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Dear Student,
This is the October/November 2009 examination paper (pp1-5). Also included in the Tutorial letter

is the memorandum. Try to answer the questions without looking at the memo; then check to see if your
answers are correct. Bear in mind the following:

1. Always give reasons for your statements - for example, it is not enough to simple write down the
final answer - marks are awarded for your thinking process.

2. If you introduce a new variable that doesn’t appear in the question, you must say clearly what it
stands for.

3. State the final solution of the question clearly.

APM211-V
DIFFERENTIAL EQUATIONS

Time: 2 Hours October/November 2009
Examiners:
First: Mr. R.J. de Beer
Second: Dr. J.M. Manale 100 Marks

Instructions to the candidate:

• The use of non-programmable calculators is allowed.

• This paper consists of 6 pages including formulas (pp. 5-6).

• Show ALL calculations.

• Try to answer ALL the questions.

This examination paper remains the property of the University of South Africa and may NOT be removed
from the examination venue.

QUESTION 1

(a) Solve the given differential equation by separation of variables.

dy − (y − 1)2 dx = 0. (3)

(b) Determine the solution for the initial value problem

dx

dt
= 4

(
x2 + 1

)
x
(π

4

)
= 1 (7)

[10]

QUESTION 2

(a) Show that
(
x3 + y3

)
dx+ 3xy2dy = 0 is exact. (2)

(b) Solve the differential in part (a). (8)

[10]
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QUESTION 3

(a) Find the differential operator that annihilates

1 + 6x− 2x3. (2)

(b) Use the D–Operator method to find the general solution of the differentiation equation

y′′ − 2y′ + y = x3 + 4x. (8)

[10]

NO MARK WILL BE AWARDED IF ANOTHER METHOD IS USED.

QUESTION 4

(a) Find the radius of convergence for the power series

∞∑
n=1

xn−1

n · 3n
. (5)

(b) Find the interval of convergence in part (a). (5)

[10]

QUESTION 5

Use the power series method to solve the initial value problem

(x+ 1) y′′ − (2− x) y′ + y = 0
y′ (0) = 1, y (0) = 2,

where c0 and c1 are obtained from the initial conditions. [10]

NO MARK WILL BE AWARDED IF ANOTHER METHOD IS USED.

QUESTION 6

Find L{f (t)} from first principles

f (t) =
{

t 0 ≤ t < 1
1 t ≥ 1 .

[10]
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QUESTION 7

Use Laplace transform to solve the initial value problem

y′′ − 2y′ + 1 = 1,
y (0) = 1, y′ (0) = 2.

[10]

QUESTION 8

Find the Fourier series of the following function on the given interval:

f (x) =

 0 −2 < x < 0
x 0 ≤ x < 1
1 1 ≤ x < 2

[15]

QUESTION 9

Use the method of separation of variables to find the solution of the homogeneous heat conduction problem:

PDE:
∂u

∂t
= k

∂2u

∂x2
, (0 < x < L, t > 0)

BCs:
∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0

IC: u (x, 0) = x

(a) Assume u (x, t) = φ (x)G (t) and derive the ODEs satisfied by φ (x) and G (t) , if −λ is the separation
constant. (2)

(b) If λ > 0, determine the general solution for φ (x) and hence use the boundary conditions to determine λn.
(5)

(c) Write the eigenfunctions and corresponding eigenvalues of the above problem. (3)
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(d) Write the product solution. (2)

(e) From the product solution show that

u (x, t) =
L

2
+
∞∑
n=1

an cos
nπx

L
e−(nπL )2

kt. (3)

[15]

TOTAL: [100]
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FORMULA SHEET

I. Properties of the inverse operator
1

P (D)
applied to a few standard functions.

1.
1

P (D)
[eax] =

eax

P (a)
if P (a) 6= 0

2.
1

P (D)
[eaxy] = eax

1
P (D + a)

[y]

3.1
1

P (D2, D)
[sin ax] =

1
P (−a2, D)

[sin ax], P (−a2, D) 6= 0

3.2
1

P (D2, D)
[cos ax] =

1
P (−a2, D)

[cos ax], P (−a2, D) 6= 0

4.1
1

D2 + a
[sin ax] =

−x
2a

cos ax

4.2
1

D2 + a2
[cos ax] =

x

2a
sin ax

5.1
1

λD + µ
[sin ax] =

−1
λ2a2 + µ2

(λa cos ax− µ sin ax), λ, µ ∈ R

5.2
1

λD + µ
[cos ax] =

1
λ2a2 + µ2

(λa sin ax+ µ cos ax], λ, µ ∈ R

II.
Annihilator operator functions annihilated

(D − α)n xkeαx for each k = 0, 1, . . . , n− 1

Dn xk for each k = 0, 1, . . . , n− 1

[D2 − 2αD + (α2 + β2)]n
{
xkeαx cosβx
xkeαx sinβx for each k = 0, 1, . . . , n− 1

D2 + β2 cosβx, sinβx

(D2 + β2)n
{
xk cosβx
xk sinβx for each k = 0, 1, . . . , n− 1
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III. LAPLACE–TRANSFORMS OF SOME BASIC FUNCTIONS

1.
L{1} =

1
s

2.
L{tn} =

n!
sn+1

, n = 1, 2, 3, . . .

3.
L{eat} =

1
s− a

4.
L{sin kt} =

k

s2 + k2

5.
L{cos kt} =

s

s2 + k2

6.
L{sinh kt} =

k

s2 − k2

7.
L{cosh kt} =

s

s2 − k2

8.

L
{
f (n) (t)

}
= snF (s)− sn−1f (0)− sn−2f ′ (0)

− . . .− f (n−1) (0)

where
F (s) = L{f (t)} .

9.
L{g (t)U (t− a)} = e−asL{g (t+ a)} .

10.
L−1 {f (s+ 1)} = e−tL−1 {f (s)} .

c©
UNISA 2009
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Memorandum
1. (a)

dy

(y − 1)2
= dx

ln |y − 1| = x+ c

y − 1 = Aex

y = 1 +Aex

(b) Separating variables,

dx

1 + x2
= 4dt

arctanx = 4t+ c.

Substituting x(π/4) = 1 we get

π

4
= π + c

c = −3π
4

so
x(t) = tan

(
4t− 3π

4
)
.

2. (a)

∂

∂y

(
x3 + y3

)
= 3y2 =

∂

∂x

(
3xy2

)
(b) There exists a function f(x, y) such that

∂f

∂x
= x3 + y3, so

f =
1
4
x4 + xy3 + g(y).

As
∂f

∂y
= 3xy2, we see that g′(y) = 0, so f(x, y) = 1

4x
4 + xy3 + c. A solution of the DE is given by

setting f(x, y) = 0, so implicitly we see that

x4 + xy3 + c = 0
y = (−cx−1 − x3)1/3

3. (a)
D4

.

(b) We write the DE as

(D2 − 2D + 1)y = x3 − 4x
(D − 1)2y = x3 − 4x

y =
1

(D − 1)2
[
x3 − 4x

]
y =

( 1
1−D

)2[
x3 − 4x

]
.
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Now
1

1−D
= 1 +D +D2 +D3 + . . . , so

1
1−D

[
x3 − 4x

]
=

(
1 +D +D2 +D3 + . . .

)
[x3 − 4x

]
= x3 − 4x+ 3x2 − 4 + 6x+ 6
= x3 + 3x2 + 2x+ 2.

Therefore

1
(1−D)2

[
x3 − 4x

]
=

(
1 +D +D2 +D3 + . . .

)
[

1
1−D

[
x3 − 4x

]]
=

(
1 +D +D2 +D3 + . . .

)
[x3 + 3x2 + 2x+ 2

]
= x3 + 3x2 + 2x+ 2 + 3x2 + 2 + 6x+ 6x+ 6 + 6
= x3 + 6x2 + 14x+ 16.

Therefore y = x3 + 6x2 + 14x+ 16.

4. (a) Set an =
xn−1

n3n
. By the ratio test, if the given series is to converge, we require that lim

n→∞

∣∣an+1

an

∣∣ < 1.

We calculate:

lim
n→∞

∣∣an+1

an

∣∣ = lim
n→∞

∣∣ xn

(n+ 1)3n+1
.
n3n

xn−1

∣∣
= lim

n→∞

∣∣ nx

(n+ 1)3

∣∣
=

∣∣x
3

∣∣ < 1

if |x| < 3. So the radius of convergence is 3.

(b) From the answer above, we know that the series converges for all x ∈ (−3, 3). to determine the interval
of convergence, we must see what happens at x = −3 and x = 3.
First x = 3: the series becomes

∞∑
n=1

xn−1

n3n
=

∞∑
n=1

3n−1

n3n

=
1
3

∞∑
n=1

1
n

which is divergent (the harmonic series,
∞∑
n=1

1
n

, is known to be divergent).

Now for x = −3: the series becomes

∞∑
n=1

xn−1

n3n
=

∞∑
n=1

(−3)n−1

n3n

=
1
3

∞∑
n=1

(−1)n−1

n

which is convergent (the alternating harmonic series,
∞∑
n=1

(−1)n

n
, is known to be convergent).

So the interval of convergence is [−3, 3).
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5. Let y =
∞∑
n=0

cnx
n. Then

y′ =
∞∑
n=1

ncnx
n−1

y′′ =
∞∑
n=2

n(n− 1)cnxn−2

and substituting these into the DE yields

(x+ 1)
∞∑
n=2

n(n− 1)cnxn−2 + (x− 2)
∞∑
n=1

ncnx
n−1 +

∞∑
n=0

cnx
n = 0

∞∑
n=2

n(n− 1)cnxn−2 +
∞∑
n=2

n(n− 1)cnxn−1 +
∞∑
n=1

ncnx
n − 2

∞∑
n=1

ncnx
n−1 +

∞∑
n=0

cnx
n = 0.

we make the following substitutions: in the first sum, k = n−2, in the second, k = n−1, in the third, k = n,
in the fourth k = n− 1 and in the fifth k = n. So we get

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=1

k(k + 1)ck+1x
k +

∞∑
k=1

kckx
k − 2

∞∑
k=0

(k + 1)ck+1x
k +

∞∑
k=0

ckx
k = 0.

Now taking out all terms where k = 0 (from the first, fourth and fifth sums), we obtain

2c2 + c0 − 2c1 +
∞∑
k=1

[
(k + 2)(k + 1)ck+2 + k(k + 1)ck+1 + kck + ck

]
xk = 0.

So we have the following equations to solve:

2c2 + c0 − 2c1 = 0
(k + 2)(k + 1)ck+2 + k(k + 1)ck+1 + (k + 1)ck = 0

(k + 2)ck+2 + kck+1 + ck = 0

ck+2 = − 1
k + 2

(
(k − 2)ck+1 + ck

)
.

From the Initial Conditions: y(0) = c0 = 2 and y′(0) = c1 = 1, so

c2 =
1
2

(2c1 − c0) = 0.

Further terms are

c3 = −1
3

c4 = 0

c5 =
1
15

c6 = − 1
45
.

Therefore the solution is y = 2 + x− 1
3
x3 +

1
15
x5 − 1

45
x6 + . . . .
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6.

L(f(t)) =
∫ ∞

0

f(t)e−stdt

=
∫ 1

0

te−stdt+
∫ ∞

1

e−stdt

= − t
s
e−st

∣∣∞
0

+
1
s

∫ 1

0

e−stdt− 1
s
e−st

∣∣∞
1

= − 1
s2
e−st

∣∣1
0

+
1
s
e−s

= − 1
s2
e−s +

1
s2

+
1
s
e−s

= e−s
(1
s
− 1
s2
)

+
1
s2

7. We compute the following:

L(y′) = sY − 1
L(y′′) = s2Y − s− 2

L(y′′ − 2y′) = 0
s2Y − s− 2− 2(sY − 1) = 0

s2Y − 2sY − s = 0
sY − 2Y − 1 = 0

Y (s− 2) = 1

Y =
1

s− 2

Therefore
y(t) = L−1

( 1
s− 2

)
= e2t.
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8.

a0 =
1
2

∫ 2

−2

f(x)dx =
1
2
[ ∫ 1

0

xdx+
∫ 2

1

dx
]

=
1
2

[
1
2

+ 1] =
3
4

an =
1
2

∫ 2

−2

f(x) cos
nπx

2
dx =

1
2
[ ∫ 1

0

x cos
nπx

2
dx+

∫ 2

1

cos
nπx

2
dx
]

=
1
2
[ 2
nπ

x sin
nπx

2

∣∣1
0
− 2
nπ

∫ 1

0

sin
nπx

2
dx+

2
nπ

sin
nπx

2

∣∣2
1

]
=

1
2
[ 2
nπ

sin
nπ

2
+

4
n2π2

cos
nπx

2

∣∣1
0
− 2
nπ

sin
nπx

2

∣∣2
1

]
=

1
2
[ 4
n2π2

cos
nπ

2
− 4
n2π2

]
=

2
n2π2

cos
nπ

2
− 2
n2π2

bn =
1
2

∫ 2

−2

f(x) sin
nπx

2
dx =

1
2
[ ∫ 1

0

x sin
nπx

2
dx+

∫ 2

1

sin
nπx

2
dx
]

=
1
2
[
− 2
nπ

x cos
nπx

2

∣∣1
0

+
2
nπ

∫ 1

0

cos
nπx

2
dx− 2

nπ
cos

nπx

2

∣∣2
1

]
=

1
2
[
− 2
nπ

cos
nπ

2
+

4
n2π2

sin
nπx

2

∣∣1
0
− 2
nπ

cosnπ +
2
nπ

cos
nπ

2
]

=
2

n2π2
sin

nπ

2
− 1
nπ

(−1)n.

Therefore the Fourier series of f is:

f(x) =
3
8

+
∞∑
n=1

[ 2
n2π2

cos
nπ

2
− 2
n2π2

]
cos

nπx

2
+
[ 2
n2π2

sin
nπ

2
− 1
nπ

(−1)n
]

sin
nπx

2
.

9. (a)

ut = φ(x).G′(t)
uxx = φ′′(x).G(t).

Substituting into the PDE, we get

φG′ = kφ′′G

φ′′

φ
=

1
k

G′

G
= −λ.

Therefore the two ODEs are

φ′′ + λφ = 0
G′ + kλG = 0.

(b) The characteristic equation of φ+ λφ′′ = 0 is r2 + λ = 0, so r = ±i
√
λ. The solution of the ODE is

φ(x) +A sin
√
λx+B cos

√
λx.

Now

φ′(x) =
√
λ
(
A cos

√
λx−B sin

√
λx
)

φ′(0) =
√
λA = 0
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Therefore A = 0 and φ(x) = B cos
√
λx. Hence

φ′(L) = −B sin
√
λL = 0

sin
√
λL = 0√
λL = nπ for n = 0, 1, 2, . . .

λn =
n2π2

L2
.

(c) These λn = (n2π2)/L2 are the eigenvalues; the corresponding eigenfunctions un(x, t) are given by

un(x, t) = φn(x)Gn(t)

= Bn cos
nπ

L
x e

−n2π2kt
L2 .

(d) By the principle of superposition, we see that

u(x, t) =
∞∑
n=0

Bn cos
nπ

L
x e

−n2π2kt
L2 .

(e) When t = 0, we use the boundary condition u(x, 0) = x to see that

∞∑
n=0

Bn cos
nπ

L
x = x.

In other words, we have a Fourier sine series expansion of the function x. From the general theory of
Fourier series, we know that the constant term is given by

1
2
[ 2
L

∫ L

0

x dx
]

=
1

2L
x2
∣∣L
0

=
L

2
.

Thus

u(x, t) =
L

2
+
∞∑
n=1

Bn cos
nπ

L
x e

−n2π2kt
L2 .
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