Chapter 3

Interpolation and Polynomial Approximation

Chapter 3.1: Interpolation and the Lagrange Polynomial*

The important ideas in this section are:
- How can we want to find a polynomial that agrees with (interpolates) a given function at more than one point and remains as close to the given function as we want?
- How can we calculate a bound for the error involved in approximating a function by the interpolating polynomial?

The first thought might be to use a Taylor polynomial. However, although a Taylor polynomial agrees with the function near a specific point, it does not agree with the function closely over a specified interval. The Lagrange interpolating polynomial was developed specifically for this purpose.

Suppose \(x_0, x_1, \ldots, x_n\) are \(n+1\) distinct numbers and \(f\) is a function whose values are given at these numbers. Theorem 3.2 guarantees the existence of a unique polynomial \(P(x)\) of degree at most \(n\) with \(f(x_k) = P(x_k)\), for each \(k = 0, 1, \ldots, n\)

given by

\[
P(x) = f(x_0)L_{0, n}(x) + \ldots + f(x_n)L_{n, n}(x) = \sum_{k=0}^{n} f(x_k)L_{n, k}(x)
\]

where, for each \(k = 0, 1, \ldots, n\),

\[
L_{n, k}(x) = \frac{(x - x_0)(x - x_1)\ldots(x - x_{k-1})(x - x_{k+1})\ldots(x - x_n)}{(x_k - x_0)(x_k - x_1)\ldots(x_k - x_{k-1})(x_k - x_{k+1})\ldots(x_k - x_n)} = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}
\]

Thus, a Lagrange interpolating polynomial of degree one that agrees with \(f\) at \((x_0, f(x_0)), (x_1, f(x_1))\) would be given by:

\[
P(x) = \frac{(x - x_1)}{(x_0 - x_1)}f(x_0) + \frac{(x - x_0)}{(x_1 - x_0)}f(x_1)
\]

and a Lagrange interpolating polynomial of degree two that agrees with \(f\) at \((x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2))\) would be given by:
\[
P(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(x_1) + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2)
\]

Example 4 from the text shows how the error formula given by

\[
\frac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)^{n+1}
\]

can be used to determine a bound on the error when using Lagrange interpolation.

Let's look at the following example where \(f(x) = \tan(x)\). The computer algebra system MAPLE was used to generate the polynomials of degree 1, 2, and the graphs.

```
restart:
with(plots):
f := x -> tan(x):
x_0 := 0:
x_1 := 0.6:
x_2 := 0.9:
L1 := \(\frac{(x-x_1)}{(x_0-x_1)}f(x_0) + \frac{(x-x_0)}{(x_1-x_0)}f(x_1)\):
P1 := x \rightarrow 1.140228014 x
P2 := x \rightarrow 0.866492613 x^2 + 0.620332446 x

plot([f, P1, P2], 0..0.9, axis = [gridlines = [colour = green, majorlines = 2]])
```
Notice that $P1$ agrees with the values of f at x_0 and x_1 while $P2$ agrees with the values of f at x_0, x_1, and x_2.

$f(0) = 0$
$P1(0) = 0.$
$P2(0) = 0.$

$f(0.6) = 0.6841368083$
$P1(0.6) = 0.6841368084$
$P2(0.6) = 0.6841368083$

$f(0.9) = 1.260158218$
$P1(0.9) = 1.026205213$
$P2(0.9) = 1.260158218$

The error bound for $P2(x)$ can be easily determined by maximizing $\left| \frac{f^3(\xi)}{(2 + 1)!} \right|$ on $[0,0.9]$. We see that the largest value obtained on $[0,0.9]$ is

$$M := \maximize \left(\frac{2 \sec^4(x) + 4 \sec(x) \cdot \tan(x)}{3!} \right), x = 0..0.9 \right) = 3.584078513.$$

Thus, the bound is
\[M \cdot (x_2 - x_0) = 3.225670662 \]

\section*{Chapter 3.2: Data Approximation and Neville's Method*}

In the last section we found that the Lagrange polynomials gave us an explicit formula for the approximation of a function on a given interval. You will notice that occasionally the function we are trying to approximate is given in these sections, however, in reality we quite often only have a finite set of data available to us and do not know the function \(f \). In this situation we may not need to know the explicit formula for the approximating function, but we would like to be able to determine function values at certain \(x \) values of interest. Neville's method is used for this purpose.

Rather than using the Lagrange formula to find the approximating polynomial as we did in Section 3.1, for \(f(x) = \tan(x) \), we use the formula for \(P(x) \) to calculate \(P(x^*) \) where \(x^* \) is some given value of \(x \). From our work in the previous section we know that \(f(x^*) \approx P(x^*) \). Thus, we can compute any approximation at a given value of \(x \) in this manner. For example, suppose we are given the following data: \((0, 0), (0.6, 0.6841368083), \) and \((0.9, 1.260158218) \) and we want to use the 2nd degree interpolating polynomial to approximate \(f \). The computations are in the following table:

\[h := x \rightarrow \tan(x) \] The approximation \(h(.7) = 0.8422883805 \) is shown in the table below:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_i)</th>
<th>(f(x_i))</th>
<th>(P(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.6841368083</td>
<td>0.7981596097</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>1.260158218</td>
<td>0.8761439450</td>
</tr>
<tr>
<td>3</td>
<td>0.95</td>
<td>1.9582589</td>
<td>0.8278915989</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{1}{(0.6 - 0)} (0.7 - 0) & \quad \frac{1}{(0.9 - 0)} (0.7 - 0) \\
\cdot 0.6841368083 & \quad \cdot 0.707260734 \\
-0.6 & \quad -0.95 \\
= 0.7981596097 & \quad = 0.8761439450 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_i)</th>
<th>(f(x_i))</th>
<th>(P(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.6841368083</td>
<td>0.7981596097</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>1.260158218</td>
<td>0.8761439450</td>
</tr>
<tr>
<td>3</td>
<td>0.95</td>
<td>1.9582589</td>
<td>0.8278915989</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{1}{0.6} (0.7 - 0) & \quad \frac{1}{0.9} (0.7 - 0) \\
\cdot 0.6 & \quad \cdot 0.707260734 \\
= 0.7981596097 & \quad = 0.8761439450 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_i)</th>
<th>(f(x_i))</th>
<th>(P(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.6841368083</td>
<td>0.7981596097</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>1.260158218</td>
<td>0.8761439450</td>
</tr>
<tr>
<td>3</td>
<td>0.95</td>
<td>1.9582589</td>
<td>0.8278915989</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{1}{0.6} (0.7 - 0) & \quad \frac{1}{0.9} (0.7 - 0) \\
\cdot 0.6841368083 & \quad \cdot 0.707260734 \\
-0.6 & \quad -0.95 \\
= 0.7981596097 & \quad = 0.8761439450 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_i)</th>
<th>(f(x_i))</th>
<th>(P(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.6841368083</td>
<td>0.7981596097</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>1.260158218</td>
<td>0.8761439450</td>
</tr>
<tr>
<td>3</td>
<td>0.95</td>
<td>1.9582589</td>
<td>0.8278915989</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{1}{0.6} (0.7 - 0) & \quad \frac{1}{0.9} (0.7 - 0) \\
\cdot 0.6841368083 & \quad \cdot 0.707260734 \\
-0.6 & \quad -0.95 \\
= 0.7981596097 & \quad = 0.8761439450 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_i)</th>
<th>(f(x_i))</th>
<th>(P(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.6841368083</td>
<td>0.7981596097</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>1.260158218</td>
<td>0.8761439450</td>
</tr>
<tr>
<td>3</td>
<td>0.95</td>
<td>1.9582589</td>
<td>0.8278915989</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{1}{0.6} (0.7 - 0) & \quad \frac{1}{0.9} (0.7 - 0) \\
\cdot 0.6841368083 & \quad \cdot 0.707260734 \\
-0.6 & \quad -0.95 \\
= 0.7981596097 & \quad = 0.8761439450 \\
\end{align*}
\]
As illustrated in this example, iterated interpolation is used to generate successively higher degree polynomial approximations at a specific point, say x^*.

Chapter 3.3: Divided Differences

The key question we want to address in this section is:
- What are other difference formulas for interpolation?

Newton's Divided Difference Method:
In the last section, iterated interpolation is used to generate successively higher degree polynomial approximations at a specific point, say x^*. In this section we will use divided differences to successively generate the polynomials.

Given a set of data, we will look at template that should act as a guide in this process.

<table>
<thead>
<tr>
<th>x_i</th>
<th>$f(x_i)$</th>
<th>First Divided Difference</th>
<th>Second Divided Difference (skip one x between in denominator)</th>
<th>Third Divided Difference (skip two xs between in denominator)</th>
<th>Fourth Divided Difference (skip three xs between in denominator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>$f(x_0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_1</td>
<td>$f(x_1)$</td>
<td>a_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$= \frac{f(x_1)}{x_1 - x_0}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>$f(x_2)$</td>
<td>$a_2 = \frac{f(x_2)}{x_2 - x_1}$</td>
<td>$b_1 = \frac{a_2 - a_1}{x_2 - x_0}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>$f(x_3)$</td>
<td>$a_3 = \frac{f(x_3)}{x_3 - x_2}$</td>
<td>$b_2 = \frac{a_3 - a_2}{x_3 - x_1}$</td>
<td>c_1</td>
<td>$= \frac{1}{(x_3 - x_1)}$</td>
</tr>
<tr>
<td>x_4</td>
<td>$f(x_4)$</td>
<td>$a_4 = \frac{f(x_4)}{x_4 - x_3}$</td>
<td>$b_3 = \frac{a_4 - a_3}{x_4 - x_2}$</td>
<td>c_2</td>
<td>$= \frac{1}{(x_4 - x_2)}$</td>
</tr>
</tbody>
</table>

Note: The table entries for c_1 and c_2 are not fully filled as they depend on the values of $a_1, a_2, a_3,$ and a_4. The entries for $b_1, b_2,$ and b_3 are derived from the divided differences, and c_1 and c_2 are used in the final polynomial approximation.
The Newton's divided difference polynomial then becomes

\[P_4(x) = f(x_0) + a_1(x - x_0) + b_1(x - x_0)(x - x_1) + c_1(x - x_0)(x - x_1)(x - x_2) + d_1(x - x_0)(x - x_1)(x - x_2)(x - x_3) \]

Newton's Forward, Backward & Centered Difference Formulas:

The following table shows the difference formulas rooted in the Aitkin's A^2 method:

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(f(x_i))</th>
<th>First Divided Difference (same as first column in previous table)</th>
<th>Second Divided Difference (same as second column in previous table & also divide by 2)</th>
<th>Third Divided Difference (same as third column in previous table & also divide by 3)</th>
<th>Fourth Divided Difference (same as fourth column in previous table & also divide by 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>(f(x_0))</td>
<td>(= (f(x_1) - f(x_0)))</td>
<td>(= (a_2)</td>
<td>(= (b_2)</td>
<td>(= (c_2)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(f(x_1))</td>
<td>(a_1)</td>
<td>(= (f(x_2) - f(x_1)))</td>
<td>(= (a_2)</td>
<td>(= (b_2)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(f(x_2))</td>
<td>(a_2)</td>
<td>(= (b_2)</td>
<td>(= (c_2)</td>
<td>(= (d_1)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>(f(x_3))</td>
<td>(a_3)</td>
<td>(= (c_2)</td>
<td>(= (d_1)</td>
<td></td>
</tr>
<tr>
<td>(x_4)</td>
<td>(f(x_4))</td>
<td>(a_4)</td>
<td>(= (d_1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When approximating a value when \(x \) is close to the end of the tabulated values, we make use of the
earliest data points closest to x.

The forward difference polynomial is defined to be:

\[P_4(x) = f(x_0) + s_1 \cdot h \cdot a_1 + s_1 \cdot s_2 \cdot h^2 \cdot b_1 + s_1 \cdot s_2 \cdot s_3 \cdot h^3 \cdot c_1 + s_1 \cdot s_2 \cdot s_3 \cdot s_4 \cdot h^4 \cdot d_1 \]

where \(h = \frac{(x_4 - x_0)}{4} \) and \(s_i = \frac{(x - x_i)}{h} \) for \(i = 0, \ldots, 4 \).

When approximating a value when x is close to the end of the tabulated values, we make use of the earliest data points closest to x.

The backward difference polynomial is defined to be:

\[P_4(x) = f(x_4) + s_4 \cdot h \cdot a_4 + s_4 \cdot s_3 \cdot h^2 \cdot b_3 + s_4 \cdot s_3 \cdot s_2 \cdot h^3 \cdot c_2 + s_4 \cdot s_3 \cdot s_2 \cdot s_1 \cdot h^4 \cdot d_1 \]

where \(h = \frac{(x_4 - x_0)}{4} \) and \(s_i = \frac{(x - x_i)}{h} \) for \(i = 4, \ldots, 0 \) for this example.

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
<th>First Divided Difference (same as first column in previous table)</th>
<th>Second Divided Difference (same as second column in previous table & also divide by 2)</th>
<th>Third Divided Difference (same as third column in previous table & also divide by 3)</th>
<th>Fourth Divided Difference (same as fourth column in previous table & also divide by 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>f(x_0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_1</td>
<td>f(x_1)</td>
<td>(a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>f(x_2)</td>
<td>(a_2 = \frac{f(x_2) - f(x_1)}{x_2 - x_1}) (b_1 = \frac{a_2}{2(x_2 - x_1)})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>f(x_3)</td>
<td>(a_3 = \frac{f(x_3) - f(x_2)}{x_3 - x_2}) (b_2 = \frac{a_3}{2(x_3 - x_2)})</td>
<td></td>
<td>(c_1 = \frac{b_2}{3(x_3 - x_1)})</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>f(x_4)</td>
<td>(a_4 = \frac{f(x_4) - f(x_3)}{x_4 - x_3}) (b_3 = \frac{a_4}{2(x_4 - x_3)})</td>
<td></td>
<td>(c_2 = \frac{b_3}{3(x_4 - x_1)})</td>
<td>(d_1 = \frac{c_2}{4(x_4 - x_0)})</td>
</tr>
</tbody>
</table>
When approximating a value when \(x\) is close to the middle of the tabulated values, say near \(x_3\), we make use of the earliest data points closest to \(x\).

Stirling's centered difference polynomial is defined to be:

\[
P_4(x) = f(x_3) + s_4 \cdot h \cdot a_4 + s_4 \cdot s_3 \cdot h^2 \cdot b_3 + s_4 \cdot s_3 \cdot s_2 \cdot h^3 \cdot c_2 + s_4 \cdot s_3 \cdot s_2 \cdot s_1 \cdot h^4 \cdot d_1
\]

where \(h = \frac{(x_4 - x_0)}{4}\) and \(s = \frac{(x - x_3)}{h}\) for this example.

Chapter 3.4: Hermite Interpolation*

In this section we look at osculating polynomials that agree with values of \(f\). The text provides a detailed example of the Hermite interpolating polynomial, so we provide a visual illustration of the graph of \(f\) and the Hermite polynomial for the example in the text.

```
restart:

\[
ff := x \rightarrow 1 - \frac{1}{4} x^2 + \frac{1}{64} x^4 - \frac{1}{2304} x^6:
\]

```

```
ff1 = 0.6200860 \cdot (10 \cdot x - 12) \cdot \left( \frac{50}{9} x^2 - \frac{175}{9} x + \frac{152}{9} \right)^2 + 0.4554022 \cdot \left( -\frac{100}{9} x^2 + \frac{320}{9} x - \frac{247}{9} \right)^2 + 0.2818186 \cdot 10 \cdot (2 - x) \cdot \left( \frac{50}{9} x^2 - \frac{145}{9} x + \frac{104}{9} \right)^2 - 0.5220232 \cdot (x - 1.3) \cdot \left( \frac{50}{9} x^2 - \frac{175}{9} x + \frac{152}{9} \right)^2 - 0.5698959 \cdot (x - 1.6) \cdot \left( -\frac{100}{9} x^2 + \frac{320}{9} x - \frac{247}{9} \right)^2 - 0.5811571 \cdot (x - 1.9) \cdot \left( \frac{50}{9} x^2 - \frac{145}{9} x + \frac{104}{9} \right)^2:
```

```
HI := x \rightarrow 1.001944063 - 0.0082292208 \cdot x - 0.2352161732 \cdot x^2 - 0.01455607812 \cdot x^3 + 0.02403178946 \cdot x^4 - 0.002774691277 \cdot x^5:
```

```
plot([ff, HI], 1.2..4.0, axis = [gridlines = [colour = green, majorlines = 2]])
```
Chapter 3.5: Cubic Spline Interpolation

Chapter 3.6: Parametric Curves