Simple Interest Formulas and Calculations:

- Simple Interest
- $\mathbf{I}=\mathbf{P r t}$
- Calculate Future value (Principal + Interest)
- $\mathbf{S}=\mathbf{P (1 + r t)}$
- Calculate Principal Amount/ Present Value, solve for P
- $\mathbf{P}=\mathbf{S} /(\mathbf{1}+\mathbf{r t})$
- Calculate rate of interest in decimal, solve for r

○ $r=(1 / t)(S / P-1) \quad$ or (S/P-1)/t

- Calculate rate of interest in percent
- $\mathbf{R}=\mathbf{r} * 100$
- Calculate time, solve for t

○ $t=(1 / r)(S / P-1)$

Where

$\mathbf{P}=$ Present Value $\mathbf{S}=$ Future value $\mathbf{I}=$ Simple interest $\mathbf{r}=$ Interest rate $\mathbf{t}=$ Term
Exercise: You invest R60 000 for five years at an interest rate of $\mathbf{1 0 , 5 \%}$ per year. What interest will you receive at the end of the five years, and what will the total amount be that you will receive?

Compound Interest Formulas and Calculations:

- Calculate Future value (Principal + Interest)

$$
S=P(1+r / n)^{n t}
$$

- Calculate Principal Amount, solve for P

$$
P=S /(\mathbf{1}+\mathbf{r} / \mathbf{n})^{\mathbf{n t}}
$$

- Calculate rate of interest in decimal, solve for r

$$
r=n\left[(S / P)^{1 / n t}-1\right]
$$

- Calculate rate of interest in percent

$$
\bigcirc \mathbf{R}=\mathbf{r} * 100
$$

- Calculate time, solve for t

$$
t=[\ln (S)-\ln (P)] / n[\ln (1+r / n)]
$$

Where:
$\mathbf{S}=$ Future value $\mathbf{P}=$ Principal Amount $\mathbf{I}=$ Interest Amount $\mathbf{r}=$ Interest Rate $\mathbf{t}=$ term $/$ Period $\quad \mathbf{n}=$ number of compounding periods per unit t

Exercise: You wish to invest R1 000 for two years. Which of the following Investment opportunities will give you the best return on your investment?
(a) $\mathbf{1 0 \%}$ simple interest per annum;
(b) $9 \frac{1}{2} \%$ interest per annum compounded bi-annually;
(c) 9% interest per annum compounded quarterly.

VIDEO: http://www.mathsexcellence.co.za/maths video tutorials.php

