) by using the result on (a) and adding a “Md2” term to it. However, please

note that the answer in (a) is NOT the moment of inertia of the entire object (rod plus

particles) for an axis of rotation which goes through its centre of mass: the centre of the

rod is the centre of mass for the rod, true, but not for the entire object.

Indeed if you do want to use the parallel axis theorem I = IG+Md2 for composite bodies,

you must make sure of the following points:

• That the value you use as IG is indeed for an axis which goes through the centre of

mass of the entire object

• That you use as the value of mass, M , the mass of the entire object.
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Example 10.11

Four thin, uniform rods with masses 2m, 3m, 3m and 3m all of the same length a are

joined together to form the four edges of a square. What is the moment of inertial when

the object rotates about an axis which travels along the lightest rod?

Solution

A sketch of the object, and of the axis of rotation, looks as follows.

We have labelled the rods A (with mass 2m), B, C and D (with masses 3m). The moment

of inertia of the entire object is the sum of the moments of inertia of the rods, for rotation

around the given axis:

I = IA + IB + IC + ID.

Two of the rods (B and D) are perpendicular to the axis of rotation, and two of them (A and

C) are parallel to the axis of rotation (A goes along the axis of rotation, and C the distance

a away from it). For rods B and D, since the axis of rotation is perpendicular to the rods

and goes through their endpoints, we can use the result in Example 10.6 which deals with

just such a case. In that result, we found that for a rod with mass M and length 2a, the

moment of inertia when the rod rotates about an axis perpendicular to the rod, through its

end point is

I =
4

3
Ma2.

Here of course the length of the rods is a instead of 2a, and the mass for both B and D is

3m, so we get

IB = ID =
4

3
(3m)

(a

2

)2

= ma2.

You should really also be able to derive this directly from the moment of inertia of a rod

rotating about a perpendicular axis through its midpoint, using the parallel axis theorem!

For rods A and C, we can reason as in Example 10.7: Rod A lies along the axis of rotation

so its moment of inertia is zero: IA = 0; and Rod C lies at the distance a from the rod, so

its moment of inertia is IC = (3m) a2.
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Combining all these calculations, we find that the moment of inertia of the whole object is

I = IA + IB + IC + ID

= 0+ ma2 + 3ma2 + ma2

= 5ma2.
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Activity 10.10

Two identical rods, both with mass m and length 2a are joined together at right angles to form an L-shaped object

ABC , as shown below.

A

B C

Find the moment of inertia of the object for the following axes of rotation:

(a) An axis along rod AB.

(b) An axis perpendicular to both rods, through point B.

(c) An axis perpendicular to both rods, through point A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) 4
3

ma2, (b) 8
3

ma2, (c) 20
3

ma2.

In the following example, we apply the rule for finding moments of inertia for composite

bodies, to find the moment of inertia of a rectangle from the moments of inertia of rods,

which we already know.

Example 10.12

Find the moment of inertia of a rectangular, uniform lamina ABC D with sides AB of

length 2a and BC of length 2b, about an axis passing through the midpoints of AB and

C D.

Solution:

Axis of rotation

P

A B

CD

a a

Q

If the lamina is divided into n thin strips of length 2a parallel to AB, then for n large

enough, each strip is approximately a rod of length 2a and mass mi . As the thin strips do
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not overlap, their masses add up to the mass of the entire lamina:

M =
n∑

i=1

mi .

From Example 10.5 we know that the moment of inertia of rod P Q is mi
a2

3
. For the whole

lamina we sum over all the thin strips and find that

I =
n∑

i=1

mi

a2

3
=

a2

3

(
n∑

i=1

mi

)

=
Ma2

3
.

Remark: compare this with the way we found the moment of inertia for the ring! By slicing

as we do, we are of course approaching integration, and indeed we will show you later on

how to do this by applying a slicing and integrating technique. Remember that in slicing

and integration, we need to go to the limit: we will divide the object into infinitely small,

infinitely thing objects. Here we just slice it into very many objects. Things will work out

since the moment of inertia of each thin slice only depends on its mass and length, and not

really on its position or its width. J

Remark: Note that, according to this result, the moment of inertia of the rectangular

lamina does not depend on its length along the axis of rotation (b in the rectangle above),

but only on its width perpendicular to the axis (the length a, here). Accordingly, provided

that the following objects all have the same mass M , they all have the same moment of

inertia about the shown axis, namely

IX =
1

3
Ma2 :

Axis of rotation

Rectangles of length 2a,
(b=0)

a

a

b

a

a

a

a

b

Rod of length 2a
with varying widths b

Activity 10.11

Here you need to use both parallel and perpendicular axis theorems! Include in your answer sketches of each of

the four situations, with the axis of rotation indicated in the sketch.

Consider a rectangular lamina ABC D with AB = 2a and BC = 2b. If the mass of the lamina is M , find the

moment of inertia when the lamina rotates about the following axes:

(a) an axis through the midpoints of sides AB and C D,

(b) an axis along the side BC,

(c) an axis perpendicular to the lamina and through its centre,
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(d) an axis perpendicular to the lamina, through corner A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) 1
3

Ma2, (b) 4
3

Ma2, (c) 1
3

M
(
a2 + b2

)
, (d) 4

3
M
(
a2 + b2

)
.

The rule for the moment of inertia of composite bodies leads to yet another useful general

result. Let us assume that the object is a lamina and has the moment of inertia I about a

given axis. If the axis of rotation is an axis of symmetry, then the axis of rotation divides

the object into two parts. The moment of inertia of each of these parts is now equal to
1
2

I. This follows, because the two parts are each other’s mirror images, and hence must

have the same moment of inertia about the axis while, on the other hand, their moments of

inertia must sum up to I.

Axis AxisA

B

Example 10.13

As an example, we will re-calculate the moment of inertia I of a rod of length 2a and mass

M when it rotates about an axis perpendicular to the rod, through one of its endpoints, by

using Example 10.5 and the result above. The rod of length 2a and mass M, rotating about

the axis described above, can be imagined to form one of two identical halves of a rod of

length 4a and mass 2M rotating about an axis through its middle.

4a, 2M

2a, M

But by Example 10.5 we know what the moment of inertia of the rod of length 4a as it

rotates about the given axis is: It has a mass of 2M and a length of 2(2a), and therefore

Ilong rod =
1

3
(2M) (2a)2 =

8

3
Ma2.

But dividing the long rod into half along the axis of rotation gives us two identical copies

of our rod, and hence

Ilong rod = 2I

and accordingly,

I =
1

2
Ilong rod =

1

2
·

8

3
Ma2 =

4

3
Ma2.
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Activity 10.12

Find the moment of inertia of a thin, uniform rod with mass M , bent into the shape of a semicircle of radius R,
rotating about its diameter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: I = 1
2

M R2. (Hint: This object is obviously half of a ring rotating about its diameter – but what is the

mass of the whole ring?)

CONCLUSION

In this unit you have learned:

• what is meant by the pure rotation of a rigid body, and how it can be fully described by

the angle of rotation

• the equation of motion describing pure rotation, and how it can be applied

• why moments of inertia are important in rotation

• how to calculate moments of inertia for systems of particles, and (at least in principle)

for rigid bodies

• how to apply symmetry, identical axes, the perpendicular and parallel axes theorems

and the rule for composite bodies to find moments of inertia

Remember to add the following tools to your toolbox:

• the principle that moments of forces cause angular acceleration in the pure

rotation of a rigid body

• using integration to find the moment of inertia of a rigid body

• simplifying calculations by using symmetries and identical axes of rotation

• the definition of the moment of inertia

• the equation of motion for a rigid body in pure rotation

• the parallel and perpendicular axes theorems

• the rule for finding the moment of inertia for compound bodies
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Unit 11 MORE CALCULATIONS

OF MOMENTS OF INERTIA

Key questions:

• How do we find the moments of inertia of more complicated bodies,

such as a cylinder?

In this unit, we will find out how to calculate moments of inertia for more complicated

rigid bodies and systems. The first idea is that of “slicing and integrating”, similar to the

idea we have already used to find centres of mass in Learning Unit 2. Later, we will look

at more general cases, and will introduce a toolbox which should cover almost all cases

we come across in this module!

Contents of this unit:

11.1 Calculating moments of inertia by slicing and integrating

11.2 More complicated examples of moments of inertia

What you are expected know before working through this unit:

The results derived here are all based on the more basic results in Unit 10. In addition, you

will here and there need to refer to centres of mass of objects.

11.1 Calculating moments of inertia by slicing and integrating

As in the calculation of centres of mass, we can use the rule for composite bodies to justify

integrating by dividing the body into any small mass elements, not just particle-like ones.

More specifically, the moment of inertia can often be calculated by dividing the object into

thin slices (small mass elements), for which the moment of inertia 1Ii is known or can be

calculated easily. The rule for compound bodies tells us that the total moment of inertia is

the sum of the moments of inertia of the components,

I =
∑

1Ii

even if the small parts are not particle-like. As the masses of the components get smaller

and smaller, and their number larger and larger, summation is replaced by integration,

leading to

I =

∫
d I

where d I denotes the moment of inertia of one of the small mass elements.
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Result 11.1 (Calculating the moment of inertia by slicing and integrating)

For a rigid body with continuous structure,

I =

∫
d I

where d I is the moment of inertia of a small mass element, and integration is over all the

disjoint mass elements that the object is composed of.

To apply this process of slicing and integrating, we need to have a way of referring to each

mass component such that we can integrate over all of them, and we must be able to find

the moment of inertia of all of them. As in the case of calculating centres of mass, we will

often slice the object into thin components (“slices”), whose moments of inertia about the

given axis we can find more easily than if we were to calculate the moment of inertia of the

entire body directly. For instance, if each small mass element is particle-like, that is, very

small, then we may assume that it is approximately a particle with a moment of inertia

given by the formula I = mr2. In this case, the calculation of the moments of inertia for

each of the smaller elements is easy if the distance from them to the axis is easy to find.

Alternatively, we might select the small mass elements in such a manner that we can apply

some already established result to find their moments of inertia about the given axis (for

instance, at the moment we already know how to find the moments of inertia of simpler

objects such as rods or rings).

TOOLBOX FOR FINDING MOMENTS OF INERTIA BY SLICING AND INTE-

GRATING

1. Understanding the problem: Make sure you know what the body is like, and

where the axis of rotation lies! Draw a sketch of the body and the axis.

2. Check whether you can apply any of the simplifying tricks:

• symmetry, identical axes

• interpreting the object as a composite body – in which case you should

proceed to slice and integrate the components first

3. Decide on the best way to slice the object. Remember that you wish the slices

to be such that you can find their moments of inertia d I easily! Also make sure

that you know what kind of an object you get when slicing!

4. Select a coordinate system. The moment of inertia is an absolute quantity,

which does not need to be referred to in terms of a specified coordinate system.

However, if we are going to apply integration to find it, we shall have to use an

integration variable, which means that we will need at least one coordinate axis!

If the slicing is done perpendicularly to the axis of rotation, then sometimes we

can take that axis as one of our coordinate axes, for example the X -axis, and

integration will then be over the variables x which denote the position on the

X -axis of each slice. In general, the choice of the coordinate system is closely

linked to the decision of how you will “slice” the object! Add the coordinate

system to your sketch.

5. Identify your integration variable. Find the value of the moment of inertia d I

for all the small mass elements, in terms of the integration variable. This will

usually involve the mass of the small mass element, which may be found by

applying the concept of density and the volume, area or length of the small

element!. Identify the upper and lower limits of integration.
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6. Evaluate the integral. The end result may be in terms of the density ρ, in which

case we also have to apply the link between the total mass M , the density ρ
and the dimensions of the body, to express the result in terms of M instead.

7. Check the solution.

As a first simple example, we will re-calculate the moment of inertia for the rectangular

lamina in Example 10.12 by straightforward slicing-and-integrating.

Example 11.1

Example 10.12 revisited — finding the solution using integration

Find the moment of inertia of a rectangular, uniform lamina ABC D with sides AB of

length 2a and BC of length 2b, about an axis passing through the midpoints of AB and

C D.

Solution:

The rigid body and the axis of rotation are shown below.

a

Axis of rotation

2b 2b

a

The simplest way to slice a rectangle is into thin strips, and we already know how to find I

for a rod rotating about an axis perpendicular to the rod, through its midpoint. Therefore,

the natural choice here is to divide the rectangle into thin strips, perpendicular to the axis

of rotation.

We will take the X -axis to go along the axis of rotation. We slice the lamina into thin strips

perpendicular to the X -axis, so that the strip which lies at position x of the X -axis has a

width dx and length 2a.
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2b

X

0

x

The mass of such a strip is then

dm = ρ × width× length

= 2aρdx .

The strip is approximately a rod of length 2a and mass dm, and therefore, as in Example

10.5, it has the moment of inertia

d I =
1

3
(dm) a2

for rotation about the given axis (which, of course, is perpendicular to each strip and

through its centre of mass). To integrate over all the strips, we need to integrate from

x = 0 to x = b. Thus, the moment of inertia of the whole lamina is

I =

∫
d I =

∫
1

3
(dm) a2 =

∫ 2b

0

2

3
a3ρdx .

=
2

3
a3ρ

∫ 2b

0

dx =
2

3
a3ρ · (2b)

=
4

3
a3bρ. (11.1)

We would like to express the moment of inertia in terms of the total mass of the body,

rather than in terms of the density. To this end, we note that if the mass of the entire body

is M, then the mass and density are linked by

M = ρ (2a) (2b) ∴ ρ =
M

4ab.
If we apply this in (11.1), we finally get the result that

I =
1

3
Ma2.

The following example uses the already know moment of inertia for a ring, to find the

moment of inertia for a disc.

Example 11.2

Find the moment of inertia I of a uniform disc of mass M and with radius a about an axis

perpendicular to the disc, through its centre.

Solution:

The disc and the axis of rotation are sketched below, on the left. How should be slice the

disc into small mass elements? Slicing it into thin strips parallel to the plane of the disc,
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as suggested in the sketch in the middle, is clearly not going to be very helpful – for one

thing, the lengths of the thin slices will be very difficult to find, and besides, even if we

assume the slices to be approximately rods, we have no easy way to find the moments

of inertia of these rods about the axis indicated! On the other hand, we do know how to

find the moment of inertia of a ring about just this kind of an axis, and therefore we will

divide the disc into thin concentric strips, approximately rings, as shown on the right. Each

of the rings is uniquely defined by its radius, and therefore we can use the radius as the

integration variable.

Consider the disc to be divided into concentric strips, which will be approximately rings.

One such ring with radius r and thickness dr is shown below.

0
r

dr

If ρ is the area density, then the mass of the ring is

dm = density × area

= density × circumference× width

= ρ2πrdr,

so that the moment of inertia of each ring about the given axis is, according to Example

10.4,

d Ir = mass× radius2

= ρ2πrdr × r2 = 2πr3ρdr.

For the disc, we integrate over all the rings which make up the disc, which means integrat-

ing from r = 0 to r = a.

I =

∫
d Ir =

∫ a

0

2πρr3dr

= 2πρ

∫ a

0

r3dr = 2π p
r4

4

]a

0

=
πρa4

2
.

Now ρ = M/πa2, so that M = ρπa2 and hence

I =
1

2
Ma2.



204

Activity 11.1

Use slicing and integrating to find the moment of inertia of a triangular lamina with sides a, a and a
√

2, and

mass M, when it rotates about an axis along one of the sides of length a.

a

a axis of rotation

Hint: slice the triangle into thin vertical slices which are approximately rods, as shown.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: I =
∫ a

0
4
3

(
x
2

)2
ρxdx = 1

12
a4ρ where M = ρ 1

2
a2; therefore we get I = 1

6
Ma2.
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Example 11.3

Show that the moment of inertia of a hollow cylinder of mass M and with radius a about

its axis is Ma2.

Solution:

A hollow cylinder could be a piece of a pipe, or a can (with ends cut off). Note that by the

axis of a cylinder, we mean the axis which goes through the middle of the cylinder, along

its length. There is no mention here about the length of the cylinder, and indeed, it will

turn out that the moment of inertia does not depend on the length of the cylinder. We will

assume that the length is l.

We will prove the result here in three different ways, to illustrate the possible approaches.

Method 1 (Assuming that we know the moment of inertia of a uniform ring about an axis

through its centre.) We can slice the cylinder perpendicularly to the axis of rotation, in

which case we get thin bands, as shown. Each band is approximately a ring, and we do

certainly know how to find its moment of inertia about the axis shown. We will assume

that the axis of rotation coincides with the X -axis, and that the cylinder is situated as

shown. Then each slice is uniquely determined by its position on the X -axis, so that x is

the integrating variable, ranging from 0 to l.

lx0

a

dx

If one of the thin slices is situated at position x, 0 ≤ x ≤ ` along the axis, then it has

the width dx and if ρ denotes the surface density of the cylinder, then the mass of the thin

band is

dm = ρ × area

= ρ × width× circumference

= ρ · dx · 2πa.

But each of these bands is approximately a ring with radius a, so its moment of inertia

about the given axis is

d I = mass× radius2

= (dm)a2 = 2πρa3 · dx .

The moment of inertia of the whole cylinder is obtained by integrating over all the bands:

I =

∫
d I =

∫ `

0

2πρa3dx = 2πρa3`.

But the mass of the whole cylinder is

M = ρ × length× circumference

= ρ`2πa.
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This gives

ρ =
M

2πa`
,

so that

I = Ma2.

Method 2 (Assuming we know the moment of inertia of a rod, about an axis parallel to it.)

This time, let’s divide the cylinder into thin strips, parallel to the axis.

dxx

Then each strip is approximately a rod, parallel to the axis of rotation, at a distance a from

the axis. Again, we already know how to find the moments of inertia of the rods! But

how do we refer to the thin strips? Each of them is uniquely determined by its position

along the circumference of the cylinder, so we can use as the integrating variable a value

x, measured around the circumference from some point of reference. The values of x

range from 0 to 2πa. (Note that the exact position of the strip along the circumference is

not really important, but we do need to make sure that we use the correct upper and lower

limits for the integration!) Now, if one of the strips is at position x, measured along the

circumference of the cylinder, and if it has a width of dx, then the mass of this strip is

dm = ρ · area = ρ × width× length = ρ · dx · `.

Each strip is approximately a rod, parallel to the axis of the cylinder and at a distance a

from it, so its moment of inertia is given by

d I = (dm)a2 = ρ`a2dx .

For the whole cylinder,

I =

∫
d I =

∫ 2πa

0

ρ`a2dx = 2πρa3` = Ma2.

Method 3 (Compare this with Example 10.4) In fact, if we divide the surface of the cylin-

der into any kind of small (particle-like) elements, the i th one with mass mi , then each

of them is in fact situated at the same distance, a, from the axis. So, each element has a

moment of inertia given by

Ii = mi a
2

and for the whole object,

I =
n∑

i=1

Ii =
n∑

i=1

mi a
2

=

[
n∑

i=1

mi

]
a2 = Ma2.
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mi

What about a solid cylinder then? You’ll have a chance to deal that yourself, in the next

activity!

Activity 11.2

Show that the moment of inertia of a solid cylinder of mass M and radius a about its axis is 1
2

Ma2.

Hint: you must slice the cylinder into objects for which you can find the moment of inertia. One way is to slice it

perpendicularly to the axis, which will give you thin discs; another one is to slice it similarly to when we sliced

the disc into rings, in Example 11.2.

Example 11.4

Find the moment of inertia of a uniform, solid cone with radius a, height h and mass M,

about its axis.

Solution

The cone and the axis of rotation look like this:

Again the most sensible way to slice the object would be perpendicular to the axis of

rotation. The slices will then be thin discs, and we know how to find their moment of

inertia about the given axis. We will assume that the X -axis coincides with the axis of

rotation, so that integration is over the x-variable.

h

x

y
a

dx

Y

X

Assume that the cone is divided into cylindrical slices each with a width of dx , and each

approximately a disc. Consider a disc at position x on the X -axis. If the radius of this

disc is y, then its volume is π y2dx (volume = area× thickness = π (radius)2× thickness).
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If ρ is the density of the cone, then the mass of this disc is

dm = πρy2dx .

The moment of inertia of the disc about the X -axis is

d I =
1

2
(mass) radius2 =

1

2

(
π y2ρdx

)
y2

(according to Example 11.2). Hence, for the whole cone we have

I =

∫
d I =

π

2
ρ

∫ h

0

y4dx .

We still have to calculate y in terms of x . From similar triangles we have that

y =
ax

h
.

a

h

y
x

Therefore

I =
π

2
ρ

∫ h

0

(ax

h

)4

dx

=
πρa4h

10

=
3Ma2

10
since ρ =

3M

πa2h
.

The moment of inertia is

I =
3

10
Ma2.

Activity 11.3

Find the moment of inertia of a pyramid with mass M, height h and a base which is a 2a × 2a square, when it

rotates about its axis of symmetry (that is, the line from the centre of the base to the apex of the pyramid).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: I = 1
5

Ma2.

The following two examples involve much more complicated integration. They are only

included since we wish to derive all the moments of inertia we use in this module; however,

you will not be expected to reproduce the proofs on your own, or indeed to derive any

moments of inertia which involve integration at this level!

Example 11.5

Find the moment of inertia of a solid, uniform sphere with mass M and with radius a about

its diameter.
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Solution:

The object and the axis of rotation look like this:

Assume that the X -axis coincides with the axis of rotation (a diameter of the sphere). We

will slice the solid sphere into thin slices perpendicularly to the X -axis, so that integration

is over the positions of the slices on the X -axis. The slices will be thin discs. Assume that

the sphere is divided into discs such as P Q RS.

O
a

x A

Q P

R S

The moment of inertia of P Q RS about O A is, as in Example 11.2,

d I =
1

2
mass× (radius)2

=
1

2
ρπ

(
a2 − x2

)
dx ×

(
a2 − x2

)
,

where ρ is the density (mass per unit volume). The moment of inertia of the sphere is

then given by

I =

∫
d I =

∫ a

−a

ρπ

2

(
a2 − x2

)2

dx

=
ρπ

2

∫ a

−a

(
a4 − 2a2x2 + x4

)
dx

=
ρπ

2

[
a4x −

2

3
a2x3 +

x5

5

]a

−a

=
ρπa5

2

[
1−

2

3
+

1

5
−

(
−1+

2

3
−

1

5

)]

=
8

15
πρa5.

However, the total mass M and density are linked by

M = ρ
4

3
πa3
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and therefore we get

I =
2

5
Ma2.

Polar coordinates can be used to simplify the integration to find moments of inertia, just

like in the calculation of centres of mass by integration. The following example gives a

typical case.

Example 11.6

Find the moment of inertia of a thin, uniform, hollow sphere with mass M and radius a

about an axis along its diameter.

Solution:

Again, slicing at right angles to the axis seems to be the sensible thing to do. This time,

since the sphere is hollow, the slices will be thin bands, approximately rings. As when we

used polar coordinates to find centres of mass, calculations are easiest if we slice the object

to form thin angles. Consider a band of the sphere cut off by two planes perpendicular to

the diameter. Let angle P O A = θ and angle QO P = dθ. Then Q P = adθ . The

circumference of circle P S is 2πa sin θ .

P RSQ forms a thin hollow cylinder with height adθ . The surface area of P RSQ is

2πa sin θ a dθ and if its surface density is ρ, then its mass is given by

dm = 2π
(

a2 sin θ
)
ρdθ.

The band P RSQ is approximately a ring, and according to Example 10.4, the moment of

inertia of P RSQ about the axis O A is given by

d I = 2πρa2 sin θ · (a sin θ)2 · dθ.
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For the whole hollow sphere, we then have

I =

∫
d I =

∫ π

0

2πρa4 sin3 θdθ

= 2πρa4

∫ π

0

sin θ
(

sin2 θ
)

dθ

= 2πρa4

∫ π

0

sin θ
(

1− cos2 θ
)

dθ

= 2πρa4

{∫ π

0

sin θdθ −

∫ π

0

sin θ cos2 θdθ

}

= 2πρa4

{
[− cos]π0 +

[
cos3 θ

3

]π
0

}

= 2πρa4

(
− cosπ + cos 0+

cos3 π

3
−

cos3 0

3

)

= 2πρa4

(
2−

2

3

)

=
8πρa4

3

and since

ρ =
M

4πa2
,

we get

I =
2

3
Ma2.

11.2 More complicated examples of moments of inertia

We have explained, and illustrated with many examples, how to find the moment of inertia

of various rigid bodies and systems. We will now consider a bit more complicated exam-

ples, and to be able to deal with them, we will introduce a systematic way of looking at the

problem of finding the moment of inertia of any object.

TOOLBOX FOR THE TASK OF FINDING THE MOMENT OF INERTIA OF A

RIGID OBJECT

1. UNDERSTAND THE PROBLEM

Make sure that you understand, firstly, what the object is like; and secondly,

where the axis of rotation lies in relation to the body. Some of the following

tactics may help you to make sure you achieve this!

• Draw a sketch of the object.

• Think of a real-life example of the situation.

2. PLANNING THE SOLUTION

We have the following ways of finding moments of inertia:
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• For systems of particles, I =
∑

mir
2
i .

• For objects with a continuous structure, slicing and integrating: I =
∫

d I.
We have also introduced several simplifying tools:

• symmetries, identical axes of rotation

• the parallel and perpendicular axes theorems

• the rule for compound bodies

Finally, you usually have at your disposal a set of basic or previously calculated

moments of inertia for certain objects: rods, rings, discs, etc...

You will need to decide which of these tools apply for the particular object or its

components, and in which order you should apply them.

3. EXECUTING THE PLAN

You will now have to do the calculations you have decided on. The following

points should help you here:

• Introduce notation for the axes, objects etc. involved.

• If you have to integrate, you will also need to decide on the variable of integra-

tion.

• The link between density and mass will help you express the end result in terms

of the mass of the object, where necessary.

4. ANALYSING THE SOLUTION

• Do basic checks for correctness: The moment of inertia should be positiveness,

increase when mass increases, and so on.

• Re-calculate, using another method.

• Compare with other results for the same object with different axes, or different

objects with the same axis.

The following examples deal with finding moments of inertia in a wide range of examples.

Example 11.7

A rod AB of length 2` and with mass M has a particle with a mass of 2M attached at

point B. Find the moment of inertia for rotation about an axis perpendicular to the rod,

(a) through point A, and (b) through point B.

Solution:

1. UNDERSTANDING THE PROBLEM: The object and the axes of rotation look like

this: Axis in (a)

A B
2l

Axis in (b)

A 2l
B

2. PLANNING THE SOLUTION: Since in this example the rigid body is constituted

of an object with a continuous structure, plus a point mass, we must use the rule for
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compound bodies. (We cannot integrate over the whole object, nor can we consider the

whole object as consisting of a system of particles.) So, to find the moment of inertia

of the whole object (the rod plus the particle) about any given axis, we add together

the moment of inertia of the rod and the moment of inertia of the particle about that

axis. We already know the moment of inertia for a rod rotating about a perpendicular

axis through its centre. To find the moment of inertia for the rod rotating about a

perpendicular axis through any other point, we can use the parallel axes theorem. From

Example 10.5 we know that the moment of inertia for rotation of the rod about an axis

which is perpendicular to the rod, through its centre of mass G, is

I rod
G =

1

3
Ml2.

The axes of rotation described in (a) and (b) are both parallel to the axis in Example

10.5, and therefore the parallel axes theorem applies: The moment of inertia of the rod

for an axis which goes through a point X is given by

I rod
X = I rod

G + Md2

where d is the distance between X and G. On the other hand, for the particle with

mass 2M, the moment of inertia is

I
particle
X = (2M) r2

where r denotes the distance from the particle to the axis through point X on the rod.

(a) For an axis perpendicular to the rod, through A:

I total
A = I rod

A + I
particle
A

= I rod
G + Ml2 + (2M) (2l)2

=
1

3
Ml2 + Ml2 + (2M) (2l)2

= 9
1

3
Ml2

(b) For an axis perpendicular to the rod, through B:

I total
B = I rod

B + I
particle
B

= I rod
G + Ml2 + (2M) (O)2

=
1

3
Ml2 + Ml2

=
4

3
Ml2

Example 11.8

Calculate the moment of inertia of a uniform disc of mass M, with radius a,

(a) about an axis perpendicular to the disc, through a point A on its rim

(b) about an axis through its centre, parallel to the plane of the disc

(c) about an axis through a point A on its rim, parallel to the plane of the disc and tangential

to the disc.

Solution:
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The rotations in the three cases are indicated in the sketches below.

Axis in (a) Axis in (b)

Axis in (c)

What results do we already have regarding moments of inertia of discs? From Example

11.2 we know the moment of inertia for rotation about an axis perpendicular to the disc,

through its centre, as shown below:

Before we start to think about integration, we should check whether we can use any of the

simplifying tactics to utilise this known result. Firstly, we note that the axis of rotation in

(a) is parallel to the axis shown above. Therefore, we can use the parallel axes theorem

and the known result for the axis shown above, to deal with the axis in (a). Similarly,

the axes of rotation in (b) and (c) are parallel, so the parallel axes theorem will help us to

solve one from the other. Finally, the axis shown above and the one described in (b) are

perpendicular, so with help from a symmetry argument, we should also be able to solve

(b) from (a). Thus we should be able to answer all the questions without any integration!

(a) The axis here is parallel to the axis in Example 11.2 . There, the axis was through G

(the centre of mass of the disc) and here, through a point A on the circumference of the

disc. Thus, we can use the parallel axes theorem:

IA = IG + Ma2

where according to Example 11.2 ,

IG =
1

2
Ma2.

So,

IA =
1

2
Ma2 + Ma2 =

3

2
Ma2.

Note that due to symmetry, it obviously does not matter which point on the circumfer-

ence is chosen as A.

(b) For simplicity, we shall assume the following coordinates: the disc is on the XY -plane;

the Z -axis is perpendicular to the disc.
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X

Z

Y

G A

In Example 11.2 , we calculated I Z
G = Ma2/2 for the moment of inertia about an

axis through G, in the Z -direction. In (a) above, we calculated I Z
A = 3Ma2/2 for the

moment of inertia about an axis through A, in the Z -direction. Now, in (b) and (c) we

want to calculate I Y
G , the moment of inertia about an axis through point G, parallel to

the disc, in the Y -direction, and I Y
A about an axis through point A, tangential to the

disc, in the Y -direction. Firstly, we calculate I Y
G from I Z

G , using the perpendicular axes

theorem. The disc is on the XY -plane, so

I Z
G = I X

G + I Y
G .

But, due to symmetry, I X
G = I Y

G . So,

I Y
G =

1

2
I Z
G =

1

2
·

1

2
Ma2 =

1

4
Ma2.

(c) Next, we use the parallel axes theorem to calculate I Y
A from I Y

G :

I Y
A = I Y

G + Ma2 =
1

4
Ma2 + Ma2,

so

I Y
A =

5

4
Ma2.

(Of course, it is not necessary for A to be along one of the coordinate axes — it could

be any point on the rim of the disc!)

Note that we cannot calculate I Y
A directly from I Z

A using the perpendicular axes theorem,

as in (c). This is because there will no longer be symmetry of the X - and Y -axes: rotations

about axes through A in the X - and Y -directions, respectively, are very different. Instead,

we can use the perpendicular axes theorem as follows: I X
A + I Y

A = I Z
A , so I Y

A = I Z
A − I X

A ;
we know I Z

A from (a); and I X
A = I X

G , which we have found in (b), since the X -axis goes

through both points G and A. This again gives

I Y
A = I Z

A − I X
A =

3

2
Ma2 −

1

4
Ma2 =

5

4
Ma2.

Activity 11.4

A ring with mass m and radius a performs small oscillations about a horizontal axis which is tangential to the

disc at a point A on the rim of the disc. Find the moment of inertia about A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: As in the previous example, note that you have to use both the perpendicular and the parallel axis
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theorems! Make sure you can write down all the details of the proof. You should get

IA =
3

2
ma2.

Example 11.9

The figure below shows a uniform, solid block of mass M and edge lengths a, b and c.

Calculate its moment of inertia about an axis through one corner and parallel to an edge of

length c.

a b c

Solution:

To calculate the moment of inertia about a given axis of a body with a continuous structure,

like here, we usually try to divide the object into small parts, such that the moments of

inertia of these are easy to calculate. The moment of inertia of the whole object is the

obtained by “summing” (integrating) over all these small mass elements. The calculation

of the moments of inertia of each of the smaller elements is, in turn, easy if the small mass

element is one to which we can apply some already established result.

In this particular exercise, clearly, slicing the block into smaller objects produces rectan-

gles. Let us choose to slice the block into thin rectangles, parallel to the ab–plane. We are

then faced with the problem of finding the moment of inertia of a rectangle with edges a

and b, about an axis which is perpendicular to the rectangle, through one of its corners. But

so far, the only result we have derived for rectangles is the moment of inertia for rotation

about an axis parallel to the rectangle, through the midpoints of two opposite sides (Exam-

ple 10.12). However, applying the perpendicular and then the parallel axes theorems, we

will be able to derive the required moment of inertia.

The following picture illustrates the order of calculations, and specifies the various axes

we shall refer to.
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a

b

Z

X

Y

a

b

Y

X

a

a

b b

Perpendicular axis thm.

Axis A

a

Gd
b

b

a
Axis Z

Parallel axis thm.

Axis A

b

a

c

Integrate or sum up

We divide the block horizontally into n thin slices, as shown. Then each slice is approx-

imately a thin rectangle. Let rectangle number i have mass mi . To calculate the moment

of inertia I A
i of this rectangle about axis A, we first note that according to Example 10.12,

we have

I X
i =

1

3
mi

(
b

2

)2

=
1

12
mi b

2

and similarly,

I Y
i =

1

3
mi

(a

2

)2

=
1

12
mi a

2,

if the X - and Y -axes are as shown above.

Next, since the rectangle lies on XY -plane, we can apply the perpendicular axes theorem,

which gives us

I Z
i = I X

i + I Y
i =

1

12
mi (a

2 + b2).

Finally, we can apply the parallel axes theorem to calculate I A
i from I Z

i : The axis A is

parallel to axis Z , Z goes through the centre of mass of the rectangle and the distance

between the two axes is

d =

√(a

2

)2

+

(
b

2

)2

=

√(
a2 + b2

4

)
.

Therefore

I A
i = I Z

i + mi d
2 =

1

12
mi (a

2 + b2)+
1

4
mi (a

2 + b2)

=
1

3
mi (a

2 + b2).

Finally, to find the moment of inertia I A of the whole block, we add up the moments of



218

inertia I A
i of all the rectangles:

I A =
n∑

i=1

I A
i =

n∑
i=1

1

3
mi (a

2 + b2)

=
1

3

(
n∑

i=1

mi

)
(a2 + b2).

But the sum

n∑
i=1

mi

equals M, the total mass of the whole block. Hence, we have

I A =
1

3
M(a2 + b2).

Note that we did not have to integrate here, since all the rectangles had a similar moment

of inertia for rotation about the A-axis, namely

I A
i =

1

3
mi (a

2 + b2)

where mi is the mass of the rectangle! That is, the moments of inertia of the rectangles do

not depend on their position on the A-axis.

Of course, using integration would give us the same result as obtained above. Here is how

we would solve the problem, using integral notation:

Axis A

b

0
x
c a

dx

We divide the block into thin slices, as shown. The slices are then thin rectangles, and if

the rectangle situated at position x, 0 ≤ x ≤ c along the A-axis has a width of dx and if ρ

denotes the density of the block (mass per unit volume), then the mass of this rectangle is

dm = ρ · volume

= ρ · dx · a · b

= ρabdx .

Now, from the calculations above, we know that the moment of inertia of a thin a × b

rectangle with mass dm about axis A is equal to

d I =
1

3
dm(a2 + b2) =

1

3
(a2 + b2)ρabdx .

The moment of inertia of the whole block is found by integrating over all the rectangles
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(x = 0 to x = c) :

I A =

∫
d I =

∫ c

0

1

3
(a2 + b2)ρabdx

=
1

3
(a2 + b2)ρab

∫ c

0

dx =
1

3
(a2 + b2)ρabc.

Finally, we use the fact that the total mass of the block is

M = ρabc.

Thus, we have

I A =
1

3
(a2 + b2)M

as before.

Example 11.10

Calculate the moment of inertia of a thin, uniform lamina shaped like a semicircle with

mass M , about an axis along its diameter.

Solution:

When asked to find the moment of inertia of an object, it is always a good idea to see

whether one cannot calculate the moment of inertia using an already established result,

rather than using direct integration. In this particular case, it turns out that we can calcu-

late the required moment of inertia fairly easily from the results of Example 11.8. In the

following, we give this method, as well as a way of calculating the moment of inertia by

direct integration. We shall assume that the radius of the semicircle equals a and its mass

is M.

Method 1

In Example 11.8, Learning Unit (b), we calculated the moment of inertia of a uniform disc

about an axis along its diameter: if the disc has a mass of 2M and a radius a, then the

moment of inertia is

Idisc =
1

2
Ma2.

Axis

But the disc consists of two identical semicircles of the type we are interested in here, each

with a mass M; let us denote them by A and B.
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AxisA

B

In terms of the rule for calculating moments of inertia of compound bodies,

Idisc = IA + IB .

On the other hand, the semicircles A and B are situated identically in relation to the axis,

and therefore IA = IB . Therefore,

2IA = Idisc

∴ IA =
1

2
Idisc =

1

2
·

1

2
Ma2

∴ IA =
1

4
Ma2.

Method 2

Take the X -axis to go along the axis of rotation, and let us divide the semicircle into thin

slices, as shown below:

a +a0

X

x

dx

The slice situated at position x on the X -axis has the length

` =
√

a2 − x2.

(This can be seen from the fact that the semicircle is described by the function

y =
√

a2 − x2;

or alternatively, by using elementary trigonometry as in the figure below.)

a2b2

x

a

If this slice has a thickness dx, then its mass is

dm = ρ
√

a2 − x2dx

where ρ is the density (mass per unit area).

The slice is approximately a rod of mass dm and length

` =
√

a2 − x2,

and so we can find its moment of inertia, which we will denote by d Ix , about the X -axis
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by applying the results for rods.

First, we will find the moment of inertia of a general rod rotating about its endpoint – this

is a very useful result!

According to Example 10.5, the moment of inertia of a uniform rod of length ` and mass

m about an axis perpendicular to the rod, through its centre G, is

IG =
1

3
m

(
`

2

)2

=
1

12
m`2.

To find its moment of inertia IA about an axis perpendicular to the rod, through the end A

of the rod, we can apply the parallel axes theorem. This distance between A and G is `
2

,

and therefore, according to the parallel axes theorem,

IA = IG + m

(
`

2

)2

=
1

12
m`2 +

1

4
m`2

∴ IA =
1

3
m`2.

Now, we apply this result to the rod of mass dm and length

` =
√

a2 − x2,

to find that

d Ix =
1

3
dm(a2 − x2) =

1

3
ρ
√

a2 − x2(a2 − x2)dx

Finally, to find the moment of inertia of the entire semicircle, we have to integrate over all

the slices, that is, from x = −a to x = a. Then the total inertia is

I =

∫
d Ix =

∫ a

−a

1

3
ρ
√

a2 − x2(a2 − x2)dx

∴ I =
1

3

∫ a

−a

ρ(a2 − x2)
3
2 dx . (11.2)

So, all we have to do is to calculate the value of this integral – but this is easier said than

done! This integration is beyond the scope of a first–year module so you are not expected

to be able to do it yourself. We will, however, show below how this can be done. The

complexity of this integration should again emphasise how much easier Method 1 was!

To calculate the value of the integral (11.2), we can first make a change of variables by

introducing a new variable u, where

x = a sin(u);

then we get

dx = a cos(u)du,

a2 − x2 = (a cos(u))2,
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integration is now from u = −π
2

to u = π
2
, and thus the integral (11.2) becomes

I = ρ
1

3

∫ π
2

− π
2

(a cos(u))3du = ρ
a4

3

∫ π
2

− π
2

cos4 udu

= ρ
a4

3

[
3u

8
+

sin 2u

4
+

sin 4u

32

] π
2

− π
2

= ρ
a4

3

(
3

8
π

)
= δ

a4

8
π.

On the other hand, the mass of the entire semicircle must be equal to

M = ρ ·
1

2
πa2;

therefore, we have

ρ =
2M

πa2
,

and hence we again get

I =
1

4
Ma2.

Example 11.11

Pendulum 1 consists of a rod AB of length 2L and mass m with a thin disc of mass M and

radius r attached rigidly at its centre to the rod’s end point B, and pendulum 2 consists of

a similar rod with a thin square of mass M and sides of length 2a attached rigidly at its

centre to the rod’s end point B. Find the moments of inertia of the two pendulums, when

rotation is for an axis through point A of the rod, perpendicular to the plane of the disc /

the square.

Solution:

The pendulums look like this:

2a

2L

A

Br

2L

A

B

Pendulum 1 Pendulum 2

The moment of inertia of each pendulum can be found by adding together the moment of

inertia of rod AB rotating about point A, and the moment of inertia of the disc/square for

rotation about point A; the latter can in turn be found by parallel axis theorem from the

moment of inertia of a disc/square rotating about an axis perpendicular to it, through its

centre.

For rotation about an axis through the centre of a disc/square, perpendicular to its plane:
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For the disc we have

I disc
G =

1

2
Mr2,

and for the square, using Example 10.12 and the perpendicular axis theorem,

I
square
G =

1

3
Ma2 +

1

3
Ma2 =

2

3
Ma2.

Since the distance from B to A is 2L , we further get

I disc
A = I disc

G + M (2L)2 =
1

2
Mr2 + 4M L2,

I
square
A = I

square
G + M (2L)2 =

2

3
Mr2 + 4M L2.

The moments of inertia for the pendulums are therefore: For pendulum 1,

I 1
A = I rod

A + I disc
A

=
4

3
mL2 + 4M L2 +

1

2
Mr2.

and for pendulum 2,

I 2
A = I rod

A + I
square
A

=
4

3
mL2 + 4M L2 +

2

3
Mr2.

The following activities involve you finding the centres of mass of various objects, for

various axes of rotation. Please do use the toolbox, to make the job of finding the result as

easy as possible!

Activity 11.5

A pendulum is made of two discs (each with a mass M and radius R), which are separated by a massless rod.

The discs lie on the same plane and their centres are a distance ` apart. One of the discs is pivoted through its

centre by a small pin. Find the moment of inertia for the pendulum, for rotation about the pin.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: I = M
(
R2 + `2

)
.

Activity 11.6

Two thin discs, both with mass m and radius R, are attached as shown below to form a rigid body.

What is the moment of inertia of the system about an axis perpendicular to the plane of the discs, through the

centre of one of them?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Feedback: You will get 5Mr2.

Activity 11.7

Find the moment of inertia of a square lamina, with sides of length 2a and mass m, about an axis passing

diagonally through the square. Hint: the perpendicular axis theorem can also be used to find the moments of

inertia for rotation about the two diagonals of the square from the moment of inertia for rotation about an axis

which goes perpendicularly through the centre of the square!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: you should get 1
3

ma2.

Activity 11.8

Four identical particles of mass m are placed at the corners of an a × a square and held there by four massless

rods, which form the sides of the square. What is the moment of inertia of this rigid body about an axis (a) that

passes through the midpoints of opposite sides and lies in the plane of the square, (b) that passes through the

midpoint of one of the sides and is perpendicular to the plane of the square, and (c) that lies on the plane of the

square and passes through two diagonally opposite particles?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Throughout, since you have here just four particles, you will be able to find the moment of inertia

from I = r2
1 +mr2

2 +mr2
3 +mr2

4 where ri is the distance from particle number i to the axis of rotation. You will

get the following: (a): ma2; (b) 9
2

ma2; (c) ma2.

Activity 11.9

The object shown below consists of two identical thin rods AB and C D, of mass M and length L , joined together

at their midpoints to form a cross. Let E be the point where the two rods intersect.

A

B

C D
E

Find the moment of inertia of the object when it rotates about the following axes of rotation:

(a) An axis along rod AB.

(b) An axis through point E, perpendicular to the cross.

(c) An axis through point A, perpendicular to the cross.

(d) An axis which goes through points A and D.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) 1
12

M L2,(b) 1
6

M L2 (from (a) and perpendicular axis theorem), (c) 2
3

M L2 (use (b) and parallel axis
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theorem), (d) 1
3

M L2 (there are many ways to do this, for instance, you can find from (b) the moment of inertia

for rotation about a diagonal to the object, and then use parallel axis theorem - but remember to use the mass

of the entire object in the formula in the parallel axis theorem!) Please see the workbook for a full worked-out

solution.

Activity 11.10

Find the moment of inertia of a thick hollow sphere, with an inner radius R1 and an outer radius R2 and mass M ,

about an axis through its centre.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: You will get 2
5

M

(
R5

1−R5
2

)
R3

1−R3
2

.You can find the moment of inertia by slicing the object into thin, concentric

hollow spheres (you’ll need to find the volume of the object to change from ρ to M), or you can use the fact that

the object consists of a big sphere minus a small sphere, so the moment of inertia of the object must be the

moment of inertia of the big sphere minus the small sphere (but make sure you use the right masses for both!)
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CONCLUSION

In this unit you have learned how to calculate the moments of inertia

• by slicing and integrating

• by applying all the tricks we have come across so far

Remember to add the following tools to your toolbox:

• using slicing and integrating to find the moment of inertia of a rigid body

• The results for the moments of inertia of various objects

• the toolbox for finding moments of inertia by slicing and integrating

• the toolbox for the task of finding the moment of inertia of a rigid object

• The table of moments of inertia, on the next page
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Some moments of inertia

Uniform Body of Axis Moment

Mass M of Inertia

Rod of length 2` Perpendicular to the rod through M`2/3

the centre

Rod Parallel to the rod and a distance d from it Md2

Rectangle of length 2` Perpendicular to the sides of length 2` M`2/3

and width 2d and passing through their midpoints

Ring with radius a Perpendicular to the ring and Ma2

through its centre

Disc with radius a Perpendicular to the disc and Ma2/2

through its centre

Solid sphere with radius a A diameter 2Ma2/5

Hollow sphere with radius a A diameter 2Ma2/3

Solid cylinder with radius a The axis Ma2/2

Hollow cylinder with The axis Ma2

radius a
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Unit 12 APPLICATIONS OF THE

EQUATION FOR PURE ROTA-

TION

Key questions:

• How do we apply the equation of motion describing pure rotation?

In this unit you will learn how to solve problems using the equation for pure rotation. We

shall also introduce the concepts of pulleys and compound pendulums.

Contents of this unit:

12.1 How to apply the equation for pure rotation

12.2 Problem-solving strategies

What you are expected know before working through this unit:

In this unit, we combine the knowledge and skills you have gained in Units 8, 10 and

11. You will also occasionally need to use the concept of centre of mass in the problem

solving, sometimes to apply the parallel axis theorem, and sometimes to find where the

force of gravity acts!

12.1 How to apply the equation for pure rotation

We are now ready to start applying Result 10.2, and the equation of motion for pure rota-

tion:

n∑
i=1

r i × F i = I
..
θk (12.1)

to solve problems. In this equation,

• F i are the external forces acting on the object

• for each i, vector r i is the position vector from the axis of rotation to the point where

the particular external force F i acts

• the sum on the left is therefore the sum of the moments about the given axis of all the

external forces acting on the system

• I is the moment of inertia of the object for rotation about the fixed axis

•
..
θ is the angular acceleration, measured counterclockwise

Remember that (12.1) assumes that we are considering an object which is a solid body

rotating about a fixed, unmoving axis, and that the axis of rotation is parallel to the Z -

axis. Thus, all parts of the body move parallel to the XY -plane. We can assume that all
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the external forces acting on the body also lie on the XY -plane; forces which act in the

direction of the axis of rotation do not contribute to the rotational motion. The position

vectors r i will also be parallel to the XY -plane, and it follows that the left-hand side of the

equation will give a vector which is a multiple of the k unit vector.

To apply the equation of rotation it is necessary to:

• identify the axis of rotation

• find the moment of inertia of the body for rotation about the given axis

• identify all the forces acting on the body, with their magnitudes, directions and points

of action

• find the position vectors from the axis to the points of action of the forces

• calculate the vector products on the left.

The evaluation of the vector product in the equation of rotation is easiest if we use the XY Z

unit vectors. To use the equation of rotation (12.1) in the first place, we must have selected

a coordinate system so that the axis of rotation is parallel to the Z -axis, and indeed, since

the axis is unmoving here, it is easiest to select the axis of rotation to coincide with the Z -

axis, so that the origin of the XY Z coordinate system lies on the axis of rotation. However,

we still have the option to decide how the X - and Y -axes should go, and once again some

choices are better than others. When choosing the coordinate system, it should be done so

as to make it as easy as possible to express the forces F i and the position vectors r i (from

the axis of rotation to the points of action of the forces) in terms of the i and j unit vectors.

Note that since we already know that both sides of the equation (12.1) are vectors in the Z -

direction (parallel to the axis of rotation), only the magnitudes of the right- and left-hand

sides are of interest. In fact once the calculations are done, we usually drop the unit vector

k from both sides, and obtain an equation of rotation which in effect gives us an expression

for
..
θ .

The following examples and activities involve straightforward applications of the equation

of rotation.

Example 12.1

Sphere 1 has mass M and radius R, while Sphere 2 has mass 2M and radius 1
2

R. Each

sphere rotates about an axis through its centre.

(a) For each of the spheres, find the moment of the force required to give the sphere the

angular acceleration α.

(b) For each sphere, what force applied tangentially at the equator of the sphere would

provide the required moment of force?

Solution:

For a rigid body rotating about a fixed axis, the moment of a force M about the given axis

is linked to angular acceleration through the equation of rotation,

M = I θ̈k.

We wish to have θ̈ = α. Finally we need to find the values of the moment of inertia, I.

The objects here are spheres; and from the table on moments of inertia, we find that the

moment of inertia for a sphere with radius a and mass M about an axis through its centre
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is 2Ma2/5. Applying this in the situation here, we get

I1 =
2

5
M R2, I2 =

2

5
(2M)

(
R

2

)2

=
1

5
M R2

for spheres 1 and 2.

(a) Thus, we find that the moments of force required are

M1 =
2

5
M R2 ω

t
k

for sphere 1 and

M2 =
1

5
M R2 ω

t
k

for sphere 2.

(b) A force F with magnitude F, applied tangentially at the equator of the sphere, would

have the moment

M = r Fk

where k is parallel to the axis of rotation. Here, the radius of the sphere is r , and we

assume that F is applied as shown below, so that the turning effect is counterclockwise!

Applying this for sphere 1, we find that to obtain the required M1 value, the required

force F1 must satisfy the condition

RF1k =
2

5
M R2ω

t
k.

Similarly, for sphere 2, we need force F2 such that

R

2
F2k =

1

5
M R2ω

t
k.

Solving for F1 and F2 from these, we get

F1 =
2

5
M R

ω

t
,

F2 =
2

5
M R

ω

t
.

The forces that need to be applied are therefore the same. This should be clear from the

fact that for sphere 1 we need twice as large a moment of the force since I is two times

larger there; but then again the radius is twice as long, and the same force applied at

a twice the distance gives twice as large a moment!J
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Activity 12.1

A disc–shaped object is made of a non–uniform material. Its radius is r, and it is free to rotate about an axis

through its centre. If a force F of magnitude F applied tangentially at the edge of the object produces the angular

acceleration α, what is its moment of inertia for rotation about that axis?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: r F/α, of course!

Quite often it happens that the directions of the forces acting on the object or their points

of action, and hence the moments of the forces, depend on the position of the object. Since

in pure rotation the object can only rotate about the axis, its position is, of course, fully

described by its angle of rotation, which we have agreed will be measured counterclock-

wise. The exact way we measure the angle of rotation must, if necessary, be specified. The

following example illustrates this.

Example 12.2

An object consists of a massless disc of radius R, at the rim of which a particle of mass

M is attached. Let A denote the point on the rim where the particle is attached, and let

C denote the centre of the disc. The object is free to rotate in the vertical plane about a

horizontal axis through point C.

We will find the equation of motion that describes the rotation of the object about the given

axis.

Solution: The forces acting on the disc are:

1. The force of gravity Mg, acting at the particle, which is at point A. (Remember that

the disc itself is massless, so there is no force of gravity acting at the centre of the disc!)

The force Mg is directed downwards.

2. The force of reaction F which fixes the disc at point C. Since the axis of rotation goes

through point C, this force has a zero moment and therefore we can ignore it when

writing out the equation of rotation.

The equation of rotation then gives

C A × Mg = I θ̈ k,

where I = M R2 (this is the moment of inertia of a single particle of mass M at the

distance R from C ). Let us take the XY coordinates as shown below, with the origin at

point C in the middle of the disc.
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Now, it is important to notice here that while the force Mg is always directed downwards,

with the magnitude Mg (so that Mg = −Mg j in our coordinate system), the position

vector from C to A varies according to the position of the point A — remember that the

disc rotates about point C and point A rotates with it! It follows that the moment of

the force Mg, and accordingly the angular acceleration
..
θ at each moment depend on the

current position of point A. But we know that this position can be described by the angle

of rotation. To introduce a way of measuring the angle of rotation, we will assume that

the line C A forms the angle θ with the vertical line downwards from point C , measured

counterclockwise, as shown in the sketch below.

Note that the positions where A is to the left of C can then be referred to either by negative

angles θ, or by angles θ between π and 2π.

With this agreement on the angle of rotation, we see that if the angle is θ, then

C A = R sin θ i − R cos θ j .

(This follows from a bit of trigonometric reasoning!) Thus, we get the equation of rotation(
R sin θ i − R cos θ j

)
×
(
−Mg j

)
=

(
M R2

)
θ̈ k

∴ −R Mg sin θ = M R2 θ̈

∴ θ̈ = −
g

R
sin θ. (12.2)

Note that we have arrived at an equation linking the angle of rotation θ and its second

derivative, θ̈ . In principle at least, this fully describes the motion of the disc. The solution

θ(t), t ≥ 0 to this differential equation, with given initial values (initial angle and initial
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angular velocity), gives the angle of rotation at all times t!

Even without finding the solution to the differential equation, we can draw conclusions

from equation (12.2) on how the disc will rotate. For instance, we see that when the disc

has rotated counterclockwise such that A is to the left of point C (as in the sketch), the

value of sin(θ) is positive and hence the angular acceleration θ̈ is negative, which means

that the disc has clockwise acceleration. This is caused by the gravity pulling down at

the particle at A , and braking down the counterclockwise rotation of the disc. Similarly,

when the disc has rotated clockwise, and A is to the right of point C, the angular acceler-

ation is counterclockwise. The disc will behave like a pendulum, swinging endlessly, first

clockwise and then counterclockwise.

Does the end result depend on how we chose the coordinate system, or on how we decided

to measure the angle of rotation θ? Firstly, we see that the final result (12.2) does not

depend on the unit vectors i and j — which makes sense, since we only introduced those

in order to calculate the vector products. The final equation of rotation does not depend on

how the coordinates X and Y were chosen. How about the choice of the angle of rotation

θ? We could also have decided to measure the angle of rotation by taking θ to be the

counterclockwise angle that the line AC forms with the vertical line upwards from point

C, as shown in the following sketch:

In this case, we see that when the angle of rotation is θ̂ according to this new way of

measuring the angle, the position vector from C to A is C A = −R sin θ̂ i+R cos θ̂ j . The

equation of rotation will then be(
−R sin θ̂ i + R cos θ̂ j

)
×
(
−Mg j

)
=

(
M R2

)
θ̈ k

∴ R Mg sin θ̂ = M R2 θ̈

∴ θ̈ =
g

R
sin θ̂ . (12.3)

We see that the sign of the right-hand term has changed from the previous equation of

motion, (12.2). This is of course as expected, since the two different methods we have

discussed for measuring the angle of rotation are linked by θ̂ = π + θ, which means

that θ̂ = −θ and therefore sin θ̂ = − sin θ. The lesson from this is that the exact way of

measuring the angle of rotation must be specified if that angle appears in the equation of

rotation!J
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Note that in the solution above, the only time we really needed the X - and Y -coordinates

was when we had to calculate the vectors products in the moments of the forces by util-

ising the unit vectors. We could alternatively have found the magnitudes of the moments

directly, by taking moments. However, introducing the coordinate system does reduce er-

rors. Therefore, unless you are quite sure that you know what you are doing, it is always

best to proceed as systematically as possible!
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Activity 12.2

A uniform rod of length L and mass m is placed on top of a pivot, which is situated at a point at the length L/4
from one end of the rod.

The rod is held horizontally, and is then released. Write down the equation of rotation, and calculate the angular

acceleration of the rod, in the position shown.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The force of gravity acts at the centre of the rod, and you will need to find the position vector from the

pivot point to the centre of the rod; and you will also need to find the moment of inertia of the rod when it rotates

about the pivot. Note that the length of the rod is L , not 2L! The equation of rotation − L
4

mg = 7
48

mL2θ̈ holds

at the initial moment, and the angular acceleration θ̈ can be found from this..

In the activity above, the position of the rod was fixed. In the next activity, you will have

to take into account the fact that the pendulum could be at any angle!.

Activity 12.3

A pendulum consists of a massless rod of length `, with a disc with mass M and radius r attached from its centre

to one end of the rod. The other end of the rod is pivoted so that the pendulum swings freely, such that the plane

of the disc is parallel to the plane in which the pendulum swings. Find the moment of inertia of the pendulum,

and write down the equation of rotation of the pendulum. (Note that you have to introduce a variable for the

angle of rotation for the pendulum. You have to define this very clearly in your answer! The equation of rotation

will be an expression that links the angular acceleration θ̈ and the angle of rotation, θ. Remember also that the

gravity acts at the centre of mass of the pendulum - you will need to find that!)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: I = M

(
1
2
r2 + `2

)
. Remember that the rod itself is massless, so you will just need the moment of

inertia of the disc, and the parallel axis theorem! The equation of motion will be −` sin θMgk = I θ̈k.

Example 12.3

A rod of mass M and length 2a is pivoted at one end to a vertical pole so that it can move

freely in a horizontal plane. Find the angular acceleration of the rod if a force F is applied

at a point of the rod at a distance (a) a/2, and (b) 3a/2 from the pole. The force is applied

in a direction perpendicular to the rod, on its plane of motion.

Solution:
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Z

F

Y

X

Let the XY Z coordinate system be as shown in the sketch above. Then the force applied

can be written as F = F j , in the direction of Y -axis. We can calculate IZ , the moment of

inertia of the rod for rotation about the Z -axis by applying the parallel axes theorem: We

get

IZ = IG + Md2

where IG is the inertia of the rod about an axis parallel to the Z -axis, through the centre of

mass of the rod, and d is the distance between the two axes. But the centre of mass of the

rod is at its midpoint, and therefore d = a; and as in Example 10.5,

IG =
1

3
Ma2.

Thus,

IZ =
1

3
Ma2 + Ma2 =

4

3
Ma2.

According to the equation of rotation,

r × F = IZ

..
θk (12.4)

where
..
θ is the angular acceleration (measured counterclockwise on the XY -plane) and r

is the position vector from the axis to the point where the force F is applied.

(a) Here, r = a
2

i . Thus,

r × F =
a

2
i × F j =

1

2
aFk

and the equation of rotation (12.4) gives

1

2
aFk =

4

3
Ma2

..
θk

∴ 1

2
aF =

4

3
Ma2

..
θ

∴
..
θ =

3

8

F

Ma
.

(b) Now, r = 3a
2

i,

r × F =
3a

2
i × F j =

3

2
aFk
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and (12.4) gives

3

2
aFk =

4

3
Ma2

..
θk

∴
..
θ =

9

8

F

Ma
.
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Activity 12.4

A disc with mass M and radius r lies flat on a rough, horizontal surface. We wish to lift it up by applying an

upwards force F to one edge, so that the disc pivots on the opposite edge.

Y

Z

F

XMg
A

B
G

Write down the equation of rotation at the position shown, when the lifting starts. How much initial force is

needed to lift the disc with constant angular acceleration α?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the equation of motion will be 2r F − r Mg = I
..
θ where I = 5

4
Mr2. Thus to get θ̈ = α, we need

F = 1
2

M

(
g + 5

4
rα
)
.

12.2 Problem-solving strategies

In the rest of the chapter we will look at examples of general problems. To solve these

problems, we will need to use all the concepts and results we have come across so far.

In this case, our four-step problem-solving strategy could have the following tools in it

(please add any extra tools you can think of to the list!)

TOOLBOX FOR SOLVING PROBLEMS INVOLVING PURE ROTATION

1. UNDERSTANDING THE PROBLEM

Here, you must understand what the rotating object and any other components

of the system are like, and what are you asked to do. To make sure that you

achieve this, you might make use of the following tools:

• Look for keywords for hints about

• the position of the rotating object: horizontal, vertical, tangential etc.

• the position of the axis of rotation

• the shape and composition of the rotating object (disc, rod; uniform, com-

posite etc.)

• any other objects which form Learning Unit of the system, their way of

motion, their links with the rotating object: pulleys, ropes, etc.

• Use sketches and diagrams of the whole system and its components.

• Use real-life examples and experiments.

• Try to rephrase the problem in your own words.

• Use standard mathematical notation for the known and unknown quantities.
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2. PLANNING WHAT TO DO

Review the available principles, results and definitions:

• The equation of pure rotation, the moment of inertia, angular position and

acceleration

• From previous parts: Newton’s equations for the motion of particles, the

centre of mass, the equation for the motion of the centre of mass, and all

the tools listed in Learning Unit 1

To decide on which principles you should apply to the system and/or its various

components, you may wish to try the following tools:

• Know when the principles apply and when not.

• Find similar problems and examples.

• Look for principles dealing with the types of variables which are given and

wanted.

To make sure that a plan will work, also check the following:

• Do you have all the information necessary to apply the definitions, princi-

ples and results decided on? If not, can you find the information from what

is given? Alternatively, can one introduce the information as another un-

known? Which definitions, principles or results deal with the new unknown?

• Have you used all the given facts and all the conditions in the problem state-

ment?

3. EXECUTING THE PLAN

This is where you will have to set up the equations and solve them. You may

need:

• mathematical notation, symbols for variables, coordinate systems

• mathematical tools (integration, solving equations etc.)

• sketches and diagrams

• already calculated results, tables of moments of inertia

4. ANALYSING THE SOLUTION

To check the correctness of the solution, you can do the following:

• See whether the solution makes sense. Compare the end result to other

known, similar results.

• Try to think of other ways to solve the same problem.

• Compare it with experiments and guesses based on real-life objects.

• Work in a group and compare your results with those of others.

To reflect on and learn from the solution, you can think of other systems where

a similar approach would work. Try to generalise the result. Compare this prob-

lem with other systems that you have come across: what are the differences

and similarities?
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The following example illustrates how this toolbox could be applied.

Example 12.4

A disk of mass M and radius a is free to rotate about a fixed horizontal axis through its

centre. A string is wrapped around the rim of this disk and a mass m is attached to the

string. What is the downward acceleration of the mass?

Solution:

UNDERSTANDING THE PROBLEM: A sketch of the system is shown below. What

we would expect to happen is this: The mass will start to drop downwards, but it is not

dropping freely, since it is attached to the end of the string which is wrapped around the

disc. As the mass falls, it will be unravelling the string from the disc, causing the disc

to rotate. It follows that we would expect the acceleration of the mass to be less than its

acceleration would be in free fall (i.e. equal to g). We are supposed to find the value of

this acceleration.

M

m

mg

G
AN

Mg
T

Tj

i

PLANNING THE SOLUTION: The motion of the mass is translation, described by New-

ton’s laws of motion. In particular, the acceleration of the mass is fully determined once

we know the forces acting on the mass. There are two forces acting on it: gravity down-

wards and the tension of the string, upwards. The force of gravity is known, of course,

but the tension on the rope is not known! So, we have two unknowns but, so far, only one

equation (the equation for the motion of the mass). So, we have to find at least one other

equation where the unknown tension on the rope features. One possibility is to consider

what the tension of the rope does to the pulley, by applying the equation of pure rotation

to the pulley. For this we have to introduce another variable, namely the angular acceler-

ation of the pulley. By now we have three unknowns, but still only two equations, so we

will need yet another condition linking some of the unknowns. This link will be provided

by the string: since the string is wrapped around the disc, the mass can move downwards

if, and only if the string unravels from the disc, and that means that the disc must turn —

there must be a one-to-one connection between how the mass moves and how the disc un-

ravels. In particular, we should be able to link the angular acceleration of the disc to the

downwards acceleration of the mass.

In conclusion, we should be applying Newton’s second law for the motion of the mass, and

the equation of pure rotation for the motion of the disc; and we should find the link between

the two accelerations. (We could have arrived at the same conclusion simply by looking

at both the components and how they move, and by analysing how the motion of one is

linked to the motion of the other.) Do we have all the information necessary to apply
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these? We think so; what remains to be found is the link between the angular acceleration

of the disc and the linear acceleration of the mass. Also, we’ll need the moment of inertia

of the disc, but that we can look up from a table. Is the number of equations equal to

the number of unknowns? Yes, we will have three unknowns and three equations.

EXECUTING THE PLANWe will apply the equation of rotation (12.1) to describe the

rotation of the disc, and Newton’s second law (7.1), or (2.2) if we assume the mass m to

be a particle) to describe the translation of the mass m. The forces acting on the disc and

the mass m are indicated in the figure above.

The disc: The forces acting on the disc are gravity Mg and N , the force fixing the disc in

its place, both acting at G, the centre of the disc; and the tension of the string, T , acting

at the point A where the string leaves the disc. If we take the origin of the XY -plane to

be at G, with i and j unit vectors as shown in the figure, then the forces and the position

vectors of their action points are as follows: Mg = −Mg j and N = N j act at r G = 0;

T = −T j acts at point r A = ai . Equation (12.1) then gives

r G × Mg + r G × N + r A × T = IG

..
θk

∴ 0+ 0+
(
ai
)
×
(
−T j

)
= IG

..
θk

∴ − aT k = IG

..
θk

∴ − aT = IG

..
θ

where
..
θ is the angular acceleration of the disc. For a disc rotating about an axis through

its centre, the moment of inertia is

IG =
1

2
Ma2.

Thus, the equation for the rotation of the disc is

−aT =
1

2
Ma2

..
θ

∴ T = −
1

2
Ma

..
θ (12.5)

The massm : The forces acting on the mass m are gravity mg, downwards, and the tension

of the rope, T , upwards. In terms of our coordinate system, mg = −mg j and T = T j .

Newton’s second law now gives

mg + T = m
..
x

∴ (−mg + T ) j = m
..
x j

∴ − mg + T = m
..
x (12.6)

where
..
x =

..
x j is the acceleration of the mass m. Combining the two equations of motion,

(12.5) and (12.6), we have a set of two equations:
T = − 1

2
Ma

..
θ

−mg + T = m
..
x

(12.7)

but there seems to be three unknowns — T, θ̈ and ẍ . However, there is clearly a link

between θ̈ and ẍ : when the disc rotates through an angle θ counterclockwise, then the

mass m goes up the distance aθ (which is the length of the arc of the disc, corresponding

to the angle θ).
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So, x = aθ , ẋ = aθ̇ and ẍ = aθ̈ when x describes the vertical position of the mass m and

θ describes the angular position of the rotating disc (we can, for instance, assume x = 0

and θ = 0 to be at the initial position). Substituting θ̈ = 1
a

ẍ into (12.7), we get two

equations with two unknowns: 
T = − 1

2
Mẍ

−mg + T = mẍ .

Subtracting the second equation from the first, we get the requested acceleration of the

mass m:

mg =

(
−

1

2
M − m

)
ẍ

∴ ẍ = −
m

1
2

M + m
g.

ANALYSING THE SOLUTION: Does the solution makes sense? Compare the end

result to other known, similar results. The negative sign of ẍ confirms that the mass

accelerates downwards (remember that we wrote the acceleration vector of the mass m as

ẍ = ẍ j in our chosen coordinate system!) Also the acceleration, which we can write as

ẍ = −g

(
1−

1

1+ 2m
M

)
is less that g, the acceleration of a free-falling particle; this is exactly what we would

expect, since Learning Unit of the gravitational force mg is expended in making the disc

turn. Try to think of other ways to solve the same problem – later on in this module,

you will learn how to solve problems like this using the energy conservation method.

Think of other systems where a similar approach would work. Try to generalise

the result. It would be easy to re-do the calculations with the disc replaced by any other

circular object with radius a but with an arbitrary moment of inertia I. An interesting thing

about the result is that the value of ẍ does not depend on a, the radius of the disc, but only

on its mass M . Will this always hold in similar kinds of situations?J

About pulleys

The disc in the previous example was an example of a pulley. Pulleys were briefly men-

tioned earlier, but there a rope just passed over the pulley without friction, and therefore
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the pulley merely changed the direction of the rope, the tensions on both sides of the rope

being equal. However, in this and the next unit we will investigate several examples where

a rope passes over a rough pulley with mass (a non-smooth, non-massless pulley) consist-

ing of a disc, ring, cylinder etc. In such a case, the pulley is an integral Learning Unit of

the system and cannot be ignored.

The pulley is usually fixed so that it is free to turn about an axis through its centre. Even

if the pulley itself turns on its axis without any friction, for a pulley which is not smooth

and which has a non-zero moment of inertia when it rotates about its axis, the rope does

not just pass frictionlessly over it. It follows that the tensions on the rope on each side of

the pulley in such a situation are not equal — Learning Unit of the tension of the rope is

used to make the pulley turn. The bigger the moment of inertia of the pulley, the bigger

the difference between the tensions on both sides of the pulley.

When investigating a system which involves such a pulley, we shall have to include the

equation of pure rotation for the pulley, as we did in the last example. In the following,

we will look at several different situations, to give you an idea of the things to take into

account!

Example 12.5

A man of mass M has one end of a rope tied around his waist. The rope passes (without

slipping) over a pulley. The pulley is fixed so that it can only rotate about its centre. The

pulley has a radius a and a moment of inertia 1
2

ma2. The man now pulls the other end of

the rope with a tension T . Calculate the upward acceleration ẍ the man gives himself.

Solution:

In the picture, we take the X -direction to be up

(the direction of movement of the man),

and θ , the angle of rotation of the pulley, is

measured counterclockwise.

T is the tension with which the man pulls

at the free end of the rope;

Tr is the tension on the rope tied around his waist;

ẍ is the upward acceleration of the man.
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We write down the equations of motion, for:

Rotation of the pulley:

I
..
θk = (−ai)× (−T j)

+ (ai)× (−Tr j)

= (aT − aTr )k
i

j

TrT

so

I θ̈ = aT − aTr .

But we assume that the rope does not slip over the pulley; therefore
..
x and

..
θ are connected

by

ẍ = a
..
θ.

We substitute this, and the value I =
1

2
ma2, into the equation above to get

1

2
ma2 ·

( ..
x

a

)
= aT − aTr

∴ 1

2
mẍ = T − Tr .

(12.8)

Translation of the man:

Mẍ = Tr + T − Mg (12.9)

(all of these forces are in the X -direction, so we don’t need the vector notation). We can

now proceed to solve
..
x from (12.8) and (12.9). Adding (12.8) and (12.8) together, we get

..
x

(
1

2
m + M

)
= 2T − Mg, so

..
x =

2(2T − Mg)

m + 2M

Note that

T 6= Tr and Tr 6= Mg!

There are two forces pulling the man up: firstly, the tension T of the free end of the rope,

when the man is pulling himself up along it; secondly, the tension on the end of the rope

tied around his waist. Compare this situation with the following two:
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Here the man pulls himself up a fixed rope,

with tension T . (The other end of the rope

is not passed through a pulley and tied around

his waist.) The upward acceleration here

is simply ẍ = T − Mg.

Man

T

Mg

Here, someone else is pulling at the free

end of the rope with a tension T .

The motions of equation are now
1

2
mẍ = T − Tr

Mẍ = Tr − Mg

which give as the upward

acceleration

..
x =

2 (T − Mg)

m + 2M
.

Man

T

Mg

Tr

Activity 12.5

Solve the following problem. Write down you solution in your exercise book, in complete detail, with sketches!

A pulley which is shaped like a wheel with spokes for negligible mass and with mass M and radius R is mounted

on a fixed horizontal axle through its centre. You may assume that the moment of inertia of the pulley is that

of a ring. A block with mass M hangs from a massless cord that is wrapped around the rim of the pulley. Find

the angular acceleration of the pulley, the acceleration of the falling block, and the tension in the cord. The cord

does not slip, and there is no friction at the axle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: θ̈ = − g

2R
, ẍ = − g

2
, T = 1

2
Mg.

Activity 12.6

Solve the following problem. Note that you will need to introduce three equations of motion! You will also need
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to find the link between ẍ and the angular acceleration of the pulley – make sure that you get the sign correct

there!

Two masses m and M (M > m) are connected by a light string over a pulley with a mass m p and a radius r . The

pulley has the form of a disc fixed so that it can only rotate about its centre O. The system starts from rest. Find

ẍ , the upward acceleration of m and the downward acceleration of M .

M m

O

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: you should get ẍ = (M−m)(
1
2

m p+M+m

)g.

Small oscillations

When a body supported by a smooth horizontal axis hangs at rest, it is said to be in its

stable equilibrium position. Suppose that it is shifted slightly from this position, so that it

swings through a very small angle on either side of its equilibrium position. It is said to

perform small oscillations.

The reason why small oscillations are important is that for small angles

sin θ ' θ

where ' stands for “is approximately equal to”. You might have noticed in a few previous

examples that in a case involving a pendulum, we have ended up with an equation for

rotation involving the terms sin θ and θ̈ . The kind of a second order differential equation

we obtain is difficult to solve, whereas if we can replace sin θ by θ in the equation of

rotation, the differential equation becomes immediately a very simple case of harmonic

motion!

The following example illustrates this.

Example 12.6

The Pendulum

Any heavy rigid body that turns freely about a horizontal axis and is acted upon by no

exterior force except gravity (ignoring the normal force at the pivot point) is called a pen-

dulum. Consider a body of mass m which can rotate about a horizontal axis through a

point A in the body.
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Suppose that it performs small oscillations about the equilibrium position. Obtain the

equations of motion.

Solution:

Using equation (12.1), we get

R × mg = IAθ̈k

where IA is the moment of inertia about the axis at A and R is the position vector from A

to G.. Let us choose X - and Y -axes as shown in the figure above. In terms of components

along the X - and Y -axes we get

Ri × mg

(
cos θ i − sin θ j

)
= IAθ̈k

so that

−Rmg sin θk = IAθ̈k

which we can express as

θ̈ = −
Rmg sin θ

IA

.

This differential equation is very difficult to solve. However, if the pendulum performs

small oscillations, then the angle θ is very small. In this case we can use the approximation

sin θ ' θ and hence get

θ̈ = −
Rmgθ

IA

. (2.26)

This is the equation of simple harmonic motion about the axis through A with

period = 2π

√
IA

mgR
.

Here is how this comes about: The solution to the differential equation

ẍ = −B2x

is given by

x (t) = cos (Bt)+ sin (Bt) ,

as can be seen by differentiating this function twice with respect to time t. But

x (t) = cos (Bt)+ sin (Bt)

clearly describes periodic motion; and since the period of cos (t) and sin (t) is 2π, (mean-

ing that they return back to their original values after that time), the period of cos (Bt)
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and sin (Bt) is 2π · 1
B
. J

Example 12.7

A wire circle with radius a rotates about an axis perpendicular to the plane of the circle,

through a point O on the rim of the circle. The circle is in a position of stable equilibrium

when its centre of mass G is vertically below O . If it is moved slightly from this position

so that it performs small oscillations, calculate the period of these oscillations.

Solution:

Using equation (12.1), we get

ai × mg

(
cos θ i − sin θ j

)
= IO θ̈k.

Here, using the parallel axes theorem, we get

IO = IG + ma2 = ma2 + ma2 = 2ma2.

Thus, we get

−mag sin θ = 2ma2θ̈

so that

θ̈ = −
g sin θ

2a
.

For very small oscillations sin θ ' θ , and then approximately

θ̈ = −
gθ

2a

so that the approximate period of oscillation is

period = 2π

√
2a

g
.

Activity 12.7
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A rod of length 2a and mass m rotates about a horizontal axis through a point O at its one end.

(a) Find the equation of rotation for the rod.

(b) Suppose that the rod performs small oscillations about the equilibrium position. Find the approximate equa-

tion of rotation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) θ̈ = − 3
4

g

a
sin θ, (b) θ̈ ' − 3

4
g

a
θ.

Activity 12.8

A uniform rod AB of mass m and length a rotates in a vertical plane about an axis which goes through a point P

at a distance a/3 from A. If it performs small oscillations, find the period of oscillations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: θ̈ = − 3
2

g

a
sin θ, period = 2π

√
2a
3g
.

Activity 12.9

A circular disc with mass m and radius a performs small oscillations about a horizontal axis which is tangential

to the disc at a point A on the rim of the disc.

(a) Show that the moment of inertia about A is given by

IA =
5ma2

4
.

(b) Show that the period of oscillations is 2π
√

5a
4g
.

CONCLUSION

In this unit have you learned:

• how to solve problems involving pure rotation

• how to deal with pulleys, compound pendulums and small oscillations

Remember to add the following tools to your toolbox:

• the toolbox for solving problems involving pure rotation
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LEARNING UNIT 4

ROTATION AND
TRANSLATION

CONTENTS OF LEARNING UNIT 4

Study unit 13 The general motion of a rigid body moving in

two dimensions

Introduction

We shall now deal with a rigid body which only moves in a plane and undergoes both

translation and rotation. In order to deal with this situation we need to combine all the

results we have derived so far.

It can be proven that the motion of such a body can be fully described as a combination

of (1) translation of the centre of mass parallel to the plane, plus (2) rotation about an axis

passing through the centre of mass and perpendicular to the plane.

In this Learning Unit 4, which consists of just one study unit, we will first discuss the

problem of describing general motion and how it can be reduced to a combination of ro-

tation and translation. After that, we shall solve many problems involving such combined

motion.

The outcomes of Learning Unit 4

When you have worked through this Learning Unit of the study guide, you should

be able to

• understand the differences between pure rotation, pure translation, and a com-

bination of them

• apply the equation for the translation of the centre of mass and the equation

for rotation about the centre of mass to analyse the motion of a rigid body

undergoing general motion in two dimensions, for which you must be able to

do, amongst other things, the following:

• draw a sketch of a system and mark in it all relevant forces, with their direc-

tions and points of action

• choose a suitable coordinate system

• apply the relevant equations of motion and rotation correctly

• understand what is meant by the rolling condition and when it applies
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Unit 13 THE GENERAL MOTION

OF A RIGID BODY MOVING IN

TWO DIMENSIONS

Key questions:

• What if a rigid body does rotate, but not about a fixed axis?

How do we then describe its motion?

In this unit, we finally explain how we can analyse the motion of a rigid body by combining

the equation of translation of its centre of mass, and the equation of rotation as it rotates

about its centre of mass. The equations are then used to solve many problems in mechanics.

Contents of this unit:

13.1 About rotation, translation and combinations of both

13.2 Applications

13.3 Rolling without slipping

13.4 More applications

What you are expected know before working through this unit:

You will now need all the concepts you have come across up to now in Parts 2 and 3, as

the approaches in this unit combine centres of mass and the motion of the centre of mass,

plus the equation of rotation about a (moving) axis.

13.1 About rotation, translation and combinations of both

In Learning Unit 2 of the study guide we concentrated on how the centre of mass of an

object moves, and in Learning Unit 3 we discussed pure rotation, where an object rotates

about a fixed axis. In this study unit, we will make the very dramatic and useful discovery

that being able to describe these two types of motion is in fact all that we need: combining

these two types of motion, we can describe all possible types of motions of an object!

This amazing fact is actually easy to believe if you think about it a bit. We will here

restrict ourselves to an object (two- or three-dimensional) which can only move in a two-

dimensional plane, but you can easily check that the following reasoning works just as

well in more general three-dimensional motion.

Let us start by looking at pure translation and pure rotation. Pure rotation can be defined as

motion where one point in the object is motionless, but the rest of the object rotates about

that point.
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Pure translation, on the other hand, can be defined as motion where all parts of the body

always move at exactly the same velocity, which implies that the object cannot change it

orientation.

Now, in general motion the object can turn while it moves.

However, we can divide the general motion into separate actions of pure rotation and pure

translation, which can happen simultaneously, but independently of each other.

Pure rotation

Pure translation

We can select any point P on the object to do the pure rotation about. The pure trans-

lation can then be defined uniquely as the translational motion of point P , as in the pure

translation of an object the rest of the body follows the same path as any fixed point of the

body.
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Rotation about point P

Translation of point P

P

P

P

Any point of the body can be selected as the reference point about which the pure rotation

is defined, and whose translation fully describes the pure translation of the body. However,

it turns out that calculations of various kinds are easiest if we select the centre of mass G

of the object as the reference point. In the rest of this unit, we shall therefore describe

general motion as a combination of pure rotation about the centre of mass, plus translation

of the centre of mass.

Rotation about G

Translation of G

G

G

G

Consider a rigid body moving arbitrarily on a plane and acted on by n external forces,

F i , i = 1, . . . , n. Suppose that the body has a mass M and centre of mass G, with

position vector R. Then the motion of the rigid body is fully described by the following

two equations we have derived in part 2 and part 3:

n∑
i=1

F i = M R̈ (13.1)

and

n∑
i=1

r i × F i = I θ̈k (13.2)

where I = IG and the position vectors r i are from G. The first equation, (13.1), describes

the translation of the centre of mass, and the second equation, (13.2), describes the rota-

tion of the body about its centre of mass. That these two equations give a satisfactory
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description of the motion of a rigid body has been confirmed by experiment.

Remember from Learning Unit 3 that the equation of rotation (13.2) can only be applied to

describe the rotation of a rigid body whenever the direction of the axis of rotation does not

change; however, the axis itself may translate. This condition is guaranteed if we assume,

as we shall do here, that the object moves parallel to some plane, which we can assume to

be the XY -plane; the axis of rotation will then always be in Z -direction.

13.2 Applications

We will now proceed to solve various problems, using these two equations of motion.

First, we will re-state our general toolbox, as it applies in this particular case.

TOOLBOX FOR SOLVING PROBLEMS BY MEANS OF EQUATIONS OF TRANS-

LATION AND ROTATION

1. UNDERSTANDING THE PROBLEM

Here, you must understand what the object/system/situation is like, and what

you are asked to do.

To make sure that you have understood the problem, make sure that you can

answer the following questions:

• What is given and what is wanted? What conditions hold?

• Can you describe the situation in your own words?

You might make use of the following tools:

• your knowledge of the language of mechanics problems, and using key-

words for clues about objects and their properties, about positions, types of

motion, links between the different components etc.

• sketches and diagrams of the whole system and its components

• real-life examples and experiments

• listing in standard mathematical notation the known and unknown quantities

2. PLANNING THE SOLUTION

Analyse the motion of the different components: what type of motion does

each undergo? What are the connections between the different components

and their motions?

The three different types of motion each have their related principles, results

and definitions:

• the equation of motion for pure translation

• the equation of motion for pure rotation

• the equation of motion for a combination of rotation and translation

Check the following:

• Do we have all the information necessary to apply the equations of motion

decided on? If not, can we find/calculate the information from what is given?

Alternatively, can we introduce the information as another unknown? Which

definitions, principles, results deal with the new unknown?

• Is the number of equations equal to the number of unknowns?



257 APM1612/1

If something seems to be missing,

• have you used all the given facts and all the conditions in the problem state-

ment?

3. EXECUTING THE PLAN

This is where we shall set up the equations and solve them. You may need

• mathematical notation, symbols for variables, coordinate systems

• mathematical tools (integration, solving equations etc.)

• sketches and diagrams

• already calculated results, tables of moments of inertia

4. ANALYSING THE SOLUTION

To check the correctness of the solution you can do the following:

• See whether the solution makes sense. Compare the end result to other

known, similar results.

• Try to think of other ways to solve the same problem.

• Compare the solution with experiments and guesses based on real-life ob-

jects.

• Work in a group and compare your results with those of others.

To reflect on and learn from the solution, you can do the following:

• Think of other systems where a similar approach would work. Try to gen-

eralise the result. Compare this problem with other systems that you have

come across: what are the differences and similarities?

Example 13.1

A uniform disc with radius r and mass M rests flat on a smooth surface, and a thin thread

is wrapped around its circumference. The thread is pulled with a constant force T along a

line tangential to the disc. Calculate the acceleration of the centre of the disc, the angular

acceleration of the disc, and the acceleration of the free end of the thread.

Solution:

UNDERSTANDING THE PROBLEM: Below is a sketch of the system.

T

r

Note that the sketch is shown from above. The disc rests on a smooth surface, which

means that there is no friction between the surface and the disc, and the disc will slide

freely along the surface. The thread is wrapped around the disc and pulled with at tension

which is tangential to the disc. (Actually, whichever way we pull at the end of the thread,

the ensuing tension will always be tangential to the disc, since the thread can only leave
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the disc tangentially to it!) What happens when the thread is pulled? The thread will start

to unwind from the disc, and the disc rotates. On the other hand, the disc may also start to

slide towards the left. However, there might not be any connection between the motion of

the centre of the disc towards the left on the one hand, and its rotation on the other hand.

We are told to find the acceleration of the centre of the disc, the angular acceleration of the

disc and the acceleration of the free end of the thread.

PLANNING THE SOLUTION: The movement of the disc is on the plane, so we already

know that the forces perpendicular to the plane (gravity and the normal reaction of the

plane) will cancel each other out, and thus we can ignore them. The only other force

acting on the disc, the tension T , causes a combination of rotation and translation of the

disc, which we can describe by applying the equation for the rotation of the disc about its

centre, and the equation of motion for the translation of the centre of mass. The equation

of rotation links the angular acceleration of the disc to the moment of the force T, and

the equation for the translation of the centre of the disc links the acceleration of the centre

of the disc to the force T . Thus we can easily find the acceleration of the centre of the

disc and the angular acceleration of the disc. It should be possible to find the acceleration

of the free end of the thread by combining these two accelerations. Do we have all the

information necessary to apply the equations of motion decided on? Yes, all we

need is the moment of inertia of the disc, and we also have to find an expression for the

acceleration of the free end of the thread, in terms of the other two accelerations.

EXECUTING THE PLAN: We shall write down the two equations of motion.

Translation: (Equation (13.1))

M
..
R = T

where
..
R is the acceleration of the centre of the disc (which is the centre of mass of the

disc). This gives

..
R =

1

M
T

as the acceleration of the centre of the disc. The direction of the acceleration is the

direction of the force T .

Rotation: (Equation (13.2)) Let I be the moment of inertia of the disc about an axis

perpendicular to the disc and through its centre:

I =
1

2
Mr2.

j

i

Using coordinates as in the picture, the force T = −T i acts in position r j . Therefore its

moment about the centre of the disc is

r j × (−T i) = −T r · j × i = T rk,

so (13.2) gives

T rk = I
..
θk
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when θ̈ is the angular acceleration of the disc, measured counterclockwise. So, the angular

acceleration is

..
θ =

rT

I
=

rT

1
2

Mr2
=

2T

Mr
.

Finally, the acceleration of the free end of the thread must be equal to the tangential accel-

eration of the point P on the circumference where the thread leaves the disc. The tangential

acceleration of P is the sum of the acceleration of P with respect to the centre of the disc,

and the acceleration of the centre of the disc. The first term equals

..
θr =

2T

Mr
· r =

2T

M

(this is the tangential acceleration of rotational motion) and the second term is

..
R =

T

M
.

So, the acceleration of the free end of the thread equals

..
R +

..
θr =

T

M
+

2T

M
=

3T

M
,

in the direction of the force T .

ANALYSING THE SOLUTION: The solution seems credible; the three accelerations

are all in the correct direction, they are directly proportional to the force T and they are

inversely proportional to the mass of the disc M.

Example 13.2

A light string is wound around a hollow cylinder of mass m, with radius a. The end of

the string is fixed and the cylinder is allowed to fall so that the string unwinds. Find the

acceleration of the centre of mass, G, and the tension in the string, T , if no slipping takes

place.

Solution:

Again, the motion of the cylinder will be a combination of rotation and translation. How-

ever, this time there will definitely be a link between the two different types of motion: the

rate at which the cylinder drops is directly linked to the way that the string unwinds and

hence the way that the cylinder rotates, as there will never be any slack in the string. Let us

choose our coordinate system as indicated by the i and j unit vectors in the figure above;

we can assume that the origin is at the centre of the cylinder. Let R denote the position of

the centre of mass G, and let θ be the angle of rotation of the cylinder, measured counter-
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clockwise as usual. (Note that in our figure the cylinder rotates clockwise, so we should

expect negative values for θ, θ̇ and θ̈ !) The two forces acting on the cylinder are the ten-

sion of the string, T , upwards and acting at point P where the string leaves the cylinder;

and gravity mg, acting downwards at G, the centre of mass of the cylinder. In terms of our

coordinate system, we can write

T = T j, mg = −mg j

and the position vector from G to P is

r = −ai .

The equation for the translation of the centre of mass (13.1) now gives

T + mg = m R̈ ∴ T j − mg j = m R̈.

If R = xi + y j are the X - and Y -components of the centre of mass, this tells us that

0i + (T − mg) j = mẍi + mÿ j

∴
{

ẍ = 0

mÿ = T − mg
(13.3)

The equation for rotation, (13.2), gives

r × T = IG θ̈k.

For a cylinder rotating about its centre,

IG = ma2.

Hence we get

−ai × T j = ma2θ̈k

−aT k = ma2θ̈k

−aT = ma2θ̈ . (13.4)

We have two equations, (13.3) and (13.4) but three unknowns, ÿ, θ̈ and T ; however, there

is a link between y and θ : when the cylinder turns counterclockwise through the angle θ ,

then the centre of mass goes up by the distance y = aθ . Thus, θ̈ = 1
a

ÿ. If we substitute

this into (13.4), it becomes

−aT = ma2 1

a
ÿ

∴ − T = mÿ.

The two equations are now {
−T = mÿ

T − mg = mÿ;
(13.5)

adding them together gives

−mg = 2mÿ

∴ ÿ = −
1

2
g.

The centre of mass moves straight down with an acceleration g/2. The tension of the rope

is found when we substitute the value of ÿ into (13.5):

T = −mÿ =
1

2
mg.
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13.3 Rolling without slipping

An important type of motion we will come across frequently when investigating combined

rotation and translation is rolling without slipping. A typical example is a disc rolling

along a rough plane. If a suitable amount of friction acts at the point of contact between

the disc and the plane, then it will roll without slipping.

In the case of an object rolling without slipping, the translational and rotational motions

are directly linked to each other.

As an illustration, let us look at the case of a disc with radius r rolling without slipping

along a plane. (The principle can easily be applied in many other situations too, of course.)

The disc will rotate about its centre, while at the same time the disc moves along the plane.

Then the following equations, called the rolling conditions, hold between θ , the angle of

rotation, and x , the linear position of the centre of the disc:

x = rθ , ẋ = r θ̇ , ẍ = r θ̈ .

We will explain why this is so in two different ways.

Argument 1 Let us assume that the disc has rotated through the angle θ , and let x denote

the distance that the disc (its centre) has travelled along the plane during the time it took

to rotate through the angle θ.

Looking at the picture above, you can see that if there was no slipping, then the distance x

equals the length of the arc corresponding to the angle θ . But, when θ is measured in

radians, the length of the arc equals r · θ , so therefore x = rθ.

Further, if θ and x are functions of time, we can differentiate the equation above to get

ẋ = r θ̇

which links ẋ (the speed of the centre of the disc along the plane) and θ̇ (the angular

velocity of rotation). Differentiating one more time, we get

ẍ = r θ̈

which links ẍ (the acceleration of the disc along the surface) and θ̈ (the angular acceleration

of rotation).
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(Above, x is distance; if you use a coordinate system, i.e. choose to measure x along some

axis parallel to the plane, then the signs you should choose for the left- and right-hand sides

of these 3 equations will depend on how you choose to measure x .)

Argument 2 An alternative way to derive the link

ẋ = r θ̇ ,

between the angular and linear velocities, ẋ and θ̇ , in rolling without slipping is as follows:

Let us assume that the disc is rolling without slipping along the plane, with angular velocity

θ̇ . This time we will be dealing with velocities (vectors), so we must carefully specify the

directions in which things are measured. So, let θ and θ̇ be measured counterclockwise

and choose the X -axis to lie along the plane, so that X increases towards the right, as usual.

Let i denote the unit vector in the X -direction (see the figure below), and let ẋ = ẋ i be the

velocity of the centre of the disc in the X -direction.

P

2
.

.

x

i_

C

X

Let C denote the centre of the disc, and P the point of the disc which is currently touching

the plane.

The condition of rolling without slipping means that P cannot move horizontally along

the plane – if it did, then it would be slipping along the plane! That is, the velocity of P

along the plane is 0i (a zero vector). But, on the other hand, the velocity of P along the

plane can be written as:

(velocity of P with respect to C)

+ (velocity of C along the plane).

The velocity of C along the plane we have agreed to denote by ẋ i . As for the velocity of

P with respect to C , which we will denote by v: P is of course rotating around C on a

circular path with radius r , so v is the tangential velocity of circular motion. The size of

this tangential velocity is r θ̇ , and it is tangential to the disc, in the direction of the rotation.

So, in particular, at point P it is in the positive i direction: v = +r θ̇ i . (See the picture

below!)
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In conclusion, we see that we must have

0i = +r θ̇ i + ẋ i

which gives

ẋ = −r θ̇ .

Again, by differentiating this with respect to time, we get

ẍ = −r θ̈ .

Finally, please note that a similar kind of condition applies when a string or rope unravels

from a circular object or passes without slipping over a pulley: there is a link between the

distance that a point on the string/rope has moved, and the angle by which the object/pulley

has rotated.
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A final reminder then about rolling without slipping and ropes unwinding from pulleys: It

is very important to get the sign right, or your answers to many other questions will be

wrong! You must decide which way is positive for the angular variable, and which way is

positive for the linear variable, and then whether they increase in the same circumstances

(i.e. does x increase whenever θ increases?) in which case the sign in the equation ẍ = r θ̈ ,
or whatever, will be positive. If on the other hand x increases whenever θ increases then

the sign is negative and you have ẍ = −r θ̈ instead!

Example 13.3

A disc with radius R and mass M is placed upright on a rough slope which forms the angle

α with horizontal. A thin string is wound around the disc and pulled upwards parallel to

the slope with tension T , as shown below. The string does not slip on the disc, and the disc

rolls without slipping along the slope.

T

Write down the equations of motion for the translation and rotation of the disc. What

should the value of T be, so that the disc does not move or rotate?

Solution

G

f

N

Mg

_

_

_

T

The forces acting on the disc are: Tension T , acting along the string; force of gravity, Mg,

acting downwards, at the centre of the disc; friction f acting at the point where the disc

touches the plane; and the normal force from the plane, N , acting at the point where the

disc touches the plane. The points of action and directions of the forces are shown in the

sketch above. You must get both of these right when you draw the forces as vectors! The

normal force will act perpendicular to the plane, and gravity downwards. Friction acts

parallel to the plane.

The equation of motion parallel to the plane:

T + f − Mg sinα = Mẍ

where ẍ is the acceleration of the centre of the disc parallel to the plane, measured positive

up the slope. Note that whenever you introduce variables for acceleration etc., you must
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explain what your coordinate system is, or alternatively, how you decide to measure them!

And after you have done that, make sure that the signs of the forces match with the way

you measure acceleration: If as here ẍ is positive up the slope then all forces acting up the

slope must also be positive, and all forces down the slope must be negative!

The equation of motion perpendicular to the plane:

N − Mg cosα = M ÿ

where ÿ is the acceleration of the centre of the disc perpendicular to the plane, measured

positive upwards.

Equation of rotation:

R f − RT =

(
1

2
M R2

)
θ̈

where θ̈ is the angular acceleration, taken to be positive counterclockwise.

The translation and rotation of the disc are linked together by the rolling condition, since

the disc is known to roll without slipping. Here, the rolling condition is given as

ẍ = −Rθ̈ .

The sign (minus or plus) in the rolling condition depends on how you chose to measure

ẍ and θ̈ . Here, we took θ̈ to be positive counterclockwise, but when the disc rolls coun-

terclockwise in the sketch above, the disc rolls down the slope while we decided to take ẍ

positive up the slope – hence the minus sign in the rolling condition.

Also, since we know that the disc is rolling (rather than bouncing for instance) down the

plane, we know that the centre of mass of the disc travels parallel to the plane and therefore

ÿ = 0.

If the disc does not move or rotate, we should have ẍ = 0 and θ̈ = 0. If we substitute these

to the equations of translation and rotation, we get the two equations{
T + f − Mg sinα = 0

R f − RT = 0

from which we can solve the value of T :

T =
1

2
Mg sinα.

Activity 13.1

Write down a complete solution to the following problem in your exercise book. Your solution must include a

sketch, in which you should mark in all the forces acting on the disc. You must decide on and indicate in the

sketch a coordinate system, and you must specify how you measure the linear and angular accelerations.

A disc with radius R and mass M is placed upright on a rough slope which forms the angle α with horizontal. A

thin string is wound around the disc and pulled downwards parallel to the slope with tension T , as shown below.

The string does not slip on the disc, and the disc rolls without slipping along the slope.
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T

Find the angular acceleration of the disc as a function of M, T, α, R and g.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: You will need to find the rolling condition; make sure you are very clear in which direction the

accelerations are measured, since that will determine the sign in the rolling condition! You should get θ̈ =
2

3M R
(2T + Mg sinα) .The full solution is in your workbook.

13.4 More applications

Example 13.4

A ring with mass M and radius a rolls from rest, without slipping, down a plane inclined

at an angle α to the horizontal. Show that the angular velocity of the ring is
√

gd sinα
a

when

it has travelled the distance d down the plane.

Solution:

Let A be the point of contact between the ring and the plane, and let G denote the centre

of the ring. The three forces acting on the ring are: F , the force of friction and N , the

normal reaction exerted by the plane on the ring, both acting at point A; and Mg, the force

of gravity, acting at point G. Let us take the X -axis to be down the plane (see the picture).

X

G

A
F

N

Mg

_

_

_

Firstly, we write down the equation for the translation of the centre of the ring. Since it

moves in the X -direction, we only have to consider the components of all the forces along

the X -axis. Newton’s second law then gives

Mg sinα − F = M
..
x

where
..
x is the acceleration of the centre of the ring down the plane.

Secondly, we write down the equation of rotation, by taking moments about G. Here, only

F (friction) contributes because all the other forces act through point G. If a is the radius

of the ring, we get

aF = IG

..
θ
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where
..
θ is the angular acceleration of the ring, measured counterclockwise. But, IG =

Ma2 for a ring. So,

aF = Ma2
..
θ

∴ F = Ma
..
θ.

Since there is no slipping, there is a link between
..
x and

..
θ , namely

..
x = a

..
θ.

Note that
..
x and

..
θ have the same sign here, since counterclockwise rotation of the ring

corresponds to motion in the direction of the positive X -axis. Substituting this into the

first equation of motion, we see that the two equations describing the motion of the ring

are {
Mg sinα − F = Ma

..
θ

F = Ma
..
θ

If we solve
..
θ from these, we get

..
θ =

g sinα

2a
,

that is, the angular acceleration is constant. Finally, it remains to calculate the angular

velocity when the ring has travelled the distance d down the plane. For this, we can apply

the formula ω2 = ω2
0 + 2θ̈ θ , which links (for rotation with constant angular acceleration,

θ̈ ) the values of the initial angular velocity ω0, the final angular velocity ω and the total

angle of rotation, θ . We have

ω0 = 0 (initially, the ring is at rest);

ω =
.
θ, θ =

1

a
d.

So, ( .
θ
)2

= 0+ 2
g sinα

2a

1

a
d

so that

θ̇ =

√
dg sinα

a
.

Activity 13.2

A disc with radius r and mass M rolls down a plane inclined at an angle α to the horizontal. Find its angular and

linear accelerations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: you should get ẍ =
2

3
g sinα if ẍ is measured positive down the slope.

Activity 13.3

A uniform sphere with mass M and radius a rolls without slipping down a rough plane which makes an angle α
with the horizontal. Find the acceleration of the centre of mass G and the force of friction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Feedback: ẍ = −
5

7
g sinα if ẍ is measured positive up the slope.

Example 13.5

A ladder of length ` and mass M leans against a smooth wall, supported on a rough floor.

When the ladder is inclined at an angle θ = 30◦ to the vertical, the ladder is about to slip.

Find the coefficient of friction between the ladder and the floor. If θ = 25◦, find how far

up the ladder a 70 kg man can climb before the ladder slips.

Solution:

The motion of the ladder, whether it is sliding or stationary, is fully described by the

equations of motion. The equation of motion for translation gives the acceleration of the

centre of mass in terms of all the forces acting on the ladder, and the equation of motion

for rotation gives the angular acceleration of the ladder for rotation about its centre of mass

in terms of the moments of the forces acting on the ladder about that point.

If the ladder is just about to slip, then the forces acting on it, and their moments, must

cancel out so that the angular and linear accelerations are zero. Therefore, to solve this

exercise we shall find the forces acting on the ladder, write down the equations of rota-

tion and translation, take the linear and angular acceleration to be zero, and solve for the

requested information.

Floor

Let us assume that the ladder forms an angle of 30o with the vertical. Let C denote the

centre of the ladder (which is also its centre of mass), A the end of the ladder touching the

floor, and B the end of the ladder touching the wall. Then the forces acting on the ladder

are, as indicated in the sketch above, on the right:

• gravity Mg acting at point C

• friction between the ladder and the floor, f , acting at A

• the normal force between the floor and the ladder, N f , acting at A

• the normal force between the wall and the ladder, Nw, acting at B

Note that there is no friction acting at B, since the wall is smooth.

Then, the equation of motion for translation is

Mg + f + N f + Nw = M R̈ (13.6)

where R̈ denotes the acceleration of the centre of mass.
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The equation of motion for rotation about the centre of mass (point C) is(
CC × Mg

)
+
(

C A × f

)
+
(

C A × N f

)
+
(
C B × Nw

)
= I θ̈k (13.7)

where I is the moment of inertia of the ladder when it rotates about point C, θ̈ is the

angular acceleration, and CC, C A and C B are the position vectors from point C to

points C, A and B respectively (where, of course, CC = 0).

Next, we will introduce an XY coordinate system with i and j unit vectors, so that we can

express (13.6) and (13.7) in a more concrete form. We will take the i and j unit vectors

as shown in the sketch. Then we can express all the force vectors and position vectors in

terms of the i and j unit vectors, as follows:

Mg = −Mg j CC = 0

f = f i C A = −
`

2
sin
(
30o

)
i −

`

2
cos

(
30o

)
j

N f = N f j C B =
`

2
sin
(
30o

)
i +

`

2
cos

(
30o

)
j

Nw = −Nwi

We can also write R̈ = ẍ i + ÿ j to express the linear acceleration divided into its i and

j components.

When we substitute the expressions above into (13.6) and separate the i and j components,

we get the two equations

f − Nw = Mẍ (13.8)

−Mg + N f = M ÿ (13.9)

When we substitute the expressions above into (13.7), and evaluate the vector products,

we get (
0×−Mg j

)
+

(
−
`

2
sin
(
30o

)
i −

`

2
cos

(
30o

)
j

)
× f i

+

(
−
`

2
sin
(
30o

)
i −

`

2
cos

(
30o

)
j

)
× N f j

+

(
`

2
sin
(
30o

)
i +

`

2
cos

(
30o

)
j

)
×
(
−Nwi

)
= I θ̈k

∴ `

2
cos

(
30o

)
f −

`

2
sin
(
30o

)
N f +

`

2
cos

(
30o

)
Nw = I θ̈ . (13.10)

If µ denotes the coefficient of friction, then we will further have

f = µN f .

We will substitute this into (13.8) and (13.10) and will thus get the three equations of

motion 
µN f − Nw = Mẍ

−Mg + N f = M ÿ

`

2
cos

(
30o

)
µN f −

`

2
sin
(
30o

)
N f +

`

2
cos

(
30o

)
Nw = I θ̈

which fully describe the horizontal and vertical translation of the centre of mass, and the
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rotation about the centre of mass.

To find the value of µ for which the ladder is just about to slip, we shall have to take

ẍ = 0, ÿ = 0, θ̈ = 0 and solve for µ. (Note that there are then three equations and three

unknowns, µ, N f and Nw).
µN f − Nw = 0

−Mg + N f = 0

`

2
cos

(
30o

)
µN f −

`

2
sin
(
30o

)
N f +

`

2
cos

(
30o

)
Nw = 0

We can, for instance, find µ as follows: substitute

Nw = µN f

(from the first equation) and

N f = Mg

(from the second equation) into the third equation, to get

`

2
cos

(
30o

)
µMg −

`

2
sin
(
30o

)
Mg +

`

2
cos

(
30o

)
µMg = 0

∴ ` cos
(
30o

)
µMg =

`

2
sin
(
30o

)
Mg

∴ µ =
1

2
tan

(
30o

)
=

1

2

√
3.

That is, if the coefficient of friction in µ =
1

2

√
3 then the ladder is just about to slip when

it forms an angle of 30o with the wall.

In the second part of the question, we consider the same ladder, now forming a smaller

angle of 25o with the wall. If the coefficient of friction is the same as before, then the ladder

on its own will not slip. However, a man standing on the ladder will add a downwards force

onto the ladder and, depending on his position, may cause the ladder to slip. To find how

far up the ladder the man can climb, we shall assume that he stands at a point on the ladder

which is a distance x from the end A of the ladder. We will write down the equations of

motion for translation and rotation. To find out for which value of x the ladder is just about

to slip, we will set θ̈ = 0, R̈ = 0 in the equations of motion and solve for x .

The equations of motion for the translation of the centre of mass in the i and j directions,
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are

N f − Mg − 70g = M ÿ

µN f − Nw = Mẍ,

so after setting ẍ = ÿ = 0, we get the two equations

N f − Mg − 70g = 0 (13.11)

µN f − Nw = 0 (13.12)

which must hold if the ladder is just about to slip.

In the equation of rotation, θ̈ = 0 means that the moments of all the forces about the

centre of mass of the system (man + ladder) cancel out. But if that is true, then the angular

acceleration about any other point of the ladder must also vanish, and accordingly the

moments of all the forces taken about any other point of the ladder must also cancel out.

We will calculate the moments of the forces about the end point A of the ladder, and set

their sum to zero. We get

−x sin
(
25o

)
70g −

`

2
sin
(
25o

)
Mg + ` cos

(
25o

)
Nw = 0. (13.13)

We now have 3 equations, (13.11), (13.12) and (13.13), and 3 unknowns, N f , Nw and x .

We can find the value of x for instance as follows: from (13.11) we get

N f = (M + 70) g

and therefore (13.12) gives

Nw = µN f = µ (M + 70) g.

When we substitute these into (13.13), it becomes

x sin
(
25o

)
70g = ` cos

(
25o

)
Nw −

`

2
sin
(
25o

)
Mg

= ` cos
(
25o

)
µ (M + 70) g −

`

2
sin
(
25o

)
Mg

∴ x =
` cos

(
25o

)
µ (M + 70) g − `

2
sin
(
25o

)
Mg

sin (25o) 70g
, µ =

tan
(
30o

)
2

=
`

2

(
tan

(
30o

)
tan (25o)

− 1

)
M

70
+
`

2

tan
(
30o

)
tan (25o)

∴ x ≈ 0.0017M`+ 0.618`.

Activity 13.4

A ladder of length 2` and with mass m rests on a rough floor and against a smooth wall. The coefficient of

friction between the ladder and the floor is µ. Find the smallest angle that the ladder could make with the floor.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: the answer will be tan−1
(

1
2µ

)
.

Activity 13.5

Prove that a ladder cannot rest on a smooth floor against a vertical wall, however rough the wall is.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: there are many ways to approach this; the easiest way is to prove that there will be non-zero moments

of force acting on the ladder, or that the total horizontal forces can never cancel out. But try to solve this using

the equations of motion (rotation and translation). What do you get? Why can you conclude that the ladder will

not be at rest?

Example 13.6

A wheel with mass M and radius R has an axle with radius r . The wheel rests upright

on a horizontal table. A thin string is wrapped around the axle and is pulled with tension

T in a horizontal direction. The moment of inertia of the wheel when it rotates about its

centre is taken to be I = 1
2

M R2

R
rT

The coefficient of friction between the wheel and the table is denoted by µ.

(a) Write down the equation for the motion of the wheel for (i) linear translation, (ii)

rotation.

(b) Find the acceleration of the centre of the wheel in terms of M , R, r and T , if it rolls

without slipping.

(c) What is the maximum coefficient of friction µ0, such that the wheel slides without

rolling?

(d) What is the direction of rotation in the sketch, if µ > µ0?

Solution:

Let A denote the point where the string leaves the axle, B the point of contact between the

wheel and the table, and G the centre of the wheel. The following forces act on the wheel:

Tension T at point A, gravity Mg at point G, the normal force N at B, and friction f at

B.
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If the coordinate system is chosen as indicated in the sketch, then we see that

G A = −r j, G B = −R j,

N = N j,

Mg = −Mg i,

f = µ N i (where µ is the coefficient of friction),

T = −T i .

(a) If R̈ =
(

ẍ i + ÿ j

)
is the acceleration of the centre of mass G, and θ̈ is the angular

acceleration of the disc, measured counterclockwise, then the equations of motion are

as follows: (i) Linear translation (from (13.1)):

M R̈ = T + Mg + N + f

∴ M

(
ẍ i + ÿ j

)
= µ N i − T i + N j − Mg j (13.14)

(ii) Rotation (from (13.2)):(
G A

)
× T +

(
G B

)
× f = I θ̈ k

∴
(
−r j

)
×
(
−T i

)
+
(
−R j

)
×
(
µ N i

)
= I θ̈ k

∴ −rT + µ R N = I θ̈ (13.15)

Dividing (13.14) into its i and j components, we get{
M ẍ = µ N − T

M ÿ = N − Mg
(13.16)

Obviously, ÿ = 0 since the wheel moves along the table. Hence we see that we must

have N = Mg. Therefore, the motion of the wheel is fully determined by the following

two equations, obtained when we substitute N = Mg into (13.14) and the first equation

in (13.16) and use the fact that I =
1

2
M R2 for the wheel:

M ẍ = µMg − T

1

2
M R2 θ̈ = µ R Mg − r T

(13.17)

(b) If the wheel rolls without slipping, then we must have ẍ = −R θ̈ (when the wheel

rotates through an angle θ counterclockwise, the centre of the wheel has moved the

distance x = Rθ to the left, in the negative X–direction). Substituting θ = −ẍ / R into
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the second equation in (13.17), we get the pair of equations
M ẍ = µMg − T

1

2
M R ẍ = µ R Mg − rT

which can be solved (e.g. by dividing the second equation by −R and adding it to the

first equation) to get

ẍ = −
2

3

T

M

(
R − r

R

)
.

Note that in rolling without slipping we therefore have ẍ < 0 and θ̈ = −ẍ / R >
0, that is, the wheel rotates counterclockwise!

(c) For the wheel to slide without rotating, we must have θ̈ = 0 in the second equation in

(13.17). (Note that the rolling condition ẍ = −Rθ̈ does not hold in this case!) So, we

must have

0 = µ R Mg − rT

which holds if

µ = µ0 =
rT

R Mg
.

(d) If µ > µ0 then, in the second equation in (13.17)

1

2
M R2θ̈ = µ R Mg − rT

> µ0 R Mg − rT = 0

that is, θ̈ > 0, which means that rotation is counterclockwise.J
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Activity 13.6

T

T

A B C

Three identical discs A, B and C , each with radius R and mass M, are placed upright on a horizontal plane. A

thin thread is wrapped clockwise around each disc. The end of the thread is then pulled with constant tension.

The magnitude of the tension is T for each disc, but the direction in which the tread is pulled varies from disc

to disc, as shown above. What are the directions of linear acceleration of the centre of each disc, in each of the

following two cases?

(a) If there is no friction between the discs and the plane.

(b) If the discs roll without slipping on the plane.

Make sure you can justify your answers, for instance by writing down the equations of motion!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: Case (a) A and B: no motion; C: to the right. Case (b): A, B and C all move towards the right.

Activity 13.7

A solid cylinder A with mass M and radius R is suspended from a solid cylinder B, also with mass M and radius

R, which is free to rotate about its axis (see the figure below). The suspension is in the form of a massless tape

wound around the outside of each cylinder, and free to unwind, as shown. Both cylinders are initially at rest.

Find the initial acceleration of cylinder A, assuming that it moves straight down.

M

M
B

A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: You must write down three equations of motions: one for rotation of B, one for rotation of B and one

for translation of A! This means three variables, ẍ, θ̈ A and θ̈ B . Decide which way you want to measure each of

these and then find the link between then — it will be one equation with all three variables in it! You will get

ẍ = 4
5

g.
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Activity 13.8

A

B C

D

F
Cube

Disc 1 Disc 2

O P

The system in the sketch consists of two identical discs, both with radius R and mass M, fixed next to each other

so that each is free to rotate about an axis through its centre. A massless string passes without slipping over

both the discs, as shown. A cube with mass 3M is attached to one end of the string, and the other end is pulled

downwards with a constant tension F. In the sketch, O and P denote the centres of the discs, and A, B, C, D

the points where the string leaves the discs.

(a) Copy the sketch. List, and draw in your sketch, all the forces acting on the two discs and on the cube.

(b) Write down the equations of motion for the vertical motion of the cube, and the rotation of the two discs. Use

ÿ to denote the vertical acceleration of the cube, with upwards motion being positive, and θ̈1, θ̈2, respectively,

to denote the angular accelerations of the two discs, measured counterclockwise.

(c) What is the connection between ÿ and θ̈1, and θ̈1 and θ̈2?

(d) Solve the equations of motion to find the value of ÿ if F = 2Mg. In what direction will the cube move?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: In (d), you should get ÿ = − g

4
, so the cube moves down. See the workbook for a full worked out

solution.

CONCLUSION

In this unit you have learned how to

• describe general motion as a combination of translation and rotation

• solve problems involving general motion

• apply the rolling condition

Remember to add the following tools to your toolbox:

• the concept of rolling without slipping

• the toolbox for solving problems involving rotation and translation
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LEARNING UNIT 5

ENERGY METHODS

CONTENTS OF LEARNING UNIT 5

Study unit 14 Work and energy

Study unit 15 The energy conservation method

Introduction

Many problems to do with rigid bodies can be solved very easily by using energy methods,

which are based on the principle of the conservation of energy. To derive the relevant

formulas, we shall first have to introduce the concepts of work and energy. Once again,

we start by first considering a single particle; later we shall see how these concepts apply

to a rigid body.

The outcomes of Learning Unit 5

When you have worked through this Learning Unit of the study guide, you should

be able to:

• explain what is meant by the work done by a force and how the concepts of

kinetic and potential energy follow from this

• select a suitable zero energy level for the gravitational potential energy and use

it to calculate the potential energy of particles, systems of particles and bodies

• calculate the kinetic energy for objects undergoing pure translation, pure rota-

tion or a combination of translation and rotation

• explain what is meant by the energy conservation principle and in which cases

it applies

• apply the energy conservation principle to solve problems



276

12 July 2015

14 WORK AND ENERGY 279

The one-particle case 279

Energy 284

The energy conservation principle 286

The energy of a system of particles 287

The kinetic and potential energy of a rigid body 288

15 THE ENERGY CONSERVATION METHOD 297

Applications involving one rigid body 297

Applications involving systems of bodies 307

General problems: Which method to use? 312

A DEFINITE
INTEGRALS 323

B STRATEGIES 329

dgoufef
Stamp



279 APM1612/1

Unit 14 WORK AND ENERGY

Key questions:

• What is meant by work and by energy?

• What is the difference between potential and kinetic energy?

• How do we calculate the gravitational potential energy of a particle,

a system, a rigid body?

• How do we calculate the kinetic energy in pure rotation, in pure translation,

and in more general motion?

In this unit, we will introduce the concepts of work and energy, and explain how the poten-

tial and kinetic energies are calculated. In the next unit, you will learn how to solve some

problems quite easily, using the energy conservation principle which relies on potential

and kinetic energy calculations!

Contents of this unit:

14.1 The one-particle case

14.2 Energy

14.3 The energy conservation principle

14.4 The energy of a system of particles

14.5 The kinetic and potential energy of a rigid body

What you are expected know before working through this unit:

This unit will refer you to the scalar product of vectors, discussed in unit 2, and to some

line integrals, but you just need to be able to follow the reasoning here. The derivations of

the translational and rotational kinetic energies refer to concepts of the centre of mass, and

the moment of inertia and angular velocity, respectively.

14.1 The one-particle case

14.1.1 Work done by a constant force

We will start off with an explanation of what work and energy mean. These concepts are

a bit complex, but please do read carefully through what follows — in the expectation

that in the end, we will again come up with a very user-friendly and practical formula!

The outcome of this unit is not really that you can calculate directly the work done in

each situation; rather, we are building up to a formula for calculating kinetic and potential

energies in various situations!
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Consider a particle moving along a straight line, say along the X -axis. If a constant force

F , also along the X -axis, acts on the particle, then the work done by the force on the

particle as it moves some given distance 4x is defined by

W = F · 4x . (14.1)

More generally, for a particle moving along a straight line in a three-dimensional space,

which is acted upon by a general constant force, we must take into account the possibility

that the force and the motion of the particle may be in different directions. Therefore, it

will be convenient to use vector notation.

The motion of the particle is expressed in terms of a displacement vector, 4r . If the

motion of the particle is from a point P to a point Q, then the displacement 4r is the

vector from P to Q, that is,

4r = P Q.

Similarly, the constant force acting on the particle is now a vector, F .

Now, only the component of the force which is parallel to the displacement does work.

This can be formulated in terms of the scalar product of vectors, as follows:

Definition 14.1 (The work done by a constant force)

The work done by a constant force F acting on a particle, as it moves through a displace-

ment 4r along a straight line, equals

W = F • 4r .

(Note that this equals F4r · 4r where 4r is the length of the displacement and F4r is

the component of the force which is parallel to the displacement. This agrees with the

definition in equation (14.1).)

Remember that the product in Definition 14.1 is a scalar product of two vectors, whose

value of a real number (a scalar). We are using a big dot for denoting it in this section

just to remind you of this fact! Please see Unit 2 for a reminder of how the scalar product

works.

The following properties of work follow immediately from Definition 14.1.

1. The work done by a force F on a particle as it moves through a displacement 4r is

positive if the force acts in the “same direction” as the displacement, that is, if the

angle between them is smaller than π/2 = 90◦; and the work done is negative if the

displacement and the force are in “opposite directions”, that is, if the angle between

them is larger than π/2.

F

W < 0

F F

r

W = 0

rr

W > 0

2. If the displacement and the force are perpendicular to each other, then F •4r = 0, that

is, the work done is zero.

3. If the displacement is zero: 4r = 0, then no work is done, however large the force F

is.
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Example 14.1

An object with mass m is to be moved around. Calculate the force that has to be applied,

and the work done by the force, in each of the following operations:

(a) The object is lifted up with a constant velocity from the floor to a height of 1 metre.

(b) The object is held in a fixed position 1 metre above the floor.

(c) The object is moved sideways 5 metres at a constant velocity at a height of one metre

above the floor.

(d) The object is lowered back to the floor, at a constant velocity.

Solution:

If the origin of the coordinate system is at the initial position of the object, then the trajec-

tory of the object looks like this:

(b)

(a)

(c)

(d)

Y

X

The force needed in any of the operations can be determined by Newton’s second law. In

all four operations, the object moves with constant velocity (with zero velocity in (b)). So,

the acceleration of the object is zero throughout. The only forces acting on the object are

the unknown force F and gravity mg = −mg j, acting downwards; hence, according to

Newton’s second law,

0 = −mg j + F

∴ F = mg j .

That is, in all four cases, we only have to apply enough force to counter the force of gravity.

(a) When the object is lifted up, the displacement vector is 4r = j . The work done by

the force in this displacement is

W = 4r • F = j • mg j = mg.

(b) Here,

4r = 0 so

W = 0 • mg j = 0.

(c) Now, 4r = 5i ; 4r and F are perpendicular to each other and thus

W = 5i • mg j = 0.

(d) Here,

4r = − j,

so

W = 4r • F = − j • mg j = −mg.

Usually more than one force act on a particle, and then we can talk about the work done
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by each of the forces.

Example 14.2

Consider again Example 14.1. This time, let’s find the work done by the force of gravity

−mg j in the four operations.

(a) Wgrav. = j •
(
−mg j

)
= −mg

(b) Wgrav. = 0 •
(
−mg j

)
= 0

(c) Wgrav. = 5i •
(
−mg j

)
= 0

(d) Wgrav. =
(
− j

)
•
(
−mg j

)
= mg.

If n forces F1, F2, . . . , Fn act on the particle and

F =
n∑

i=1

F i

is the resultant force acting on the particle, then for W , the work done by the force F when

the particle moves through some displacement, we have

W =
n∑

i=1

Wi

where Wi is the work done by force Fi . W is then the total work done on the particle in

its displacement by all the forces acting on it. For instance, in Example 14.1 above, the

resultant force is zero and thus the total work done on the object by all forces in all four

operations equals zero.

14.1.2 Work done by a variable force

In practice, we cannot assume that all forces are constant. Also, we often wish to look at

more general motion, rather than at motion along a straight line. A more general situation

would look as follows: A particle moves along some path from point P1 to P2. A force,

which depends on the position of the particle, acts on the particle – that is, if r is the

position vector of the particle, then the force is a function of r :

F = F
(
r
)
.

Now, how do we calculate the work done by the force as the particle moves from P1 to P2

along the given path? The obvious thing to do is to divide the path into short segments.

Over a short enough segment, the force and the direction of motion are approximately

constant, and the work done by the force over that little segment can be calculated approx-

imately, as in the previous section. For the work done over the whole path, we simply

add up the amounts of work done over all the subsegments. The technical details are as

follows.

Let the path of a particle be described by the curve r (t), 0 ≤ t ≤ T , where r (t) is the

position of the particle at time t and in particular, r (0) and r (T ) are the initial and final

points of the path. We divide the path of the particle from r (0) to r (T ) into n short path

segments, by dividing the time interval 0 ≤ t ≤ T into small time intervals,
[
ti−1, ti

]
,

where 0 = t0 < t1 < . . . < tn−1 < tn = T . Then over the i th segment of the path , from

r (ti−1) to r (ti ), the force acting on the particle is approximately equal to F
(
r (ti−1)

)
and
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the path of the particle over this segment is approximately described by the displacement

vector

4r i = r (ti )− r (ti−1) .

Thus, the work done by the force on the particle as it travels along the i th path segment is

approximately F
(
r (ti−1)

)
• 4r i .

Adding up over all the path segments, the total work done by the force as the particle

moves from r (0) to r (T ) along the given path is approximately

W ≈
n∑

i=1

F
(
r (ti−1)

)
• 4r i .

The approximation becomes exact when we take the limit as n → ∞ and 4ti → 0; the

sum becomes an integral, and we get the following definition:

Definition 14.2 (Work: the general case)

The work done by a force F on a particle as it moves from r (0) to r (T ) along a given

path is

W =

∫ r(T )

r(0)
F
(
r
)
• dr . (14.2)

The integral (14.2) is called a line integral. Its value can be calculated by ordinary definite

integrals, if we are able to write F
(
r
)

and dr in their component forms and evaluate the

scalar product. However, this may be difficult, because in general we would have to know

the description of the path as an equation! In any case, you will not have to use the line

integral directly in this module — we will just use it to derive certain results.

Note that the value of W could well depend on the path used to travel from r(0) to r(T ).
If the work done by a force is independent of the path taken, then we say that the force is

conservative.
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14.2 Energy

In this module, we are only going to look at two kinds of energy: kinetic energy and

gravitational potential energy.

14.2.1 Kinetic energy

Kinetic energy is energy that an object possesses because of its motion. To see how

this arises, let us investigate the behaviour of a particle which is acted upon by a force or

forces. Let F be the resultant force acting on the particle. Let r (t) denote the position

of the particle at time t . The force F could depend on the position of the particle, so we

have in general F = F
(
r
)
. According to Newton’s second law, the motion of the particle

is described by the equation

F = mr̈ = m
dṙ

dt
. (14.3)

What now is the work done by the force F on the particle, when it moves from position

r (0) to position r (T ) along some path? We know that the work done is given by the line

integral

W =

∫ r(τ )

r(0)
F • dr .

From (14.3), we have

F • dr =

(
m

dṙ

dt

)
• dr

But this equals

=
1

2
m

d

dt

(∣∣ṙ ∣∣2) dt,

since
∣∣ṙ ∣∣2 = ṙ • ṙ and thus, in terms of the product rule of differentiation,

d

dt

∣∣ṙ ∣∣2 =
d

dt

(
ṙ • ṙ

)
=

(
d

dt
ṙ • ṙ

)
+

(
ṙ •

d

dt
ṙ

)
= 2

(
dṙ

dt
• ṙ

)
and dr = ṙdt . We can therefore rewrite the line integral as a time integral:

W =

∫ τ

0

1

2
m

d

dt

(∣∣ṙ (t)∣∣2) dt

=
1

2
m
∣∣ṙ (t)∣∣2]τ

0

=
1

2
m

(∣∣ṙ (τ )∣∣2 − ∣∣ṙ (0)∣∣2)
=

1

2
mv2 −

1

2
mu2

where v =
∣∣ṙ (τ )∣∣ is the velocity at the final point and u =

∣∣ṙ (0)∣∣ is the velocity at the

initial point of the path.
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Definition 14.3 (The kinetic energy of a particle)

If v =
∣∣ṙ ∣∣ is the speed of a particle of mass m, then the quantity

K =
1

2
mv2

is called the kinetic energy of the particle.

If the velocity of the particle is zero (v = 0), then we say that the particle is at rest; for

such a particle the kinetic energy obviously equals zero. Note that the kinetic energy of a

particle does not depend on the direction of the velocity, but only on its magnitude!

Following from to the calculations above, we have the following result, known as the

Work–Energy Theorem:

Result 14.4 (The Work–Energy Theorem)

The work done by the resultant force on a particle equals the change in the kinetic energy

of the particle.

The resultant force acting on a particle causes acceleration, according to Newton’s second

law; it increases/decreases the velocity of the particle, changing its kinetic energy by an

amount which equals the amount of work done by the force.

14.2.2 Potential energy

We say that a particle has potential energy if it has the capacity to do work by virtue of

its position, in the sense that work can always be done simply by moving the particle to

another position. Potential energy always corresponds to a conservative force (e.g. the

force of a spring, or gravity). For a conservative force, the work done does not depend on

the path taken. Thus it makes sense to talk about the work done on a particle when it moves

from position P1 to position P2 when only conservative forces act on the particle. (If the

non-conservative forces acted on the particle, this concept would not be well defined, as it

might depend on the path taken!)

If we fix one point, let’s call it O , as the “standard position”, then we can define the

potential energy at any other point P to be equal to the amount of work a force acting

“against” the conservative force would need to do when moving the particle from position

O to position P . That is, at the chosen standard position, the potential energy (denoted by

V ) of the particle is V = 0, and the potential energy at any other position P equals the

work done by the conservative force if the particle were to be moved from P back to

O . Note that the “standard” position, also called the zero potential energy position, can be

arbitrarily chosen! Potential energy therefore has no absolute value, and only differences

of potential energy at various points have any physical meaning.

The only conservative force and potential energy we are concerned with in this module

is the gravitational force and the corresponding potential energy. The force of gravity

acting on a particle of mass m is mg. This is a constant force, so it is conservative. We

will calculate the work done by the force of gravity on the particle, to obtain an expression

for the gravitational potential energy.

Let us assume that the motion is in three dimensions, with the Z -axis identified with the

up/down direction. That is, we let the negative Z -axis denote the downwards direction.
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Then, the gravitational force acting on the particle is

F = −mgk.

Let the particle move from a point P1 with position vector

r1 = x1i + y1 j + z1k

to a point P2 with position vector

r2 = x2i + y2 j + z2k.

If the position vector of the particle is

r = xi + y j + zk,

then

dr = dxi + dy j + dzk

and then the work done by the force of gravity on the particle as it moves from P1 to P2 is

W =

∫ P2

P1

(
−mgk

)
•
(

dxi + dy j + dzk

)
= −mg

∫ P2

P1

((
k • i

)
dx +

(
k • j

)
dy +

(
k • k

)
dz

)
= −mg

∫ P2

P1

dz = −mg (z2 − z1) .

That is, the work done by the force of gravity only depends on the difference between the

Z -coordinates of the two positions P1 and P2. We arrive at the following definition:

Definition 14.5

If we fix an arbitrary level along the Z -axis, say Z = z0, as the zero energy level of the

gravitational energy, then the value of the potential energy of a particle with respect to this

zero energy level is given by

V = mgh

where h = the height difference (positive or negative) from the position of the particle to

the zero energy level.

For any position above the chosen zero energy level, the potential energy V is positive; for

any position below the zero energy level, V is negative.

14.3 The energy conservation principle

Let us assume that only a conservative force F acts on our particle, and let us investigate

the potential and kinetic energies of the particle as it moves from a point P to a point

Q. Let VP and VQ denote the potential energy of the particle at positions P and Q,

respectively (with respect to an arbitrarily chosen zero energy position). Then, by the

definition of potential energy, the work done by the conservative force on the particle as it

moves from P to Q equals

WP Q = VP − VQ .

On the other hand, we know that the work done by F on the particle equals the change in

the kinetic energy of the particle, that is,

WP Q = K Q − K P
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when K Q and K P denote the kinetic energy of the particle at Q and P , respectively.

Thus, we have

VP − VQ = K Q − K P

so that

VP + K P = VQ + K Q (14.4)

That is, the sum of the potential and kinetic energies are the same at point P and Q; and

since P and Q are arbitrary points, we see that the sum of the potential and kinetic energies

is always constant if only conservative forces act on a particle. The sum of the kinetic and

potential energy is called the total mechanical energy of the particle, and is usually denoted

by E .

14.4 The energy of a system of particles

In the case of a system of particles, the kinetic energy of the system is the sum of the

kinetic energies of all the individual particles.

Similarly, the potential energy of a system of particles or a rigid body is the sum of the

potential energies of the individual particles. However, the calculations of the potential

energy of a system can be simplified by using the centre of mass. Let a system consist of

n particles, each with a mass mi and position vector r i = xi i + yi j + zi k. If we choose

the XY -plane (with Z = 0) as the zero energy level for the gravitational potential energy,

then the total potential energy of the system with respect to the chosen zero energy level is

V =
n∑

i=1

mi gzi .

We can re–write this in terms of the centre of mass of the system: If M =
n∑

i=1

mi is the

total mass of the system then

V = Mg

n∑
i=1

mi zi

M
,

but in terms of the definition of the centre of mass, the last term here is the Z -coordinate

of the centre of mass of the system.

Thus, to calculate the gravitational potential energy of a system of particles or a rigid body,

we can replace the system with a particle of mass M , situated at the centre of mass of the

system. Once the zero potential energy level has been chosen, the potential energy of the

system is given by

P E = Mgh

where M is the mass of the system and h is the vertical distance from G, the centre of

mass of the system, to the zero energy level; h is taken to be negative if G is below the

zero energy level and positive if G is above the zero energy level.

In summary: The energy of a system of particles is just the sum of the energies of the

individual particles:
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Definition 14.6 The kinetic and potential energy of a system of particles

The kinetic energy of a system of particles is defined at the sum of the kinetic energies of

all the particles.

The potential energy of a system of particles with respect to a fixed zero energy level is the

sum of the potential energies of the particles, and can alternatively be found as

P E = Mgh

where M is the mass of the system and h is the vertical distance from G, the centre of mass

of the system, to the zero energy level.

The principle of the conservation of mechanical energy extends to systems of particles,

bodies, or even systems of bodies. In general terms we can express it as follows:

Result 14.7 (The law of the conservation of mechanical energy)

If only conservative forces act on a system of particles, then the sum of the kinetic and

potential energies is constant:

P.E .+ K .E . = E

where E (a constant) is called the total mechanical energy.

The law of the conservation of mechanical energy states that if only conservative forces act

on a system of particles, then energy (potential or kinetic) cannot disappear from the sys-

tem or be added to the system from outside. Note that an effort to add energy from outside,

e.g. by pulling at one of the parts of the system, invariably involves a non-conservative

force! Also, non-conservative frictional forces change energy from kinetic to heat energy;

in those cases the total mechanical energy is not conserved.

However, it is possible for kinetic energy to change into potential energy, and the other

way around. Indeed, a change in kinetic energy must be accompanied by a corresponding

change in the potential energy. For instance, if the potential energy of the system decreases

by a certain amount (which in the case of gravitational potential energy means that the

centre of mass of the system moves lower down), then the kinetic energy must increase by

the same amount.

The energy conservation principle will be very valuable to us in the next unit. We will

restate it there as it applies to rigid bodies and systems.

14.5 The kinetic and potential energy of a rigid body

Once again, a rigid body can be considered to be just a special case of a system of particles.

Reasoning as above, we can arrive at the following result for the potential energy of a rigid

body.
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Result 14.8

If we fix an arbitrary level along the Z -axis, say Z = z0, as the zero energy level of the

gravitational energy, then the value of the potential energy of a rigid body with respect to

this zero energy level is given by

V = mgh

where h = the height difference (positive or negative) from the centre of mass to the zero

energy level.

Please remember that the zero energy level is not fixed, but can be chosen arbitrarily! Only

differences in the potential energy have any real meaning.

Activity 14.1

A pendulum consists of a rod AB of length 2L and mass m with a thin disc of mass M and radius r attached

rigidly at its centre to the rod’s end point B. The pendulum rotates about an axis through point A of the rod,

perpendicular to the plane of the disc. If the zero energy level of the (gravitational) potential energy is taken to

go through point A, find the potential energy of the pendulum in the following cases:

(a) If the pendulum is horizontal;

(b) If the pendulum stands upside down vertically above point A;

(c) If the pendulum forms the angle 45◦ with a vertical line drawn directly downwards from A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: You will need to locate the centre of mass of the object first, it is at the distance x = L

(
1+ M

m+M

)
from point A. The potential energies are: (a) P E = 0; (b) P E = gL (m + 2M) ; (c) P E = −g 1√

2
L (m + 2M)

(where the 1/
√

2 comes from cos (45)!)

We still need a concise expression for the total kinetic energy of a rigid body. One is

tempted to guess that the kinetic energy would simply be

“K =
1

2
M Ṙ2",

analogous to similar results for the total angular momentum, linear momentum and poten-

tial energy, but this is wrong: what is missing here is the possibility of any energy involved

in the motion of the various particles in relation to the centre of mass. We can use this de-

finition for pure translation, but we will need another expression for the kinetic energy —

both for pure rotation, and for combined rotation and translation.

Remember that pure translation is motion where all parts of the body always move at

exactly the same velocity; pure rotation is motion where one point of the body always

stays fixed and the other parts of the body rotate about it; and general motion can be

expressed as a combination of the translation of the centre of mass and the rotation of the

body about the centre of mass.

14.5.1 Kinetic energy in pure translation

We know that all the particles have the same velocity in pure translation. This velocity

equals the velocity of the centre of mass. It follows that we can easily add up the kinetic

energies of separate masses, and end up with the following definition.
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Result 14.9 (Kinetic energy in pure translation)

For a rigid body undergoing pure translation, the kinetic energy is equal to

K E =
1

2
M Ṙ2 (14.5)

where M is the mass of the body and Ṙ =
∣∣Ṙ∣∣ is the velocity (speed) of the centre of mass.

14.5.2 Kinetic energy in pure rotation

Suppose now that the motion of the rigid body is pure rotation, and in particular that the

rigid body rotates about a fixed axis through point O .

If Pi is a particle of mass mi at a point with position vector r i from O then, as the body

rotates, Pi will move in a circle with radius ri =
∣∣r i

∣∣ around the fixed axis. The velocity

of Pi is tangential to the circle and of a magnitude vi = ri θ̇ , where θ̇ is the angular velocity

of the rotation. Thus the kinetic energy of Pi is 1
2
v2

i mi =
1
2
r2

i θ̇
2
mi , and the total kinetic

energy of the entire body is

K E =
n∑

i=1

1

2
r2

i θ̇
2
mi =

1

2

(
n∑

i=1

r2
i mi

)
θ̇

2

=
1

2
I θ̇

2
.

Result 14.10 (Kinetic energy in pure rotation)

For a rigid body rotating about a fixed axis, the kinetic energy is equal to

K E =
1

2
I θ̇

2
(14.6)

where I is the moment of inertia and θ̇ the angular velocity of the rotation.

If the angular velocity of the body rotating about a fixed axis is zero (θ̇ = 0), then we say

that the body is at rest, and then the (rotational) kinetic energy equals zero. (Note that this

is only true for a body rotating about a fixed axis. In general motion, which we discuss in

the next section, the motion could be a combination of rotation and translation, in which

case the θ̇ = 0 would not necessarily mean that the body is at rest — it would just mean

that the body is not rotating.)
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Example 14.3

Calculate the kinetic energy of

(a) a ring

(b) a disc

with mass M and radius a, rotating about an axis through its centre, with a constant angular

velocity ω.

Solution:

(a) IG = Ma2 so that

K E =
1

2

(
Ma2

)
ω2 =

1

2
Ma2ω2

(b) IG =
1
2

Ma2 so that

K E =
1

2

(
1

2
Ma2

)
ω2 =

1

4
Ma2ω2.

Thus, a rotating ring has twice as much kinetic energy as a disc with the same mass and

radius, rotating at the same velocity. This follows directly from the fact that the ring

has a greater moment of inertia, meaning that it is more difficult to set into rotating

motion.J

Activity 14.2

A thin rod AB has a length of 2` and a mass 2M . Particles with a mass m are attached at the end point B and at

the centre of the rod. The combined object rotates about an axis perpendicular to the rod, through point A, with

angular velocity ω. Find

(a) the moment of inertia of the object about the axis,

(b) the kinetic energy of rotation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: IA =
(

5m + 8
3

M

)
`2, K .E . = 1

2

(
5m + 8

3
M

)
`2ω2.

Activity 14.3

Calculate the kinetic energies for each of two uniform, solid cylinders, each rotating around its central axis. They

have the same mass M and rotate with the same angular velocity ω, but the first has a radius r and the second has

a radius 3r .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: 1
4

Mr2ω2 and 9
4

Mr2ω2
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Activity 14.4

Wheels A and B in the figure below are connected by a belt that does not slip. The radius of wheel B is three

times the radius of wheel A. What would the ratio of the moments of inertia IA : IB be if (a) both wheels had

the same angular momenta and (b) both wheels had the same rotational kinetic energy?

B A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) 1:3, (b): 1:9

14.5.3 The kinetic energy of a rigid body in arbitrary two-dimensional

motion

In this section, we will develop a formula for the kinetic energy of the general motion of a

rigid body, which can be a combination if translation and rotation. The kinetic energy can

be written as a sum of rotational and translational kinetic energies, where the translation

relates to translation of the centre of mass and the rotation involves rotation about an axis

through the centre of mass.

Y

XO

G X’

Y’

P

(xi,yi)
(xi’,yi’)

(x,y)

Let X and Y be fixed coordinate axes with origin O, let G the centre of mass and let X ′

and Y ′ be coordinate axes which are parallel to X and Y respectively, but which have their

origin at G and which move with the body. Let P have the coordinates (xi , yi ) relative to

the XY system and
(
x ′i , y′i

)
relative to the X ′Y ′ system. If the coordinates of G are (x, y)

relative to the XY system, we have

xi = x + x ′i , yi = y + y′i .

Then the kinetic energy of the rigid body is given by

K E =
n∑

i=1

1

2
mi

(
ẋ2

i + ẏ2
i

)

=
n∑

i=1

1

2
mi

[( .
x + ẋ ′i

)2

+
( .

y + ẏ′i

)2
]
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∴ K E =
n∑

i=1

1

2
mi

[( .

x2 +
.
y

2
)
+
(

ẋ ′2i + ẏ′2i

)]

+
n∑

i=1

mi

.
x ẋ ′i +

n∑
i=1

mi

.
y ẏ
′

i

=
1

2

(
.
x

2
+

.
y

2
) n∑

i=1

mi +
1

2

n∑
i=1

mi

(
ẋ ′2i + ẏ′2i

)
,

since

n∑
i=1

mi

.
x ẋ ′i =

.
x

n∑
i=1

mi ẋ ′i = 0

and

n∑
i=1

mi

.
y ẏ′i =

.
y

n∑
i=1

mi ẏ′i = 0.

Now the first term can be expressed as 1
2

M Ṙ2, while in the second term ẋ ′2i + ẏ′2i =
θ̇
(
x ′2i + y′2i

)
, where θ̇ refers to rotation about G. Hence we can write

K E =
1

2
M Ṙ2 +

1

2
IG θ̇

2
.

Result 4.11 (Kinetic energy in general two–dimensional motion)

For a rigid body moving on a plane, we have

K E =
1

2
M Ṙ2 +

1

2
IG θ̇

2
(14.7)

where Ṙ =
∣∣Ṙ∣∣ is the velocity of the centre of mass and IG , θ̇ refer to the rotation about

the centre of mass G.

Example 14.4

A disc with a radius r and mass M is rolling without slipping on a horizontal surface. It

has a constant linear velocity v. Calculate the total kinetic energy of the disc.

Solution:

v

The motion of the disc is a combination of rotation and translation. Since it rolls without

slipping, it rotates with an angular velocity θ̇ where

θ̇ =
1

r
v.
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In terms of (14.7), the total kinetic energy of the disk is then

K E =
1

2
IG θ̇

2
+

1

2
Mv2.

For the disc rotating about its centre, the moment of inertia is IG =
1
2

Mr2. Thus, the total

kinetic energy equals

K E =
1

2

(
1

2
Mr2

)
1

r2
v2 +

1

2
Mv2

=
3

4
Mv2.

Activity 14.5

A solid cylinder (mass M , radius r, length a) rolls without slipping along the top of a horizontal table, with

constant angular velocity ω. What is the total kinetic energy of the cylinder? What proportion of the total kinetic

energy is due to rotation, and what proportion is due to translation? (Hint: the rolling condition applies here!)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The total kinetic energy is K E = 3
4

Mr2ω2, of which 1/3 comes from rotation, and 2/3 from transla-

tion.

Activity 14.6

A ring and a disc, both with mass M and radius r, roll without slipping along a horizontal plane with constant

angular velocity. Find the total kinetic energies for each object. Which has a larger kinetic energy?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: The ring has the larger kinetic energy.

Activity 14.7

A rod of length 2a with mass M is spinning horizontally on a smooth surface. It is spinning about its centre, with

an angular velocity ω. The centre of the rod is moving along the surface at a speed u. Find the kinetic energy of

the rod.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: You will get K E = 1
6

Ma2ω2 + 1
2

Mu2. Note that this is not a case of rolling without slipping!



295 APM1612/1

CONCLUSION

In this unit, your have learned

• what is meant by work, and by potential and kinetic energy

• how to specify the gravitational potential energies of particles, systems of particles and

rigid bodies

• how to calculate the kinetic energy of rigid bodies for pure translation, pure rotation

and general motion

• What is meant by the principle of energy conservation, and how it applies

Remember to add the following to your toolbox:

• the principle of the conservation of mechanical energy

• the definitions of potential and kinetic energy

• the definition of a conservative force

• the formulas for the kinetic energy of a rigid body in pure rotation, pure transla-

tion, and in general motion
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Unit 15 THE ENERGY CONSER-

VATION METHOD

Key questions:

• How does energy conservation apply to rigid bodies or systems of bodies?

• How can we solve problems using the concept of energy conservation?

• How do we know when to use energy methods, and when to use equations

of motion?

We will now proceed to solve problems using the energy conservation method. We will

start with problems dealing with just one rigid body, but will later generalise the approach

to analyse any systems of rigid bodies and/or particles. Finally, we will discuss problem

solving and the problem of choosing between energy methods or the equations of rotation.

Contents of this unit:

15.1 Applications involving one rigid body

15.2 Applications involving systems of bodies

15.3 General problems: Which method to use?

What you are expected know before working through this unit:

The first two sections of this unit use the concept of kinetic and potential energies, as

defined in Unit 14. In the final section, we bring together all the problem solving skills

you have gained in the entire study guide!

15.1 Applications involving one rigid body

Let us first re-state the law of the conservation of mechanical energy for rigid bodies.

Result 15.1 (The law of the conservation of mechanical energy)

If only conservative forces act on a rigid body, then the sum of the kinetic and potential

energies is constant:

P E + K E = E

where E (a constant) is called the total mechanical energy.
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The energy conservation law can, for example, be used in any case where only gravity acts

on the system. We can also ignore the following kinds of forces, since they do not do

work, and thus do not affect the total energy of the system:

(i) the normal forces of reaction

(ii) internal forces

(iii) the forces of friction at the point of contact of bodies which roll without slipping

On the other hand, friction which resists motion along a surface (sliding friction) is not a

conservative force and cannot be ignored.

In order to apply the energy conservation method, your will usually have to find the poten-

tial and kinetic energies of the rigid body at some initial position, and then at some final

position. Equating the initial and final energies will give you an equation from which you

can hopefully solve some of the unknown variables.

TOOLBOX FOR CALCULATING POTENTIAL AND KINETIC ENERGIES

Kinetic energy:

• Classify the motion of the object: is it pure rotation, pure translation or a com-

bination of rotation and translation?

• Apply the appropriate formula to calculate the potential energy.

• In general motion, if the motion is rolling without slipping, then you can choose

to express the kinetic energy in terms of either the angular velocity or the linear

velocity of the centre of mass. Which one is better depends on the circum-

stances and the questions you are trying to answer.

Potential energy:

• Decide on a zero energy level. Although the zero energy level can be chosen

arbitrarily, a well-chosen one will make the calculations easier.

We shall start with examples which involve pure rotation. In the examples that follow, we

have chosen the zero energy level to go through the axis of rotation, as it will make the

calculations of the position of the centre of mass easier. Try to do these examples with

some other choice of the zero energy level, and you will see how difficult things can get!

Example 15.1

A pendulum consists of a uniform rod AB with mass 2m and length 2`, with a particle

with a mass 3m attached to point B and a particle with a mass m attached to the centre of

the rod. The object is free to turn on a vertical plane about a horizontal axis through A.

The rod is first held in a horizontal position and then released. Find the angular velocity

θ̇ , and its maximum value.

Solution:

Since this is a conservative system, we can apply the energy conservation method. The

axis of rotation goes through end A of the rod. Let us choose the zero energy level for the

gravitational potential energy to go through point A. Then a sketch of the system might

look as follows:



299 APM1612/1

In the sketch we have drawn the rod in its initial position, when the rod is held horizontally

at rest; and at an arbitrary position, when the rod forms the angle θ with the horizontal.

We will calculate the potential energy (P E) and kinetic energy (K E) of the object, in both

of these situations. To calculate the potential energy, we first have to find G, the centre of

mass of the object. According to the rules for the centre of mass of a compound body, G

is situated at a distance x from A on the rod, where

x =
2m · `+ m · `+ 3m · 2`

2m + m + 3m
=

3

2
`.

Since the object rotates about a fixed axis, its kinetic energy is given by the formula

K E =
1

2
IA θ̇

2
.

A particle with a mass 3m is situated at B, a distance 2` away from A, so its moment of

inertia about A is 3m (2`)2; the particle at the centre of the rod with mass m has a moment

of inertia m (`)2 about A. For the rod of length 2` and mass 2m, the moment of inertia

about A, according to the parallel axis theorem, is

I rod
A = I rod

centre + (2m) `2

=
1

3
(2m) `2 + (2m) `2.

Thus the moment of inertia of the whole object about A is

IA = 3m (2`)2 + m`2 +
1

3
(2m) `2 + (2m) `2

=
47

3
m`2.

Initially,

P E = 0

(since the centre of mass is on the zero energy level); and

K E = 0

(since the rod is initially at rest).

Later, when the rod forms an angle θ with the horizontal,

P E = − (6m) gx sin θ

(since the centre of mass, G, lies a distance x sin θ below the zero energy level and the
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total mass of the object is 6m); and

K E =
1

2
IA θ̇

2
.

The energy conservation principle states that at all times the total mechanical energy of the

system stays constant. That is,

P Eini tial + K Eini tial = P Elater + K Elater .

This gives

0+ 0 = − (6m) gx sin θ +
1

2
IA θ̇

2
.

Solving the angular velocity from this gives

θ̇ =

√
2 (6m) gx sin θ

IA

.

Substituting IA =
47
3

m`2, x = 3
2
` into this, we get

θ̇ =

√
54

47

g

`
sin θ.

The maximum value of this is

θ̇ =

√
54

47

g

`
,

achieved when sin θ = +1, i.e. θ = π
2

; that is, when the rod is vertically below point A.J

Activity 15.1

A uniform rod of length 2` and mass m is free to rotate on a vertical plane about an axis through one end of the

rod. The rod is first held in a horizontal position and then released. Find the angular velocity, θ̇ , as a function of

the angle of rotation, and show that this has a maximum value of
√

3g/2`.

Example 15.2

A uniform, circular disc with mass m, radius r and centre O turns freely about a horizontal

axis passing through a point A on the rim of the disc. The disc is released from rest in the

position in which O A is horizontal and the disc is vertical. Find the angular velocity, θ̇ ,

when AO first becomes vertical.

A O

O

AZero energy level

r

Solution:

In order to use the principle of energy conservation as expressed in Result 15.1, we first

have to calculate the potential and kinetic energies at the initial time, say t = 0. We will

take this to be the zero energy level, relative to which the potential energy at a later time
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can be calculated.

At t = 0 with AO horizontal:

P E = 0, K E = 0.

When AO is vertical, we have:

K E =
1

2
IAθ̇

2

where IA represents the moment of inertia about the axis through A. The moment of

inertia of the disc about O is given by IO =
mr2

2
. To calculate IA, we shall use the

parallel axes theorem:

IA = IO + mr2 =
3mr2

2
.

Hence

K E =
3mr2

4
θ̇

2

P E = (−1)× (distance of O from the

standard position) × mg

= −mgr.

Using the principle of the conservation of energy

Initially : K E + P E = 0 = E

Finally : K E + P E =
3

4
mr2θ̇

2
− mgr = E,

but E is a constant, so we have

3

4
mr2θ̇

2
− mgr = 0.

Hence

θ̇
2
=

4g

3r
∴ θ̇ =

√
4g

3r
.

Activity 15.2

A ring with radius r and mass M is free to rotate on a vertical plane about an axis through point A on its rim.

Assume there is no friction. Initially the disc is held at rest so that the centre of the disc, G, is directly above A.

The disc is then released. Find the size of the angular velocity when AG is horizontal.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: θ̇ =
√

g

2r
.

Example 15.3

A uniform rod AB with a mass 3m and length 2` is free to turn on a vertical plane about a

horizontal axis through A. Initially the rod lies vertically below A and is given an angular

velocity θ̇ (0) =
√

3g/`. Find the values of θ(t) for which θ̇ (t) = 0, where t > 0.

Solution
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From the parallel axes theorem we have that

IA = IG + 3m`2 = 4m`2.

Let us take the horizontal line through A as the zero energy level. Then we get the

following:

At time t = 0:

P E = −3mg`

K E =
1

2
IAθ̇

2
=

1

2

(
4m`2

)
(3g/`) = 6gm`.

At a time t > 0:

Assume that the rod makes an angle θ with the vertical at A.

P E = −3mg` cos θ

K E =
1

2
IAθ̇

2
= 2m`2θ̇

2
.

Using the principle of the conservation of energy,

−3mg` cos θ + 2m`2θ̇
2
= −3mg`+ 6mg`

θ̇
2
=

3g

2`
(1+ cos θ) .

If θ̇ = 0, then

cos θ = −1

θ = (2k − 1) π for k ∈ Z.

That is, θ̇ = 0 (meaning that the rotation of the rod stops momentarily) whenever the rod

is vertically above A. J

Activity 15.3
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A thin rod of length l and mass m is suspended freely from one end. It is pulled aside and allowed to swing like

a pendulum, passing through its lowest position with an angular speed ω. (a) Calculate its kinetic energy as it

passes through its lowest position. (b) How high does its centre of mass rise above its lowest position?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) ml2ω2/6, (b) l2ω2

6g
.

Activity 15.4

A uniform rod AB with a mass 3m and length 2` rotates on a vertical plane about an axis through A. A particle

of mass m is attached to the rod at B. Initially the rod hangs at rest vertically and is given an angular velocity of√
2g/`. Use energy methods to find h, the height of B above the level of A when θ̇ = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: you will get h = 6`/5. (Note that you will need to find the angle at which this happens, and from that

the value of h!)

The following examples deal with more general motion.

Example 15.4

A ring with radius R and mass M rolls without slipping along a slope inclined at angle α

with horizontal. If it is given an initial linear velocity v up the slope, how long a distance

will it roll up along the slope before it comes to an standstill and starts to roll down again?

Solution:

We can assume that the ring starts at the zero energy level — that is, the zero energy level

goes through the centre of mass of the ring in its initial position. It is given an initial

linear velocity v up the slope; it will roll up the slope, until finally it comes to a standstill,

after which it will start rolling down the slope. According to the energy conservation

principle, the ring will reach the level at which the entire initial kinetic energy has been

fully converted into potential energy.

So, assume that, initially

PEin = 0,

KEin =
1

2
Mv2 +

1

2
Iω2

where ω is the initial angular velocity, v is the initial linear velocity and

I = M R2.

But in rolling without slipping, ω = 1
R
v must hold, so that

KEin =
1

2
Mv2 +

1

2
M R2

( v
R

)2

= Mv2.

Finally, when the ring stops momentarily,

PEfinal = Mgh,

KEfinal = 0,

where hdisc is the height that the ring reaches. By the energy conservation principle,

KEin + PEin = KEfinal + PEfinal
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which gives the equation

Mv2 = Mgh,

from which we can find

h =
v2

g
.

This gives the height that the ring goes up; we were asked for the distance that it travels up

along the slope, but this can easily be found as

d =
h

sin (α)
=

v2

g sin (α)
.

You can also solve this by applying the equations of motion to the situation to find the

acceleration and from that the distance covered, using the appropriate initial/final velocity,

but this will be much more complicated!J

Activity 15.5

A uniform disc with mass M and radius a is placed vertically on a plane inclined at an angle α to the horizontal.

Assume that the disc rolls on the plane without slipping. If the disc is given an initial angular velocity of

θ̇ (0) = ω up the plane, how long a distance does the disc travel along the plane until it starts to roll downwards?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: d = 3a2ω2

4g sinα

Example 15.5

A light string is wound around the rim of a ring with a radius a and mass M . The end of

the string is fixed and the ring is allowed to fall so that the string unwinds. What is the

angular velocity of the ring when it has dropped the distance x vertically? How long does

it take for the ring to drop the distance d?

Solution:

T

Initially

Later

Zero energy level

d

We can apply energy conservation methods, since only gravity works on the system. (The

tension of the string, like friction in rolling without slipping, does not do work.) Let us

take the initial level of the centre of the ring as the zero potential energy level for gravity;

then initially,

P.E . = 0

K .E . = 0
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When the ring has dropped some distance x ,

P E = −Mgx

K E =
1

2
IG θ̇

2
+

1

2
Mẋ2

where θ̇ is the angular velocity and ẋ the linear velocity of the centre of mass. The

principle of energy conservation then gives

P Eini tial + K Eini tial = P Elater + K Elater ,

so

0 + 0 = −Mgx +
1

2
IG θ̇

2
+

1

2
Mẋ2.

Since the string is unwinding without slipping, θ̇ and ẋ are again related through ẋ = aθ̇ .

The moment of inertia of a ring rotating about its centre is IG = Ma2. Thus,

Mgx =
1

2

(
Ma2

)
(ẋ/a)2 +

1

2
Mẋ2

∴ (ẋ)2 = gx .

We can find the acceleration of the ring from this: differentiate both sides to get

2ẋ ẍ = gẋ

∴ ẍ =
1

2
g.

Since the acceleration is constant, we can easily find the distance travelled, x , in terms of

time t : We have x = 0, ẋ = 0 at t = 0, so

x =
1

2
ẍ t2 =

1

4
gt2

∴ t =

√
4x

g
= 2

√
x

g
.

Thus, the time taken to travel the distance x = d is t = 2
√

d/g. J

Activity 15.6

A ring with mass M and radius a rolls from rest, without slipping, down a plane inclined at an angle α to the

horizontal. Use the energy conservation method to find the angular velocity of the ring when it has travelled the

distance d down the plane.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: θ̇ =
√

gd sinα
a

.

Example 15.6

A uniform rod of length 2a with mass m is placed vertically, with the bottom end on a

smooth (i.e. frictionless) table. The equilibrium of the rod is slightly disturbed so that it

falls from rest. Let θ be the angle between the rod and the vertical at time t , as indicated

in the sketch. Find the angular velocity θ̇ in terms of θ .
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Solution:

The easiest way to calculate θ̇ is by applying the energy conservation method. We’ll

choose the table top as the zero energy level for potential energy. Then initially the rod is

at rest and its centre of mass is the distance a above the table; thus

K E = 0

P E = mga

At time t , when the rod forms the angle θ with the vertical,

P E = mgy

K E =
1

2
m(Ṙ)2 +

1

2
IG(θ̇)

2

where y denotes the height of the centre of mass G, and

IG =
1

3
ma2.

Let us take the X -axis to go parallel to the table, and the Y -axis to be perpendicular to it.

Let R denote the position vector of point G :

R = OG = xi + y j .

First we note that all the forces acting on the rod are vertical, in other words, they act in

the Y -direction. Therefore, G does not move horizontally, that is, ẋ = 0. So, the velocity

of G is given by Ṙ = ẏ j . But, since point P of the rod always touches the table,

y = a cos θ

Ṙ = ẏ = −a sin θ θ̇ .

So,

K E =
1

2
ma2(sin2 θ +

1

3
)θ̇

2
.

The principle of energy conservation,

P E + K E = constant

then gives

0+ mga = mga cos θ +
1

2
ma2(sin2 θ +

1

3
)θ̇

2

∴ θ̇ =

√
6g (1− cos θ)

a
(
3 sin2 θ + 1

) .
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15.2 Applications involving systems of bodies

The following examples differ from the previous ones in that we shall now consider sys-

tems consisting of more than one body. The energy conservation principle still applies, but

it is important to remember that we must now consider the kinetic and potential energies

of the whole system. For the total kinetic energy we must add up the rotational and trans-

lational kinetic energies of all the parts of the system. For the total potential energy we

similarly have to add up the potential energies of all the components.

Up to now we have chosen a zero energy level and calculated the potential energy of the

body or system in relation to it. If the system is very complicated, this may be difficult.

Sometimes it is easier to use the following reformulation of the energy conservation prin-

ciple:

Result 15.2 (The law of the conservation of mechanical energy – reformulated)

If only conservative forces act on a system of particles, a rigid body or a system of bod-

ies, then for any loss in the kinetic energy of the system there must be a corresponding

increase in the potential energy, and the other way around:

1(P E) = −1(K E) .

If we use this formulation of the energy conservation principle, then we do not have to

establish a zero energy level and calculate the values of the potential energies of all the

components of the system in relation to the zero energy level. All we have to find is

the change in potential energy for each component, which may sometimes be easier to

establish. The following example illustrates these different approaches.

Example 15.7

A wheel with a radius r, a mass m and a moment of inertia I = mr2 is free to rotate about

a horizontal axis through the centre of the wheel, A. A massless string is wrapped around

the rim of the wheel and a particle C with mass m is attached to the string, so that the

wheel turns and the string unwinds as the particle drops. B denotes the point at which the

string leaves the wheel. Initially the particle is held at rest at a distance d above the floor,

and then it is released.

(a) Find the vertical velocity of C just before the particle hits the floor.

(b) Prove that however large the moment of inertia I of the wheel is, the particle will

always move downwards when it is released.
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Solution:

Assuming that the wheel turns with no friction, only the conservative force of gravity

works on the system consisting of the wheel and particle. (The string can be ignored, since

it is massless.) Therefore, we can apply energy conservation methods. Let us choose the

zero potential energy so that in the initial position, the total potential energy of the system

is zero.

Then, initially, the potential and kinetic energies of the system are

P Einitial = 0,

K Einitial = 0.

(Initially the system is at rest.)

Later, at the moment when the particle hits the floor, both the potential and kinetic energies

have changed. Firstly, while the wheel is of course still at its initial level, the particle has

moved the distance d downwards. Therefore, the system has lost the amount −mgd of

potential energy, and thus the potential energy is now

P Efinal = −mgd.

Secondly, both the particle and the wheel are now in motion, rather than at rest. The

particle is moving downwards at the unknown vertical velocity v, and the wheel is rotating

about its fixed axis with some clockwise angular velocity θ̇ . The kinetic energy of the

system is the sum of the kinetic energies of these two motions (the translation of the particle

and the pure rotation of the wheel):

K Efinal =
1

2
mv2 +

1

2
I θ̇

2

=
1

2
mv2 +

1

2
mr2θ̇

2
.

Now, according to the principle of energy conservation, the total energy (the sum of the

kinetic and potential energies) of the system is constant, so that

P Einitial + K Einitial = P Efinal + K Efinal.

Therefore, we must have

0+ 0 = −mgd +
1

2
mv2 +

1

2
mr2θ̇

2
. (15.1)

(a) We wish to find the value of the unknown velocity, v, from these equations. The

angular velocity of the wheel, θ̇ , is also unknown, but since the string unwinds without
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slipping or stretching from the wheel, the values v and θ̇ are linked by the equation

v = θ̇r ∴ θ̇ = v

r
.

(When the wheel turns clockwise through an angle θ , the particle drops a distance θr.)
Substituting this into (15.1), we get

0 = −mgd +
1

2
mv2 +

1

2
mv2

∴ mv2 = mgd

∴ v =
√

gd.

Alternatively, we could have taken the zero energy level of gravity to be at the level of

the floor. Then the potential energy of the system is the sum of the potential energies

of the wheel and of the particle. (The string can be ignored, since it is massless.) In

particular, in the initial position, the total potential energy is

P Einitial = mgh + mgd

if h denotes the distance from the floor to the centre of the wheel, A. In the final

position, the potential energy of the wheel has not changed, but the particle’s potential

energy is now zero. Therefore, in the final state the total potential energy is

P Efinal = mgh + 0.

We don’t know the value of h, but that does not matter, since we are only interested

in the amount of change in the potential energy. The mgh terms will cancel out in the

energy conservation equation!

Alternatively, we could use the fact that the lost potential energy of the particle is

translated into kinetic energy of the wheel and the particle. As the particle drops the

distance d, but the wheel stays at the same level, the particle loses the potential energy

mgd, but the potential energy of the wheel does not change. Therefore, the system

consisting of the particle and the wheel has lost the potential energy mgd. On the other

hand, the system has gained the kinetic energy 1
2

mv2 + 1
2
mr2θ̇

2
. The loss of potential

energy must equal the gain in kinetic energy, and therefore the equation

mgd =
1

2
mv2 +

1

2
mr2θ̇

2

must hold.

(b) Let us repeat the energy conservation argument of (a) above, this time with an arbitrary

value I for the moment of inertia of the wheel. We get

mgd =
1

2
I θ̇

2
+

1

2
mv2

and, applying the rolling condition,

mgd =
1

2
I

(v
r

)2

+
1

2
mv2 =

1

2

(
I

r2
+ m

)
v2.

This gives

v2 =
mgd

1
2

(
I

r2 + m

)
∴ v =

√√√√ mgd

1
2

(
I

r2 + m

) .
But this is always strictly positive (never zero) if we assume that m, d, r and I are
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strictly positive, rather than zero. (However, v can be made to be arbitrarily small by

taking I large enough: v → 0 as I → 0, when all the other values (m, d, r ) are kept

constant.)J
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Activity 15.7

A

B

C

Two discs A and B are fixed on a wall in the positions shown, such that each disc rotates freely about a horizontal

axis through its centre. The vertical distance between the centres of A and B is h.Disc A has mass 4M and radius

2R, and disc B has mass M and radius R. A tape is wound around disc A, then passes around disc B, and at its

other end is attached to a weight C of mass m. Initially the centre of mass of weight C is at level with the centre

of disc A, and C is then released. Use the energy method to find the vertical velocity of C when it has dropped

the distance d.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: v =
√

mgd
5
4

M+ 1
2

m
. Remember to include the two rotational energies of the discs, and the translational

energy of the weight! You will also need to use the link between the two angular velocities and the linear velocity.

Activity 15.8

A uniform, hollow sphere with mass M and radius R rotates about a vertical axis on frictionless bearings. A

massless cord passes around the equator of the sphere, over a pulley with a moment of inertia I and radius r , and

is attached to a small object of mass m that is otherwise free to fall under the influence of gravity. There is no

friction on the pulley’s axle; the cord does not slip on the pulley. What is the speed v of the object after it has

fallen a distance h from rest?

m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: You will get v =

√√√√ 2gh

1+
I

mr2
+

2M

3m

.
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15.3 General problems: Which method to use?

So far, in this study guide, we have come across two general methods for solving problems:

either, by writing down the equations of motion and rotation; or, by using the principle of

energy conservation. How do we decide which of these methods to apply?

In this last section, we shall first give a toolbox with some instructions on how to decide

on a method, and then we shall give some examples.

TOOLBOX FOR DECIDING BETWEEN EQUATIONS OF MOTION AND THE EN-

ERGY CONSERVATION METHOD

To decide which to apply, consider the following questions:

• Is the system conservative? If not, the energy conservation principle cannot be

applied.

• Do we know enough to apply all the necessary equations of motion?

• What type of information is asked for? Remember that

• the energy conservation method deals with velocities

• equations of motion deal with accelerations and forces

• Is the problem stated in terms of an initial and a final state?

Example 15.8

Find an expression for the magnitude of the force of reaction F acting on the rod at the

axis at A, in Example 15.3.

Solution:

Although in Example 15.3 we applied the conservation energy method, we are now asked

to find the force of reaction. Accordingly, we have no choice but to use the equations of

motion. Choose a set of perpendicular axes X and Y at A as shown, along which lie the

unit vectors i and j respectively. Since the rod only rotates on the XY -plane, there are

no forces acting perpendicularly to this plane. Let the components of F along the X - and

Y -axes be given by

F = Fx i + Fy j .
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The centre of mass of the rod lies at G, so that its position vector is R = `i . In order to

calculate R̈, we note that G travels along a circle with centre A and radius `. Then, from

the equations describing circular motion (which you should have come across in previous

physics modules), we have

tangential acceleration = `θ̈ j

normal acceleration = −
`2θ̇

2

`
i = −`θ̇

2
i .

The gravitational force 3mg has components

3mg = 3mg

(
cos θ i − sin θ j

)
.

Applying the equation for the translation of the centre of mass now gives us:

F + 3mg = m R̈

∴ (Fx + 3mg cos θ) i +
(
Fy − 3mg sin θ

)
j = 3m

(
−`θ̇

2
i + `θ̈ j

)
.

If we equate the coefficients of i and j on both sides of the equation respectively, we get

(Fx + 3mg cos θ) i = −3m`θ̇
2
i

(
Fy − 3mg sin θ

)
j = 3m`θ̈ j

Hence

Fx = −3m

(
`θ̇

2
+ g cos θ

)
(15.2)

Fy = 3m
(
`θ̈ + g sin θ

)
. (15.3)

From Example 15.3 we have that

θ̇
2
=

3g

2`
(1+ cos θ)

and if we differentiate this equation again with respect to t we get

d

dt

(
θ̇

2
)
= 2θ̇ θ̈ =

3g

2`
sin θ θ̇

so that

θ̈ = −
3g

4`
sin θ.

Substituting into (15.2) and (15.3) we get

Fx = −
3mg

2
(3+ 5 cos θ)

Fy =
3mg

4
sin θ.

Example 15.9

A uniform rod of mass m rotates about a fixed end point O . The length of the rod is

2a. Initially the other end point A is held at rest vertically above O , and then the rod is
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released. Find the angular velocity θ̇ , as well as the force of reaction at O when the rod

forms the angle θ with the vertical.

Solution:

This time we are asked for both an angular velocity and the force of reaction. Since

the energy conservation method is easier to use, we shall first use that one to find an

expression for the angular velocity, and then we hope to be able to use it to find the angular

acceleration, and hence the force.

Choose axes X and Y as shown. Then the translation of the centre of mass of the rod is

described by

F + mg = m R̈

which we write as (
Fx i + Fy j

)
+ mg

(
− cos θ i − sin θ j

)
= m R̈

where

R̈ = aθ̈
(
− j

)
− aθ̇

2
i

so that we get

Fx − mg cos θ = −maθ̇
2

(15.4)

Fy − mg sin θ = −maθ̈ (15.5)

On the other hand, we can apply the energy conservation principle:

At t = 0

K E = 0

and if we choose O B as the zero energy level, then

P E = mga.

At t > 0

K E =
1

2
IO θ̇

2
=

1

2

(
IG + ma2

)
θ̇

2

=
1

2

(
4ma2

3

)
θ̇

2
=

2ma2θ̇
2

3
,

P E = mga cos θ.
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From the principle of energy conservation we get

mga =
2

3
ma2θ̇

2
+ mga cos θ

so that

θ̇
2
=

3

2a
g (1− cos θ) . (15.6)

Differentiating (15.6) on both sides with respect to t gives us:

2θ̇ θ̈ =
3g

2a
sin θ θ̇

so that

θ̈ =
3g

4a
sin θ. (15.7)

Substituting (15.6) and (15.7) into (15.4) and (15.5) respectively gives us

Fx = mg cos θ − ma
3g

2a
(1− cos θ) =

mg

2
(5 cos θ − 3) ,

Fy = mg sin θ − ma
3g

4a
sin θ =

mg sin θ

4
.

Example 15.10

A uniform ring, disc and sphere, all with the same radius R and mass M , are released

simultaneously from rest at the top of a ramp whose length is L and which forms the angle

α with horizontal.

(a) Which object reaches the bottom first?

(b) How fast is each of the objects moving at the bottom of the ramp?

Solution:

This is clearly a situation where objects have a known initial potential energy, and we are

asked to investigate a later time (when each of the objects reaches the bottom of the ramp).

Also, in (b), we are asked to find the velocity of the objects at the bottom of the ramp.

This suggests that energy methods can be used. As for (a), it is not initially obvious that

such a question can also be answered in terms of velocities. Certainly, if one of the objects

has a greater velocity than the others at every point of the ramp then that object will reach

the bottom first. But what if one of the objects starts off slower than the others, but then

speeds up and overtakes the others? Accelerations may be needed to answer that question.

However, since the energy method usually takes less effort, we might as well try that first.

We’ll use the energy conservation methods to find the velocity of each object at any point

on the ramp. This will enable us to answer both of the questions.

Let us choose the zero potential energy level as shown in the sketch below, so that at the

initial position at the top of the ramp, all the objects have zero potential energy and zero

kinetic energy (since they are initially at rest). That is, the total energy of each object at

the initial position equals zero. But then, according to the energy conservation principle,

the total energy must also equal zero at any subsequent time when the objects are rolling

down the ramp.

The total energy at any time is the sum of the potential and kinetic energies. At any

position on the ramp, the potential energy of an object is easy to calculate, and subtracting
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the potential energy from the total energy will give us the kinetic energy, from which we

can in turn find the angular and linear velocities of the objects at any given position as it

rolls down the slope.

Some of the following calculations are the same for all three objects (the ring, disc and

sphere), as they have the same mass and radius. We will use P E∗, K E∗, ẋ∗, I∗ and so

on to denote the potential energy, kinetic energy, linear velocity, moment of inertia etc. of

“object *” where * can be the ring, the disc or the sphere. (Note that since we want the

velocities of each object separately, we cannot just apply the energy method to a system

consisting of the three objects!)

At the initial position, each of the objects is at rest, with its centre of mass at the zero

energy level. Therefore, we have

P E initial
∗ = 0,

K E initial
∗ = 0,

and thus the total initial energy is

E initial
∗ = P E initial

∗ + K E initial
∗ = 0. (15.8)

At a later time, when object * has travelled the distance x down the slope, it will have lost

some of its potential energy since it is now lower down, but on the other hand it will have

gained some kinetic energy since it is no longer at rest. The potential energy is now

P E later
∗ = −Mgx sinα,

since the distance x along the slope corresponds to a vertical drop of x sinα.

The kinetic energy is given by the sum of the rotational and translational energies:

K E later
∗ =

1

2
I∗θ̇

2
∗ +

1

2
Mẋ2
∗

where I∗ is the moment of inertia of object *, θ̇∗ its angular velocity and ẋ∗ the linear

velocity of its centre of mass. If we assume that the objects are rolling without slipping

down the slope, then for each object the angular and linear velocities are linked by the

rolling condition:

θ̇∗ =
ẋ∗

R
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Hence, the kinetic energy is

K E later
∗ =

1

2

(
I∗

R2
+ M

)
ẋ2
∗,

and the total energy at this later time is

E later
∗ = P E later

∗ + K E later
∗

∴ E later
∗ = −Mgx sinα +

1

2

(
I∗

R2
+ M

)
ẋ2
∗ . (15.9)

In terms of the energy conservation principle,

E initial
∗ = E later

∗ ,

so using the values of E initial
∗ and E later

∗ calculated in (15.8) and (15.9), we see that we

must have

0 = −Mgx sinα +
1

2

(
I∗

R2
+ M

)
ẋ2
∗

∴ ẋ2
∗ =

2Mg sinα(
I∗
R2 + M

) x . (15.10)

This equation gives the velocity of any of the objects when it has travelled the distance x

down the slope.

For the ring, Iring = M R2 and therefore

ẋ2
ring = g sinαx .

For the disc, Idisc =
1
2

M R2 and therefore

ẋ2
disc =

4

3
g sinαx .

For the sphere, Isphere =
2
5

M R2 and therefore

ẋ2
sphere =

10

7
g sinαx .

(a) Which object reaches the bottom first? We can answer this question based on the

calculations above. Since

1 <
4

3
<

10

7
,

we see that at any point of the ramp the velocity of the sphere is the greatest. It then

follows that it must reach the bottom first. Alternatively, we could use (15.10) to find

the acceleration of each object. Equation (15.10) links together the velocity, ẋ2
∗, and

the distance covered, x = x∗, of each object at a certain time t :

ẋ2
∗ =

2Mg sinα(
I∗
R2 + M

) x∗.

To find the acceleration, we can differentiate each side of this equation with respect to
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time, to get

d

dt
(ẋ2
∗) =

d

dt

 2Mg sinα(
I∗
R2 + M

) x∗


∴ 2ẋ∗ ẍ∗ =

2Mg sinα(
I∗
R2 + M

) ẋ∗

∴ ẍ∗ =
Mg sinα(
I∗
R2 + M

) .
Applying again the moments of inertia of each object, we see that the accelerations are

ẍring =
1

2
g sinα,

ẍdisc =
2

3
g sinα,

ẍsphere =
5

7
g sinα.

Thus, each object has a constant acceleration, and the sphere has the largest accelera-

tion, so that it reaches the bottom of the ramp first.

The exact time taken by each object to reach the bottom of the ramp is also easy to

calculate. If an object has constant acceleration α and initial velocity v = 0, then in

time t it has travelled the distance

d =
1

2
αt2.

It follows that it takes the time

t =

√
2d

α

to travel the distance d. If we apply this formula to the three objects travelling the

length of the ramp L , we find that the times taken by each object to reach the bottom

are, respectively

tring =

√
4L

g sinα
,

tdisc =

√
3L

g sinα
,

tsphere =

√
14L

5g sinα
.

(c) How fast is each of the objects moving at the bottom of the ramp? We have already

calculated the values of ẋ2
ring
, ẋ2

disc
and ẋ2

sphere
when the objects have travelled the

distance x down the slope. Applying these, we find that at the bottom of the ramp (the
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case x = L), the velocities of the objects are

ẋring =
√

g sinαL

ẋdisc =

√
4

3

√
g sinαL

ẋsphere =

√
10

7

√
g sinαL.

Activity 15.9

A uniform, solid sphere with radius R rolls from rest, without slipping, on a plane inclined at the angle α to the

horizontal. Find the velocity of the centre of mass of the sphere:

(a) after time t

(b) after moving a distance d down the plane.

Note that you might find it easier to use a different methods in the two cases!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feedback: (a) ẋ = 5
7
(sinα) gt, (b) ẋ =

√
10
7
(sinα) gd.

Example 15.11

A sheet of paper, weighing 10 g, lies on top of a smooth (frictionless) table top. An insect,

which weights 2 g, stands on top of it. If the insect walks 20 cm to the left, how does the

paper move?

Solution:

Here, we are looking at a situation stated in terms of an initial and a final state. However,

the system is not conservative, since the insect is applying force to the paper when it walks

along the paper. Therefore, the energy conservation method will not work here. But then

it does not seem as if we know enough to apply the equations of motion either, since we

do not know how much force the insect exerts on the paper (that depends on the friction

between the insect and the paper, and presumably on the strength of the insect as well...)

But, since we do know that there is no friction between the paper and the table, we can

just consider the system formed by the paper and the insect. Then, the force needed for

the insect to move is an internal force and of no concern to us. Since there is no friction

between the table and any parts of the system, no external forces parallel to the table act

on the system, and the vertical forces (gravity and the normal force) cancel each other

out. According to the law of the motion of the centre of mass of the system, this means

that R̈ = 0, that is, the acceleration of the centre of mass of the system is zero. Since the

system is at rest initially, this means that the position of the centre of mass does not change

at any time.

Let us choose the X -axis along the table top. We can assume that the insect and the centre

of the paper are at the origin initially, and that the insect walks in the direction of the

negative X -axis.
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Table X0

Later

Initially

X20 0

Center of paper

Initially the centre of mass has the X -coordinate

x in =
0 · 2+ 0 · 10

2+ 10
= 0.

Later, the insect has moved 20 cm to the left, to position (−20) on the X -axis. Let

x p denote the new X -coordinate of the centre of the paper. The centre of mass of the

system is now

x later =
−20 · 2+ x p · 10

2+ 10
=

1

12
(10x p − 40).

But x in = x later , so we must have

1

2
(10x p − 40) = 0

∴ x p = +4

Hence the paper has moved 4 cm to the right.J

CONCLUSION

In this unit you have learned how to apply the energy conservation method to solve prob-

lems, and how to decide between using the energy method and the approach involving

forces and equations of motion.

Remember to add the following to your toolbox:

• the toolbox for calculating kinetic and potential energies

• the toolbox for deciding between equations of motion and the energy method
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Appendix A DEFINITE

INTEGRALS

The following is a brief non–rigorous account on the subject of definite integrals.

DEFINITE INTEGRALS AS AREAS

The concept of a definite integral arises naturally if we consider a method for finding areas.

Suppose that we wish to find the area enclosed by the X - and Y -axes and under the curve

y = f (x) in the interval a ≤ x ≤ b. Let us denote this area by A.

One way of finding this area is as follows: We will divide the interval a ≤ x ≤ b into n

subintervals of lengths 1x1,1x2, . . . ,1xn, by introducing points

x0 = a ≤ x1 ≤ x2 ≤ . . . ≤ xn−1 ≤ xn = b

such that 1xi = xi − xi−1.

Now let’s approximate the original function f (x) by a “step function”, which has a con-

stant value over each of our intervals. We can do this, for instance, by taking the value of

the step function between xi−1 and xi to be equal to f (xi−1) .
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The area under the step function is easy to calculate: The area consists of n rectangles, with

widths 1x1,1x2, . . . ,1xn and heights f (x0) = f (a), f (x1) , f (x2) , . . . , f (xn−1) ,
respectively. The area of rectangle number i is equal to f (xi−1)1xi , and so the total area

under the step function (summing up over all the rectangles) is

n∑
i=1

f (xi−1)1xi .

Now, it is clear that we can use the area under the step function as an approximation for

A, the area under the original function f (x):

A ≈
n∑

i−1

f (xi−1)1xi .

Moreover, it is clear that by increasing the number of subdivision points, and by decreasing

the “step lengths” 4xi , we will get more and more accurate approximations for the area

A, since the step function will more closely approximate the function f (x).

At limit, when we let n increase so that 1xi tend towards zero, we get the exact area:

A = lim
n→∞

n∑
i=1

f (xi−1)1xi .

The limit on the right has a value (a number) which does not depend on the specific choice

of all the division points xi . The limit of the sums on the right is denoted by a “definite

integral”: ∫ b

a

f (x) dx = lim
n→∞

n∑
i=1

f (xi−1)1xi .

This is the definition of a definite integral.∫ b

a

f (x) dx

is called the definite integral of f (x) between a and b. (Note that there are various

restrictions on the function f (x) that apply to this definition, but for our purposes we can

neglect them.)
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So, an integral is a limit of sums. Please note the resemblance between the original sums

n∑
i=1

f (xi−1)1xi

and the integral ∫ b

a

f (x) dx

which is the limit of these sums as 4xi → 0. Here, x is called the variable of integration,

the interval ba, be is called the range of integration, and b is the upper limit and a the

lower limit of integration. We also say that f (x) is integrated over [a, b], or from x = a

to x = b

The following properties can easily be proved for the integral:∫ b

a

( f (x)+ g (x)) dx =

∫ b

a

f (x) dx +

∫ b

a

g (x) dx

∫ b

a

A f (x) dx = A

∫ b

a

f (x) dx .

(where A is any constant.)

THE EVALUATION OF INTEGRALS

The next step is to establish a procedure for the calculation of definite integrals. This

is achieved by applying the fact that, in a way, integration is the inverse operation of

differentiation. This is made clear in the concept of antiderivatives (indefinite integrals)

and the fundamental theorem of calculus.

Let f (x) be given. Then any function F (x) such that

d F (x)

dx
= f (x)

is called the antiderivative of f (x). Alternatively, we say that F (x) is the indefinite

integral of f (x). Clearly, if F (x) is an indefinite integral of f (x), then so is F (x) + c,
where c is an arbitrary constant. We use the notation∫

f (x) dx

to denote any indefinite integral of f (x). If one antiderivative F (x) of f (x) is known,

then we have ∫
f (x) dx = F (x)+ c;

this gives all the antiderivatives / indefinite integrals of f (x).

So far we have a definite integral, defined as a limit of sums, and an indefinite integral,

defined as the inverse operation of differentiation. How are these operations linked? The

connection is stated in the Fundamental Theorem of Calculus.
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The Fundamental Theorem of Calculus

Let f (x) be a given function. If F (x) is an indefinite integral

of f (x) (that is, an antiderivative of f (x)), then

∫ b

a

f (x) dx = F (b)− F (a) .

This theorem enables us to calculate definite integrals directly, without having to use the

definition of the definite integral as a limit of sums, whenever any antiderivative of the

function to be integrated is known. To calculate the value of
∫ b

a
f (x) dx , we proceed as

follows:

1) Find F (x), an antiderivative / indefinite integral of f (x) .

2) The value of the definite integral is then equal to F (b)− F (a) .

We use the notation

F (x)]b
a = F (b)− F (a) ;

thus we have ∫ b

a

f (x) dx = F (x)]b
a

when F (x) is any antiderivative of f (x).

Example A.1

Find the value of
∫ 2

1
x2dx .

Since d
dx

(
1
3

x3
)
= x2, an antiderivative of x2 is 1

3
x3, that is,

∫
x2dx = 1

3
x3 + c. Thus,∫ 2

1

x2dx =
1

3
x3

]2

1

=
1

3
(2)3 −

1

3
(1)3

=
8

3
−

1

3
=

7

3
.

Antiderivatives of some usual functions are given in the following:



327 APM1612/1

∫
undu = 1

n+1
un+1, n 6= −1

∫
1
u

du = `n |u|

∫
sin udu = − cos u

∫
cos udu = sin u

∫
eax dx = 1

a
eax

(Note that we should in fact add an arbitrary constant c to the right hand-side of all these

formulas, to obtain all the possible antiderivatives. However, in evaluating indefinite

integrals that constant will cancel out anyway, so we can drop it.)

Example A.2

Evaluate ∫ 2

1

(
x2 + 2x − 1

)
.

We have ∫
x2dx =

1

3
x3,

∫
2xdx = x2,

∫
1dx = x .

Thus, ∫ 2

1

(
x2 + 2x − 1

)

=

(
1

3
x3 + x2 − x

)]2

1

=

(
1

3
23 + 22 − 2

)
−

(
1

3
13 + 12 − 1

)

=

(
8

3
+ 4− 2

)
−

(
1

3
+ 1− 1

)
=

13

3

Example A.3 ∫ 0

−1

2e−x dx = 2
(
−e−x

)]0
−1

=
(
−2e−0

)
−
(
−2e−(−1)

)
= 2e − 2.
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Appendix B STRATEGIES

In these last pages of the study guide, we will reproduce all the list of strategies and tool-

boxes that we mentioned in the main Learning Units of the study guide. You may wish to

cut them out!
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GENERAL TOOLBOX

(1) UNDERSTANDING THE PROBLEM

Here, you must understand what the object/system/situation is like, and what you are asked to do.

To make sure that you have understood the problem, answer the following questions:

• What is given and what is wanted? What conditions apply?

• Can you describe the situation in your own words?

You could make use of the following tools:

• Knowledge of the language of mechanics problems, and using keywords for clues about

positions, objects and their properties, types of motion, etc.

• Sketches and diagrams

• Real-life examples and experiments

• Listing in standard mathematical notation the known and unknown quantities

2. PLANNING A SOLUTION

Most of the time solving a problem in mechanics involves deciding on the correct principles or

results of physics to apply in a given situation. Hence, one important class of tools consists of

your knowledge of these:

• The principles, definitions and results of mechanics – add the tools here

• Knowledge about when the principles and results apply and when not – add the tools here

• Sub-toolboxes you may already have designed for other tasks – add here

To decide which of these you should apply to a particular problem, you may wish to use the following

strategic questions as tools:

• Can you find similar, already solved examples and problems? Can you use their method, or their

results? (Similarity could mean dealing with a similar situation, or dealing with the same type of

unknown.)

• Which mechanics principles could be applied in this situation?

• Which definitions, principles, results deal with the given type of unknown?

• Do we have all the information necessary to apply the definitions, principles or results we have

decided on? If not, can we determine the information from the given? Alternatively, can we

introduce the information as another unknown? Which definitions, principles, results deal with

the new unknown?

3. EXECUTING THE PLAN

To complete this step, you will probably have to apply the following tools:

• Sketches and diagrams

• Mathematical notation, symbols for variables, coordinate systems

• Equations and formulas

• Mathematical tools (integration, solving equations, etc.)

Turn over!
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4. ANALYSING THE SOLUTION

To check the correctness of the solution, you can

• see whether the solution makes sense

• try to think of other ways to solve the same problem

• compare the end result with other known, similar results

• compare the result with experiments and guesses based on real-life objects

• work in a group and compare your results with those of others

If your solution seems to be wrong, you should

• find out where you went wrong, by checking the argument and the calculations

• go back to step 1 or step 2

To reflect and learn from the solution, you can

• try to invent similar problems

• compare this problem with other examples and problems that you have come across, and ask

yourself what the differences and similarities are
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TOOLBOX: IDENTIFYING ALL THE FORCES ACTING ON A SYSTEM

• Draw a picture of the system as a whole, and, if necessary, separate diagrams for all the components

of the system, with the forces acting on them. Draw each force as a vector (an arrow) which starts at

the point of action of that force.

• For all forces, consider the corresponding reaction force. Does the reaction force act on one of the

objects we are interested in? If so, remember to include it!

• Does the collection of forces make sense? Remember that if the object is motionless, then the forces

acting on it must balance out – that is, their sum must be zero. If the object is supposed to be still, but

all the forces act in the same direction, then something is wrong – you may have let out some forces.

TOOLBOX FOR SELECTING A COORDINATE SYSTEM

Before we can even start the task of finding the centre of mass of a system of particles, we need to have a coordinate

system in place! If one is already given, fine; if not, then we must decide on a suitable one. The reason why we

need a coordinate system is because the formulas (3.1) or (3.2), (3.3) and (3.4) help us to find the position of the

centre of mass from the position of the particles. However, we cannot talk about the position of a particle without

having a way to refer to it! The formulas (3.1) to (3.4) refer to the position vectors or coordinates of the particles of

the system. But position vectors are meaningless unless we have a reference point (position vectors from where?)

and, similarly, the coordinates of a point do not mean anything unless we have specified our coordinate axes.

There are many possible coordinate systems, any one of which would do; but some are more suitable than others,

because they make calculations easier. Here are some guidelines on how you can go about to select a good

coordinate system.

• Draw a sketch of the system. The sketch will make sure that you understand the situation, and will

make it easier to select a suitable coordinate system! You might want to label the particles in the

sketch. You may have to assume values for distances, masses and positions when they are not fully

specified!

• Determine the dimension of the system. If all particles are along one straight line, or along one

plane, then the system is in fact one- or two-dimensional, respectively. In that case you do not have

to introduce a complete three-dimensional coordinate system.

• Now, you can proceed to select the direction of the coordinate axes and the position of the origin.

Things to take into account here are symmetry (more about that later), and the need to be able to

find the position vectors or coordinates of all particles as easily as possible!
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TOOLBOX FOR SIMPLIFYING THE TASK OF FINDING CENTRES OF MASS OF RIGID SYSTEMS OR BODIES

(1) Draw a sketch of the system (or body). Remember that you can turn a rigid system around any way

you like, and therefore there are many possible ways to draw the system! A well-chosen orientation in

you sketch may make it easier for you to decide on a coordinate system later on, but you can always

re-do your sketch if necessary.

(2) Are there axes or planes of symmetry?

(3) What is the dimension of the system?

(4) Can the system be expressed as a composite body, where the centres of mass of the components

are easier to find?

(5) Select a final coordinate system, based on all the considerations above. (This may involve re-drawing

the system in another orientation.)

TOOLBOX FOR SLICING AND INTEGRATING TO FIND CENTRES OF MASS

(1) Draw a sketch of the body.

(2) Check whether you can apply any of the simplifying tricks:

• symmetry; dimension of the problem

• interpreting the object as a composite body — in which case you should proceed to slice and

integrate the components first

• suitable selection of coordinates; re-drawing the system if necessary

(3) Decide what would be the best way to slice the object.

(4) Select the coordinate system, taking into account the considerations above.

(5) Identify your integration variable. Find the centre of mass and the position of the centre of mass of

each slice in terms of density and the variable of integration. Identify the upper and lower limits of

integration.

(6) Evaluate the integrals to find the centre of mass with respect to the chosen coordinate system.

(7) Express the position of the centre of mass in relation to the object.

(8) Check the solution.
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TOOLBOX FOR FINDING CENTRES OF MASS

1. UNDERSTANDING THE PROBLEM

• What is the system like? What are the shapes, sizes, masses, compositions, positions of the

parts? Where are the parts in relation to each other?

• Can you describe the system in your own words?

You could make use of the following tools:

• Knowledge of the language of mechanics problems, and using keywords for clues about the

positions and properties of objects

• Sketches and diagrams

• Real-life examples

• Using symbols for referring to parts of the system, positions, distances etc.

2. PLANNING A SOLUTION

We have the following principles, definitions, results and sub-toolboxes available to us for finding

centres of mass:

• The original definition, using a sum, for a system of particles

• Slicing and integrating, applicable to bodies with continuous structure

• The equation for the centre of mass of a composite system, put together from any kinds of

components

• We have sub-toolboxes for

• selecting coordinate systems

• simplifying the task of finding centres of mass

• slicing and integrating

• Also, we have a special trick for dealing with objects with parts removed.

• If we need to integrate, we may use polar coordinates.

• Finally, we have ways of finding the positions of the centres of mass of various objects, including

those of solids of revolution and laminas bounded by functions.

To decide on which of these you should apply to a particular system, ask yourself:

• Can you find similar, already solved examples and problems?

• Are all the components particles? If not, we shall have to find the centres of mass of the

components with continuous structure, and then the following list of questions applies:

• Do we already know where the centre of mass of the object is, based on an already solved

example?

• Can the toolbox for simplifying be applied? Is this an object with parts removed?

• If all else fails, we can use slicing and integrating. If this is necessary, is the case similar to

one we have already done?

• Can the toolbox for simplifying be applied to the entire system?

Turn over!
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3. EXECUTING THE PLAN

To complete the calculation of the centre of mass, you will have to

• introduce mathematical notation

• find the centres of mass and the masses of the components , if necessary

• introduce a suitable coordinate system, draw a sketch of the entire system with the coordinates,

and express the centres of mass of the components in terms of this coordinate system

• apply the relevant formula to find the centre of mass of the entire system in terms of the

coordinates

• express the centre of mass in relation to the system itself.

4. ANALYSING THE SOLUTION

To check the correctness of the solution you can

• see whether the solution makes sense. Compare the end result to the centre of mass of other

similar objects

• try to think of alternative ways to find the centre of mass

• re-do the calculations with a different coordinate system

• compare your solution with experiments and guesses based on real-life objects

• work in a group and compare your results with those of others

If your solution seems to be wrong, you should

• find out where you went wrong, by checking the argument and the calculations

• go back to step 1 or step 2

To reflect and learn from the solution, you can

• think of other systems where a similar approach would work; compare this problem with other

systems that you have come across: what are the differences and similarities?
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TOOLBOX FOR APPLYING THE EQUATION FOR THE MOTION

OF THE CENTRE OF MASS OF A SYSTEM

The equation for the motion of the centre of mass of a system, given by F =MR̈ links

• the acceleration of the centre of mass,

• the external forces acting on the system, and

• the total mass of the system.

Thus, given two of these we can find the third. Usually, we wish to find the acceleration of the centre of mass from

the mass and forces acting on the system, so we shall design our toolbox around that problem and leave it for you

to modify the toolbox for the other two cases!

To find the acceleration of the centre of mass of a system, we shall have to identify the mass and the resultant

external force acting on the system. The following checklist will help you do that.

(1) UNDERSTANDING THE SYSTEM

Here, you must understand what the system is like:

• What are the components? (size, shape, consistency: uniform, massless,..)

• How are the components related to each other? (relative positions, do they touch each other,

linked by a string, is there friction between them...)

You must also make sure that the system is what you think it is. Change your definition of the system

if necessary.

You might make use of the following tools:

• knowledge of the language of mechanics problems, and using keywords for clues about positions,

objects and their properties, types of motion etc.

• sketches and diagrams

• real-life examples and experiments

• mathematical notation for known and unknown quantities

2. PLANNING A SOLUTION

To be able to apply the equation of motion, we need to find the mass of the system and the external

forces acting on it. Do we have the information necessary for doing that?

MASSES:

• Are we given the masses of all the components? If not, can we calculate them? Or do we know

the relative sizes of the masses?

FORCES:

• For each component which forms a part of the system, identify all the forces acting on it. (List

them, and also draw them in your sketch.) Categorise the forces acting on the component into

internal ones (due to another component which forms part of the system) and external ones.

• Check your categorisation: All internal forces should appear in action-reaction pairs.

• Now, ignore all the internal forces, but list all the external forces acting on the various components.

These all form the external forces acting on the system.

• Are some of the external forces unknown? If so, then we may need further information linking the

motions of the components of the system.

If you cannot identify the masses and/or the forces, you may have to check that you have chosen

your system correctly.

Turn over!
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3. EXECUTING THE PLAN

To apply the equation of motion, you will have to

• introduce mathematical notation and symbols for the masses and forces.

• calculate the masses of the components, if necessary

• introduce a suitable coordinate system; draw a sketch of the entire system and the external forces

with the coordinate system; express the vectors of the external forces in terms of this coordinate

system; introduce notation for the acceleration of the centre of mass based on this system

• write down the equation for the motion of the centre of mass of the entire system in terms of the

coordinate system

• add equations describing extra information about the motion of the system if some of the forces

are not known

• solve the equation(s) for the acceleration of the centre of mass

• express this acceleration in relation to the system itself, if required

4. ANALYSING THE SOLUTION

• Does the solution make sense? Compare it with experiments and guesses based on real-life

objects.

• Try to think of alternative ways to solve the problem.

If your solution seems to be wrong, you should

• find out where you went wrong, by checking the argument and the calculations

• make sure that your system is as you intended

To reflect and learn from the solution, you can

• think of other systems where a similar approach would work; try to generalise the result; compare

this problem with other systems that you have come across: what are the differences and

similarities?

If some of the forces are unknown, and if you need information relating to the relative motion of the components,

then you may also have to write down the equations of motion for the individual components!
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HOW TO FIND THE MOMENT OF A FORCE

• Firstly, we must make sure that the question is well defined — remember the moment of a force is

only defined with respect to a point of reference O. We’ll have to identify the point O (about which we

plan to take the moment), the point P (at which the force acts), and the force F (its magnitude and

direction).

• If a coordinate system is already given, fine; otherwise we will have to introduce one.

• Next, we shall express the vectors r = OP and F in terms of the unit vectors i, j and k.

• Finally, we shall calculate the value of the cross product M = r×F .

TOOLBOX FOR FINDING MOMENTS OF INERTIA BY SLICING AND INTEGRATING

(1) Understanding the problem: Make sure you know what the body is like, and where the axis of rotation

lies! Draw a sketch of the body and the axis.

(2) Check whether you can apply any of the simplifying tricks:

• symmetry, identical axes

• interpreting the object as a composite body – in which case you should proceed to slice and

integrate the components first

(3) Decide on the best way to slice the object. Remember that you wish the slices to be such that you

can find their moments of inertia dI easily! Also make sure that you know what kind of an object you

get when slicing!

(4) Select a coordinate system. The moment of inertia is an absolute quantity, which does not need to

be referred to in terms of a specified coordinate system. However, if we are going to apply integration

to find it, we shall have to use an integration variable, which means that we will need at least one

coordinate axis! If the slicing is done perpendicularly to the axis of rotation, then sometimes we can

take that axis as one of our coordinate axes, for example the X-axis, and integration will then be

over the variables x which denote the position on the X-axis of each slice. In general, the choice

of the coordinate system is closely linked to the decision of how you will “slice” the object! Add the

coordinate system to your sketch.

(5) Identify your integration variable. Find the value of the moment of inertia dI for all the small mass

elements, in terms of the integration variable. This will usually involve the mass of the small mass

element, which may be found by applying the concept of density and the volume, area or length of

the small element!. Identify the upper and lower limits of integration.

(6) Evaluate the integral. The end result may be in terms of the density ρ, in which case we also have

to apply the link between the total mass M , the density ρ and the dimensions of the body, to express

the result in terms of M instead.

(7) Check the solution.
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TOOLBOX FOR THE TASK OF FINDING THE MOMENT OF INERTIA OF A RIGID OBJECT

(1) UNDERSTAND THE PROBLEM

Make sure that you understand, firstly, what the object is like; and secondly, where the axis of rotation

lies in relation to the body. Some of the following tactics may help you to make sure you achieve this!

• Draw a sketch of the object.

• Think of a real-life example of the situation.

2. PLANNING THE SOLUTION

We have the following ways of finding moments of inertia:

• For systems of particles, I =
∑
mir

2
i .

• For objects with a continuous structure, slicing and integrating: I =
∫
dI.

We have also introduced several simplifying tools:

• symmetries, identical axes of rotation

• the parallel and perpendicular axes theorems

• the rule for compound bodies

Finally, you usually have at your disposal a set of basic or previously calculated moments of inertia

for certain objects: rods, rings, discs, etc...

You will need to decide which of these tools apply for the particular object or its components, and in

which order you should apply them.

3. EXECUTING THE PLAN

You will now have to do the calculations you have decided on. The following points should help you

here:

• Introduce notation for the axes, objects etc. involved.

• If you have to integrate, you will also need to decide on the variable of integration.

• The link between density and mass will help you express the end result in terms of the mass of the

object, where necessary.

4. ANALYSING THE SOLUTION

• Do basic checks for correctness: The moment of inertia should be positiveness, increase when mass

increases, and so on.

• Re-calculate, using another method.

• Compare with other results for the same object with different axes, or different objects with the same

axis.
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TOOLBOX FOR SOLVING PROBLEMS INVOLVING PURE ROTATION

(1) UNDERSTANDING THE PROBLEM

Here, you must understand what the rotating object and any other components of the system are

like, and what are you asked to do. To make sure that you achieve this, you might make use of the

following tools:

• Look for keywords for hints about

• the position of the rotating object: horizontal, vertical, tangential etc.

• the position of the axis of rotation

• the shape and composition of the rotating object (disc, rod; uniform, composite etc.)

• any other objects which form part of the system, their way of motion, their links with the

rotating object: pulleys, ropes, etc.

• Use sketches and diagrams of the whole system and its components.

• Use real-life examples and experiments.

• Try to rephrase the problem in your own words.

• Use standard mathematical notation for the known and unknown quantities.

2. PLANNING WHAT TO DO

Review the available principles, results and definitions:

• The equation of pure rotation, the moment of inertia, angular position and acceleration

• From previous Learning Units: Newton’s equations for the motion of particles, the centre of mass,

the equation for the motion of the centre of mass, and all the tools listed in Learning Unit 1

To decide on which principles you should apply to the system and/or its various components, you

may wish to try the following tools:

• Know when the principles apply and when not.

• Find similar problems and examples.

• Look for principles dealing with the types of variables which are given and wanted.

To make sure that a plan will work, also check the following:

• Do you have all the information necessary to apply the definitions, principles and results decided

on? If not, can you find the information from what is given? Alternatively, can one introduce

the information as another unknown? Which definitions, principles or results deal with the new

unknown?

• Have you used all the given facts and all the conditions in the problem statement?

3. EXECUTING THE PLAN

This is where you will have to set up the equations and solve them. You may need:

• mathematical notation, symbols for variables, coordinate systems

• mathematical tools (integration, solving equations etc.)

• sketches and diagrams

• already calculated results, tables of moments of inertia

4. ANALYSING THE SOLUTION

To check the correctness of the solution, you can do the following:

• See whether the solution makes sense. Compare the end result to other known, similar results.

• Try to think of other ways to solve the same problem.

• Compare it with experiments and guesses based on real-life objects; work in a group and

compare your results with those of others.

To reflect on and learn from the solution, you can think of other systems where a similar approach

would work. Try to generalise the result. Compare this problem with other systems that you have

come across: what are the differences and similarities?
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TOOLBOX FOR SOLVING PROBLEMS BY MEANS OF EQUATIONS OF TRANSLATION AND ROTATION

(1) UNDERSTANDING THE PROBLEM

Here, you must understand what the object/system/situation is like, and what you are asked to do.

To make sure that you have understood the problem, make sure that you can answer the following

questions:

• What is given and what is wanted? What conditions hold?

• Can you describe the situation in your own words?

You might make use of the following tools:

• your knowledge of the language of mechanics problems, and using keywords for clues about

objects and their properties, about positions, types of motion, links between the different

components etc.

• sketches and diagrams of the whole system and its components

• real-life examples and experiments

• listing in standard mathematical notation the known and unknown quantities

2. PLANNING THE SOLUTION

Analyse the motion of the different components: what type of motion does each undergo? What are

the connections between the different components and their motions?

The three different types of motion each have their related principles, results and definitions:

• the equation of motion for pure translation

• the equation of motion for pure rotation

• the equation of motion for a combination of rotation and translation

Check the following:

• Do we have all the information necessary to apply the equations of motion decided on? If

not, can we find/calculate the information from what is given? Alternatively, can we introduce

the information as another unknown? Which definitions, principles, results deal with the new

unknown?

• Is the number of equations equal to the number of unknowns?

If something seems to be missing,

• have you used all the given facts and all the conditions in the problem statement?

3. EXECUTING THE PLAN

This is where we shall set up the equations and solve them. You may need

• mathematical notation, symbols for variables, coordinate systems

• mathematical tools (integration, solving equations etc.)

• sketches and diagrams

• already calculated results, tables of moments of inertia

4. ANALYSING THE SOLUTION

To check the correctness of the solution you can do the following:

• See whether the solution makes sense. Compare the end result to other known, similar results.

• Try to think of other ways to solve the same problem.

• Compare the solution with experiments and guesses based on real-life objects.

• Work in a group and compare your results with those of others.

To reflect on and learn from the solution, you can do the following:

• Think of other systems where a similar approach would work. Try to generalise the result.

Compare this problem with other systems that you have come across: what are the differences

and similarities?
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TOOLBOX FOR CALCULATING POTENTIAL AND KINETIC ENERGIES

Kinetic energy:

• Classify the motion of the object: is it pure rotation, pure translation or a combination of rotation and

translation?

• Apply the appropriate formula to calculate the potential energy.

• In general motion, if the motion is rolling without slipping, then you can choose to express the kinetic

energy in terms of either the angular velocity or the linear velocity of the centre of mass. Which one

is better depends on the circumstances and the questions you are trying to answer.

Potential energy:

• Decide on a zero energy level. Although the zero energy level can be chosen arbitrarily, a well-chosen

one will make the calculations easier.

TOOLBOX FOR DECIDING BETWEEN EQUATIONS OF MOTION AND THE ENERGY CONSERVATION

METHOD

To decide which to apply, consider the following questions:

• Is the system conservative? If not, the energy conservation principle cannot be applied.

• Do we know enough to apply all the necessary equations of motion?

• What type of information is asked for? Remember that

• the energy conservation method deals with velocities

• equations of motion deal with accelerations and forces

• Is the problem stated in terms of an initial and a final state?




