
BAR CODE

Learn without limits. university
of south africa

Tutorial Letter 202/1/2015

NUMERICAL METHODS 1

COS2633

Semester 1

Department of Mathematical Sciences

This tutorial letter contains solutions
for assignment 02

COS2633/202/1/2015

Introduction

By this time you should have received the following tutorial matter. If you have not received all these
tutorial matter, please contact the Department of Dispatch at the telephone number given in the
inventory you received upon registration.
Tutorial letters:

• COS2633/101/3/2015 General information about the module and the assignments

• COS2633/102/3/2015 Background material

• COS2633/201/1/2015 Solutions to assignment 1

• COS2633/202/1/2015 This letter: Solutions to assignment 2

1 Discussion

1.1 The marking

The marking of this assignment was automated and performed at the assignment division of UNISA.
The result published to students is therefore not, in any case, under lecturers control. All the questions
were marked.

Next we present a model solution on which the marking was based.

Question 1

Given
2.141x1 − 2.718x2 + 1.414x3 − 1.732x4 = 3.316
9.869x1 + 2.718x2 − 7.389x3 + 0.428x4 = 0
2.236x1 − 2.449x2 + x3 − 1.414x4 = 3.141
31.006x1 + 7.389x2 − 2.645x3 + 0.111x4 = 1.414

(1.1) Matrix Notation.
2.141 −2.718 1.414 −1.732
9.869 2.718 −7.389 0.428
2.236 −2.449 1 −1.414
31.006 7.389 −2.645 0.111

x1
x2
x3
x4

 =

3.316

0
3.141
1.414

2

COS2633/202

(1.2) Solving the system

(a) Gaussian elimination without pivoting

When the number of linear equations is not very large, the elimination methods
are the most important methods of solving the set, either by hand or computer.
The most basic technique is usually attributed to Gauss, for example the Gaussian
elimination method with or without pivoting, and the Gauss-Jordan method. The
Gaussian elimination method is described in [1, pp.358-378]. In this section, we solve
the given system using Gaussian elimination without pivoting. Thus we obtain the
following:

A(1)|b(1) =

2.141 −2.718 1.414 −1.732 | 3.316
9.869 2.718 −7.389 0.428 | 0
2.236 −2.449 1 −1.414 | 3.141
31.006 7.389 −2.645 0.111 | 1.414

 Row2 ← Row2 − 9.869
2.141

Row1

Row3 ← Row3 − 2.236
2.141

Row1

Row4 ← Row4 − 31.006
2.141

Row1

A(2)|b(2) =

2.1410 −2.7180 1.4140 −1.7320 | 3.3160

0 15.2467 −13.9069 8.4117 | −15.2852
0 0.3896 −0.4767 0.3949 | −0.3221
0 46.7511 −23.1226 25.1939 | −46.6084

 Row3 ← Row3 − 0.3896
15.2467

Row2

Row4 ← Row4 − 46.7511
15.2467

Row2

A(3)|b(3) =

2.1410 −2.7180 1.4140 −1.7320 | 3.3160

0 15.2467 −13.9069 8.4117 | −15.2852
0 0 −0.1214 0.1799 | 0.0684
0 0 19.5202 −0.5990 | 0.2608

Row4 ← Row4 − 19.5202

−0.1214Row3

A(4)|b(4) =

2.1410 −2.7180 1.4140 −1.7320 | 3.3160

0 15.2467 −13.9069 8.4117 | −15.2852
0 0 −0.1214 0.1799 | 0.0684
0 0 0 28.3342 | 11.2691

Thus, from back-substitution, we get

x4 =
11.2691

28.3342
= 0.3977

x3 =
0.0684− 0.1799× 0.3977

−0.1214
= 0.0256

x2 =
−15.2852− 8.4117× 0.3977− (−13.9069)× 0.0256

15.2467
= −1.1986

x1 =
3.316− (−1.732)× 0.3977− 1.414× 0.0256− (−2.718)× (−1.1986)

2.1410
= 0.3320

Any error obtained from the computation of x1, x2, x3 and x4 using Gaussian elim-
ination would just be round-off errors.
A variant of the Gaussian elimination method is to make the diagonal elements ones
at the same time that the reduction is performed. Using this variant, we obtain:

A(2)|b(2) =

1.0000 −1.2695 0.6604 −0.8090 | 1.5488

0 15.2467 −13.9069 8.4117 | −15.2852
0 0.3896 −0.4767 0.3949 | −0.3221
0 46.7511 −23.1226 25.1939 | −46.6084

 Row2 ← 1
15.2467

Row2

Row3 ← Row3 − 0.3896Row2

Row4 ← Row4 − 46.7511Row2

3

A(3)|b(3) =

1.0000 −1.2695 0.6604 −0.8090 | 1.5488

0 1.0000 −0.9121 0.5517 | −1.0025
0 0 −0.1214 0.1799 | 0.0684
0 0 19.5202 −0.5990 | 0.2608

 Row3 ← 1
−0.1214Row3

Row4 ← Row4 − 19.5202Row3

A(4)|b(4) =

1.0000 −1.2695 0.6604 −0.8090 | 1.5488

0 1.0000 −0.9121 0.5517 | −1.0025
0 0 1.0000 −1.4822 | −0.5639
0 0 0 28.3342 | 11.2691

And then, from back-substitution,

x4 =
11.2691

28.3342
= 0.3977

x3 = −0.5639− (−1.4822)× 0.3977 = 0.0256

x2 = −1.0025− 0.5517× 0.3977− (−0.9121)× 0.0256 = −1.1986

x1 = 1.5488− (−0.809)× 0.3977− 0.6604× 0.0256− 1.2695× 1.1986 = 0.3320

(b) Gaussian elimination with scaled partial pivoting

This is not to be confused with Gaussian elimination with partial pivoting. The
simple Gaussian elimination used above uses the rows 1, 2, . . . , n as the pivot
equations (hence without pivoting). A better approach called Gaussian elimination
with pivoting, is to pivot on row l1, then row l2, and so on, until finally pivoting on
row ln−1 for some permutation {li}ni=1 of the integers 1, 2, . . . , n. The methods (with
partial pivoting and with scaled partial pivoting) are described in [1, pp.373-379].
The object of scaled partial pivoting is to adjust the coefficients to make the largest
entry in each row to be of the same relative magnitude as 1 before the comparison
for row interchange is performed. The principle is as follows:

• We move from the first column to the last. Let’s call the matrixA = (aij)1≤i,j≤n.

• On each column (say column i) of the matrix A, we construct a vector SF
(my notation) of scaling factors as follows: For each j (i ≤ j ≤ n), we divide
the absolute value at row j (column i) by the maximum absolute value at row

j for all the columns, that is, SF (j) =
|aji|

max
1≤k≤n

|ajk|
. We can choose SF (j) = 0

for j < i.

• If p is the value (index) for which SF (p) has the highest value, we swap row i
and row p if p 6= i, assuming that we are choosing among the indices greater
or equal to i.

• We make the elements below the diagonal zero in column i by row operations.

• We move to the next column and repeat the process above on the new matrix.

In the following we do not actually show the interchanging of rows, but we indicate
which rows are interchanged (if applicable). Again, our system in augmented form

4

COS2633/202

is given by:

A(1)|b(1) =

2.141 −2.718 1.414 −1.732 | 3.316
9.869 2.718 −7.389 0.428 | 0
2.236 −2.449 1 −1.414 | 3.141
31.006 7.389 −2.645 0.111 | 1.414

Then the scale factor si for each row is given as

(1) si = max
1≤j≤n

|aij|

From (1), we obtain

s = [2.718, 9.869, 2.449, 31.006]

The appropriate row interchange to place zeros in the first column is determined by
choosing the least p such that

|ap1|
sp

= max
1≤k≤n

|ak1|
sk

[
that is, SF (p) = max

1≤k≤n
SF (k) in column 1

]
and interchanging row 1 and row p (if p 6= 1). Then we have

|a11|
s1

= 0.7877,
|a21|
s2

= 1.0000,
|a31|
s3

= 0.9130,
|a41|
s4

= 1.0000

Since 2 is the least integer p such that

|ap1|
sp

= max
1≤k≤4

|ak1|
sk

a row interchange (swap rows 1 and 2) is required to place zeros in the first column.
Performing the first three eliminations, we obtain

A(2)|b(2) =

9.869 2.718 −7.389 0.428 | 0

0 −3.3076 3.0170 −1.8249 | 3.3160
0 −3.0648 2.6741 −1.5110 | 3.1410
0 −1.1503 20.5694 −1.2337 | 1.4140

Similarly, before making zero the entries below the diagonal in the second column
using the Gaussian elimination procedure, we select the smallest integer p ≥ 2 such
that

|ap2|
sp

= max
2≤k≤4

|ak2|
sk

and interchange row 2 and row p (if p 6= 2). Now for the second column we have

|a22|
s2

= 0.3352,
|a32|
s3

= 1.2515,
|a42|
s4

= 0.0371

5

Therefore we need to interchange rows 2 and 3 in order to place zeros below the
diagonal in the second column. So we have

A(3)|b(3) =

9.8690 2.7180 −7.3890 0.4280 | 0

0 −3.0648 2.6741 −1.5110 | 3.1410
0 0 0.1310 −0.1942 | −0.0739
0 0 19.5658 −0.6666 | 0.2351

Finally for the third column we have

|a33|
s3

= 0.0535,
|a43|
s4

= 0.6310

Therefore we need to interchange rows 3 and 4 in order to place zeros below the
diagonal in the third column. So we have

A(4)|b(4) =

9.8690 2.7180 −7.3890 0.4280 | 0

0 −3.0648 2.6741 −1.5110 | 3.1410
0 0 19.5658 −0.6666 | 0.2351
0 0 0 −0.1897 | −0.0754

And then, from back-substitution,

x4 =
−0.0754

−0.1897
= 0.3977

x3 =
0.2351− (−0.6666)× 0.3977

19.5658
= 0.0256

x2 =
3.1410− (−1.5110× 0.3977− 2.6741× 0.0256

−3.0648
= −1.1986

x1 =
0− 0.428× 0.3977− (−7.389)× 0.0256− 2.718× (−1.1986)

9.869
= 0.3320

(c) LU decomposition

The idea behind the LU decomposition is to use Gaussian elimination to express the
given square matrix (not the augmented matrix) as the product of a lower triangular
matrix L and an upper triangular matrix U (A = LU). The procedure is described
in [1, pp.400-406], especially in Theorem 6.19 (see [1, p.403]). This gives

A =

2.141 −2.718 1.414 −1.732
9.869 2.718 −7.389 0.428
2.236 −2.449 1 −1.414
31.006 7.389 −2.645 0.111

=

1.0000
4.6095 1.0000
1.0444 0.0256 1.0000
14.4820 3.0663 −160.8244 1.0000

2.1410 −2.7180 1.4140 −1.7320
15.2467 −13.9069 8.4117

−0.1214 0.1799
28.3342

Notice that the entries of the upper triangular matrix U are the same as the entries
obtained by applying the Gaussian elimination without pivoting as done above. On
the other hand, the entries in L are obtained by replacing the zeros below the main

6

COS2633/202

diagonal of the identity matrix (from the Gaussian elimination process) with the
ratios of coefficients (i.e., the multipliers) at each step.
Since A = LU , we have Ax = b ⇐⇒ LUx = b. Therefore if we let y = Ux, then
LUx = b ⇐⇒ Ly = b. Hence the system can be solved in two steps:

• Solve Ly = b to find y

• Solve Ux = y to find x

Following this procedure, the first step gives
1.0000
4.6095 1.0000
1.0444 0.0256 1.0000
14.4820 3.0663 −160.8244 1.0000

y1
y2
y3
y4

 =

3.316

0
3.141
1.414

Using forward substitution, we obtain

y1 = 3.3160
y2 = −15.2952
y3 = 0.0684
y4 = 11.2691

The second step gives
2.1410 −2.7180 1.4140 −1.7320

15.2467 −13.9069 8.4117
−0.1214 0.1799

28.3342

x1
x2
x3
x4

 =

3.3160
−15.2952

0.0684
11.2691

Using back-substitution, we obtain

x4 = 0.3977
x3 = 0.0256
x2 = −1.1986
x1 = 0.3320

(1.3) Number of Arithmetic Operations

The efficiency of a numerical method is usually measured by counting the number of
arithmetic operations required. The augmented matrix is n×n+1 in size, where n = 4.
The number of arithmetic operations required for the Gaussian elimination method is
calculated as follows:

• Triangularization part

– Divisions:
∑n−1

i=1 (n− i) =
∑n−1

i=1 i = (n2 − n)/2;

– Multiplications:
∑n−1

i=1 (n− i+ 1)(n− i) =
∑n−1

i=1 i(i+ 1) = (n3 − n)/3;

– Subtractions: Same as multiplications;

7

This makes a total of 2n3/3 + n2/2− 7n/6 operations;

• Back-substitution part

– Multiplications:
∑n−1

i=1 (n− i) =
∑n−1

i=1 i = (n2 − n)/2;

– Subtractions: Same as multiplications;

– Divisions: n;

This makes a total of n2 operations;

So the combined number of arithmetic operations is 2n3/3 + 3n2/2− 7n/6 = 62.

(1.4) Solving Ax = b.

(a) Let A be the matrix from (1.1) and ω = 1.

(i) From (1.1), we have

A =

2.141 −2.718 1.414 −1.732
9.869 2.718 −7.389 0.428
2.236 −2.449 1 −1.414
31.006 7.389 −2.645 0.111

and therefore

M =

2.141 0 0 0

0 2.718 0 0
0 0 1 0
0 0 0 0.111

Now, using algorithm,

Mx(k) = ωb+ (M − ωA)x(k−1)

with ω = 1 and starting at x(0) = (3, 0, 3, 1)T , we obtain
2.141 0 0 0

0 2.718 0 0
0 0 1 0
0 0 0 0.111

x
(1)
1

x
(1)
2

x
(1)
3

x
(1)
4

 =

3.316

0
3.141
1.414

−

0 −2.718 1.414 −1.732
9.869 0 −7.389 0.428
2.236 −2.449 0 −1.414
31.006 7.389 −2.645 0

3
0
3
1

and after calculation we get

x(1) = (0.3765,−2.8948,−2.1530,−753.7748)T

Applying similarly iterations, we have

x(2) = (−610.4837, 111.4760,−1070.6276, 48.9757)T

and
x(3) = (889.7717,−701.6061, 1710.4390, 137608.6923)T

8

COS2633/202

(ii) The Jacobi method is explained in [1, pp.450-454] and the algorithm is given in [1, pp.453-454]. The
explicit formula is

x
(k+1)
i =

1

aii

bi − n∑
j=1
j 6=i

aijx
(k)
j

 =
bi
aii
−

n∑
j=1
j 6=i

aij
aii
x
(k)
j for i = 1, 2, . . . , n

and the matrix notation actually coincides with the given algorithm, namely

Mx(k) = ωb+ (M − ωA)x(k−1)

Moreover, a sufficient (but not necessary) condition for this algorithm to converge is for the matrix A
to be diagonally dominant, that is,

|aii| >
n∑

j=1
j 6=i

|aij| for i = 1, 2, . . . , n

By checking this condition on the matrix A given in this question, we see for example that |a11| <
|a12|+ |a13|+ |a14|, which means our matrix A is not diagonally dominant. Therefore we don’t know
if the Jacobi method will converge or not.

Using the explicit formula for the Jacobi method, our equation can be written as

x
(k+1)
1 =

1

2.141

[
3.316 + 2.718x

(k)
2 − 1.414x

(k)
3 + 1.732x

(k)
4

]
x
(k+1)
2 =

1

2.718

[
0− 9.869x

(k)
1 + 7.389x

(k)
3 − 0.428x

(k)
4

]
x
(k+1)
3 =

1

1.000

[
3.141− 2.236x

(k)
1 + 2.449x

(k)
2 + 1.414x

(k)
4

]
x
(k+1)
4 =

1

0.111

[
1.414− 31.006x

(k)
1 − 7.389x

(k)
2 + 2.645x

(k)
3

]
We have x(0) = (3, 0, 3, 1)T hence

Iteration 1

x
(1)
1 =

1

2.141
[3.316 + 2.718× 0− 1.414× 3 + 1.732× 1]

= 0.3765

x
(1)
2 =

1

2.718
[0− 9.689× 3 + 7.389× 3− 0.428× 1]

= −2.8948

x
(1)
3 =

1

1.000
[3.141− 2.236× 3 + 2.449× 0 + 1.414× 1]

= −2.1530

x
(1)
4 =

1

0.111
[1.414− 31.006× 3− 7.389× 0 + 2.645× 3]

= −753.7748

9

Iteration 2

x
(2)
1 =

1

2.141
[3.316 + 2.718× (−2.8948)− 1.414× (−2.1530) + 1.732× (−753.7748)]

= −610.4837

x
(2)
2 =

1

2.718
[0− 9.689× 0.3765 + 7.389× (−2.1530)− 0.428× (−753.7748)]

= 111.4760

x
(2)
3 =

1

1.000
[3.141− 2.236× 0.3765 + 2.449× (−2.8948) + 1.414× (−753.7748)]

= −1070.6276

x
(2)
4 =

1

0.111
[1.414− 31.006× 0.3765− 7.389× (−2.8948) + 2.645× (−2.1530)]

= 48.9757

Iteration 3

x
(3)
1 =

1

2.141
[3.316 + 2.718× (111.4760)− 1.414× (−1070.6276) + 1.732× 48.9757]

= 889.7717

x
(3)
2 =

1

2.718
[0− 9.689× (−610.4837) + 7.389× (−1070.6276)− 0.428× 48.9757]

= −701.6061

x
(3)
3 =

1

1.000
[3.141− 2.236× (−610.4837) + 2.449× (111.4760) + 1.414× 48.9757]

= 1710.4390

x
(3)
4 =

1

0.111
[1.414− 31.006× (−610.4837)− 7.389× (111.4760) + 2.645× (−1070.6276)]

= 137608.6923

In brief, after three iterations of the Jacobi algorithm, starting at x(0) = (3, 0, 3, 1)T , we obtain the
following results

x(1) = (0.3765,−2.8948,−2.1530,−753.7748)T

x(2) = (−610.4837, 111.4760,−1070.6276, 48.9757)T

x(3) = (889.7717,−701.6061, 1710.4390, 137608.6923)T

It is clear that in this case the Jacobi method does not converge.

(iii) The algorithm suggested here, with the given matrix M being the diagonal part of the matrix A,
coincides with the matrix formulation of the Jacobi method, therefore the results are the same, as to
be expected.

(b) Let A be the matrix from (1.1) and ω = 1.

(i) Here we choose M to be the lower triangular part of A including the diagonal entries, that is

M =

2.141 0 0 0
9.869 2.718 0 0
2.236 −2.449 1 0
31.006 7.389 −2.645 0.111

10

COS2633/202

Again, using the given algorithm, and starting at x(0) = (3, 0, 3, 1)T , we obtain
2.141 0 0 0
9.869 2.718 0 0
2.236 −2.449 1 0
31.006 7.389 −2.645 0.111

x
(1)
1

x
(1)
2

x
(1)
3

x
(1)
4

 =

3.316

0
3.141
1.414

−

0 −2.718 1.414 −1.732
0 0 −7.389 0.428
0 0 0 −1.414
0 0 0 0

3
0
3
1

and after calculation we get

x(1) = (0.3765, 6.6312, 19.9532,−58.3845)T

Applying similarly iterations, we have

x(2) = (−50.4418, 246.5905, 637.2733, 12873.3750)T

and
x(3) = (10307.8608,−37722.3215,−97224.2488,−2684973.1714)T

(ii) The Gauss-Seidel method is explained in [1, pp.454-457] and the algorithm is given in [1, p.456]. The
explicit formula is

x
(k+1)
i =

1

aii

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]
=

bi
aii
−

i−1∑
j=1

aij
aii
x
(k+1)
j −

n∑
j=i+1

aij
aii
x
(k)
j

for i = 1, 2, . . . , n, and the matrix notation, again, coincides with the given algorithm.

Moreover, as in the Jacobi case, a sufficient (but not necessary) condition for this algorithm to converge
is for the matrix A to be diagonally dominant, that is,

|aii| >
n∑

j=1
j 6=i

|aij| for i = 1, 2, . . . , n

By checking this condition on the matrix A given in this question, again, we see that our matrix A
is not diagonally dominant. Therefore we don’t know if the Gauss-Seidel method will converge or
not. However, it does happen that with some systems, the Gauss-Seidel method converges after many
iterations when the Jacobi method does not.

The difference between the Jacobi and the Gauss-Seidel methods is that in the Gauss-Seidel method,
the newly computed values are used in the next equation. For example, if x1 is computed, this value
is used to compute x2, and so on.

Using the explicit formula for the Gauss-Seidel method, our equation can be written as

x
(k+1)
1 =

1

2.141

[
3.316 + 2.718x

(k)
2 − 1.414x

(k)
3 + 1.732x

(k)
4

]
x
(k+1)
2 =

1

2.718

[
0− 9.869x

(k+1)
1 + 7.389x

(k)
3 − 0.428x

(k)
4

]
x
(k+1)
3 =

1

1.000

[
3.141− 2.236x

(k+1)
1 + 2.449x

(k+1)
2 + 1.414x

(k)
4

]
x
(k+1)
4 =

1

0.111

[
1.414− 31.006x

(k+1)
1 − 7.389x

(k+1)
2 + 2.645x

(k+1)
3

]

11

We have x(0) = (3, 0, 3, 1)T hence

Iteration 1

x
(1)
1 =

1

2.141
[3.316 + 2.718× 0− 1.414× 3 + 1.732× 1]

= 0.3765

x
(1)
2 =

1

2.718
[0− 9.689× 0.3765 + 7.389× 3− 0.428× 1]

= 6.6312

x
(1)
3 =

1

1.000
[3.141− 2.236× 0.3765 + 2.449× 6.6312 + 1.414× 1]

= 19.9532

x
(1)
4 =

1

0.111
[1.414− 31.006× 0.3765− 7.389× 6.6312 + 2.645× 19.9532]

= −58.3845

Iteration 2

x
(2)
1 =

1

2.141
[3.316 + 2.718× 6.6312− 1.414× 19.9532 + 1.732× (−58.3845)]

= −50.4418

x
(2)
2 =

1

2.718
[0− 9.689× (−50.4418) + 7.389× (−2.1530)− 0.428× (−753.7748)]

= 246.5905

x
(2)
3 =

1

1.000
[3.141− 2.236× (−50.4418) + 2.449× 246.5905 + 1.414× (−753.7748)]

= 637.2733

x
(2)
4 =

1

0.111
[1.414− 31.006× (−50.4418)− 7.389× 246.5905 + 2.645× 637.2733]

= 12873.3750

Iteration 3

x
(3)
1 =

1

2.141
[3.316 + 2.718× 246.5905− 1.414× 637.2733 + 1.732× 12873.3750]

= 10307.8608

x
(3)
2 =

1

2.718
[0− 9.689× 10307.8608 + 7.389× (−1070.6276)− 0.428× 48.9757]

= −37722.3215

x
(3)
3 =

1

1.000
[3.141− 2.236× 10307.8608 + 2.449× (−37722.3215) + 1.414× 48.9757]

= −97224.2488

x
(3)
4 =

1

0.111
[1.414− 31.006× 10307.8608− 7.389× (−37722.3215) + 2.645× (−97224.2488)]

= −2684973.1714

12

COS2633/202

In brief, after three iterations of the Gauss-Seidel algorithm, starting at x(0) = (3, 0, 3, 1)T , we obtain
the following results

x(1) = (0.3765, 6.6312, 19.9532,−58.3845)T

x(2) = (−50.4418, 246.5905, 637.2733, 12873.3750)T

x(3) = (10307.8608,−37722.3215,−97224.2488,−2684973.1714)T

This method also does not converge.

(iii) The algorithm suggested here, with the given matrix M being the lower triangular part of the matrix
A, coincides with the matrix formulation of the Gauss-Seidel method, therefore the results are the
same, as to be expected.

(c) Solving the system using SOR with ω = 0.5 and x0 = (3, 0, 3, 1)T .

By doing what is called over-relaxation, the Gauss-Seidel method can be speeded
up. The successive over-relaxation method (SOR) is described in [1, pp.462-467],
the explicit formula is in [1, p.464] and the algorithm in [1, p.467]. The explicit
formula is

x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]

= x
(k)
i +

ω

aii

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i

aijx
(k)
j

]

Applying the SOR algorithm to our question with ω = 0.5 we get

x
(k+1)
1 = (1− 0.5)x

(k)
1 +

0.5

2.141

[
3.316 + 2.718x

(k)
2 − 1.414x

(k)
3 + 1.732x

(k)
4

]
x
(k+1)
2 = (1− 0.5)x

(k)
2 +

0.5

2.718

[
0− 9.869x

(k+1)
1 + 7.389x

(k)
3 − 0.428x

(k)
4

]
x
(k+1)
3 = (1− 0.5)x

(k)
3 +

0.5

1.000

[
3.141− 2.236x

(k+1)
1 + 2.449x

(k+1)
2 + 1.414x

(k)
4

]
x
(k+1)
4 = (1− 0.5)x

(k)
4 +

0.5

0.111

[
1.414− 31.006x

(k+1)
1 − 7.389x

(k+1)
2 + 2.645x

(k+1)
3

]

13

We have x(0) = (3, 0, 3, 1)T , hence

Iteration 1

x
(1)
1 = (1− 0.5)× 3 +

0.5

2.141
[3.316 + 2.718× 0− 1.414× 3 + 1.732× 1]

= 2.4167

x
(1)
2 = (1− 0.5)× 0 +

0.5

2.718
[0− 9.869× 2.4167 + 7.389× 3− 0.428× 1]

= 0.6167

x
(1)
3 = (1− 0.5)× 3 +

0.5

1.000
[3.141− 2.236× 2.4167 + 2.449× 0.6167 + 1.414× 1]

= 0.5883

x
(1)
4 = (1− 0.5)× 1 +

0.5

0.111
[1.414− 31.006× 2.4167− 7.389× 0.6167 + 2.645× 0.5833]

= 0.4671

Iteration 2

x
(2)
1 = (1− 0.5)× 2.4167 +

0.5

2.141
[3.316 + 2.718× 0.6167− 1.414× 0.5833 + 1.732× 0.4671]

= 2.5593

x
(2)
2 = (1− 0.5)× 0.6167 +

0.5

2.718
[0− 9.869× 2.5593 + 7.389× 0.5883− 0.428× 0.4671]

= 0.6824

x
(2)
3 = (1− 0.5)× 0.5833 +

0.5

1.000
[3.141− 2.236× 2.5593 + 2.449× 0.6824 + 1.414× 0.4671]

= 0.7260

x
(2)
4 = (1− 0.5)× 0.4671 +

0.5

0.111
[1.414− 31.006× 2.5593− 7.389× 0.6824 + 2.645× 0.7260]

= 0.6317

Iteration 3

x
(3)
1 = (1− 0.5)× 2.5593 +

0.5

2.141
[3.316 + 2.718× 0.6824− 1.414× 0.7260 + 1.732× 0.6317]

= 2.3968

x
(3)
2 = (1− 0.5)× 0.6824 +

0.5

2.718
[0− 9.869× 2.3968 + 7.389× 0.7260− 0.428× 0.6317]

= 0.6879

x
(3)
3 = (1− 0.5)× 0.7260 +

0.5

1.000
[3.141− 2.236× 2.3968 + 2.449× 0.6879 + 1.414× 0.6317]

= 0.7808

x
(3)
4 = (1− 0.5)× 0.6317 +

0.5

0.111
[1.414− 31.006× 2.3968− 7.389× 0.6879 + 2.645× 0.7808]

= 0.7235

14

COS2633/202

In brief, after three iterations of the SOR algorithm with ω = 0.5, starting at
x(0) = (3, 0, 3, 1)T , we obtain the following results

x(1) = (1.6882, 0.9341, 3.0339,−223.8640)T

x(2) = (−89.3398, 184.4122, 170.5102, 8265.8226)T

x(3) = (3360.2464,−6427.3201,−5696.2468,−319117.0484)T

The SOR method also does not converge.
Note that if ω = 1 then the SOR explicit formula becomes

x
(k+1)
i =

bi
aii
−

i−1∑
j=1

aij
aii
x
(k+1)
j −

n∑
j=i+1

aij
aii
x
(k)
j

which is exactly the explicit formula for the Gauss-Seidel algorithm.

(d) (Comparison of techniques

There are three basic methods for solving a set of linear equations, namely:

• Direct methods

• Iterative methods

• Error function minimization methods

Direct methods A direct method is a non-iterative method for solving a set of
linear equations. The most common direct methods are:

• The Gaussian elimination methods

• Matrix decomposition methods, for instance the LU and LTL method

For small matrices as in our cases, a direct method like that of Gaussian elimination
can be used with or without pivoting. Pivot selection is necessary if the diagonal
elements of the coefficient matrix A are not higher in magnitude than the other
elements in the corresponding rows.
A decomposition method is a method where the matrix A is decomposed in two
triangular matrices L and U , so that A = LU . An advantage of using this method
in computer programs is that it is economical in terms of storage space. If the matrix
A is symmetric, which is not always the case, and which is not the case here, it can
be decomposed in two symmetric triangular matrices so that A = LTL. This is the
so-called Cholesky decomposition.

Iterative methods In these methods, the solution of a set of linear equations is
obtained by using an iterative scheme. These methods are very useful for large,
sparse systems. The most common iterative methods are:

• The Jacobi method

• The Gauss-Seidel method

15

• The Gauss-Seidel method with over-relaxation (GSOR or simply SOR)

The Gauss-Seidel method will, in general converge more rapidly than the Jacobi.
Moreover, the GSOR method with ω = 1 is the same as the Gauss-Seidel. The
GSOR method is very popular. For an iterative method, it is important (preferable)
that the matrix be diagonally dominant and that a reasonable initial starting vector
(approximation to the solution, or initial guess) is known. As we could see from
our results, the iterative methods are not appropriate for solving our system of
equations, this is because the coefficient matrix, A is not diagonally dominant, not
positive definite, not symmetric and not tridiagonal.

Error function minimization methods An error function minimization method
is one in which the error function r = ax̄ − b, with x̄ the trial vector, is to be
minimized. These methods are discussed in [1, pp.462-463].

SUMMARY In choosing a method for solving a set of linear equations, the following
points have to be taken into consideration:

• The number of equations to be solved

• The characteristics of the coefficient matrix A (sparse, diagonally dominant,
ill-conditioned, and so on . . .)

The set of equations given in Problem 1 is a small set of order 4, and the coefficient
matrix is not diagonally dominant, that is,

|aii| <
∑
j 6=i

|aij| for some values of i

The best method for our problem is therefore the Gaussian elimination method or
the LU (LTL) decomposition.

Question 2

Given

A =

 3 3/2 1
3/2 1 3/4
1 3/4 3/5

We want to find the inverse of A using Gaussian elimination.
The method is described in [1, pp.386-389].
Gaussian elimination produces the LU decomposition of the given matrix A, where L is a lower
triangular and U an upper triangular matrix. We augment the given matrix with the identity matrix
of the same order. We now transform the original matrix to an upper triangular matrix by using
elementary row transformations. The elements below the diagonal are made zero via these elementary
row transformations. A is replaced by:

(A|I)(1) =

 3 3/2 1 | 1 0 0
3/2 1 3/4 | 0 1 0
1 3/4 3/5 | 0 0 1

 Row2 ← Row2 − 3/2
3
Row1

Row3 ← Row3 − 1
3
Row1

16

COS2633/202

(A|I)(2) =

3 3/2 1 | 1 0 0
0 1/4 1/4 | −1/2 1 0
0 1/4 4/15 | −1/3 0 1

Row3 ← Row3 − 1/4

1/4
Row2

(A|I)(3) =

3 3/2 1 | 1 0 0
0 1/4 1/4 | −1/2 1 0
0 0 1/60 | 1/6 −1 1

The first three columns of the augmented matrix above constitute, as required by Gaussian elimination,
an upper triangular matrix U (and the remaining columns constitute a lower triangular matrix L with
1 on the diagonal, and the two matrices L and U constitute the LU decomposition of A). And
the back-substitution process can be applied after augmenting the matrix U with one column of the
matrix L at a time, to find the entries of the corresponding column in the matrix B = A−1. Thus3 3/2 1 | 1

0 1/4 1/4 | −1/2
0 0 1/60 | 1/6

 =⇒
b31 = 10
b21 = −12
b11 = 33 3/2 1 | 0

0 1/4 1/4 | 1
0 0 1/60 | −1

 =⇒
b32 = −60
b22 = 64
b12 = −123 3/2 1 | 0

0 1/4 1/4 | 0
0 0 1/60 | 1

 =⇒
b33 = 60
b23 = −60
b13 = 10

An alternative would be to proceed with further row operations on (A|I)(3) = (U |L), with the purpose
of transforming the first three columns of the augmented matrix to the identity matrix. This gives:

(A|I)(3) =

3 3/2 1 | 1 0 0
0 1/4 1/4 | −1/2 1 0
0 0 1/60 | 1/6 −1 1

Row3 ← 1

1/60
Row33 3/2 1 | 1 0 0

0 1/4 1/4 | −1/2 1 0
0 0 1 | 10 −60 60

 Row2 ← 1
1/4

(Row2 − 1
4
Row3)

3 3/2 1 | 1 0 0
0 1 0 | −12 64 −60
0 0 1 | 10 −60 60

 Row1 ← 1
3
(Row1 − 3

2
Row2 − 1Row3)

1 0 0 | 3 −12 10
0 1 0 | −12 64 −60
0 0 1 | 10 −60 60

Hence the inverse of A is

B = A−1 =

 3 −12 10
−12 64 −60
10 −60 60

We work with fractions to obtain exact values. Check this result by convincing yourself that indeed
AB = I.

17

Question 3

In order to use Newton’s method to approximate the solution of the given non-linear system, we need
initial values for x and y. From the question, we use the initial values x = 1 and y = −1.
Read [1, pp.638-642] carefully and convince yourself that the i + 1-st iteration of Newton’s method
involves two steps:

(i) Solve the system of linear equations[
2x(i) 2y(i)

3
(
x(i)
)2

3
(
y(i)
)2] [∆x(i)

∆y(i)

]
= −

[(
x(i)
)2

+
(
y(i)
)2 − 5(

x(i)
)3

+
(
y(i)
)3 − 2

]

for ∆x(i) and ∆y(i).

(ii) Perform [
x(i+1)

y(i+1)

]
=

[
x(i)

y(i)

]
+

[
∆x(i)

∆y(i)

]
to produce the (i+ 1)-st approximation

[
x(i+1), y(i+1)

]T
.

Note that the superscript (i) denotes the approximation obtained in the i-th iteration. Here we
use the starting values

(
x(0), y(0)

)
= (1,−1).

The first 5 iterations are shown in the table below.

i x y
0 1.0000 −1.0000
1 2.0833 −1.4167
2 1.7605 −1.4159
3 1.7105 −1.4413
4 1.7094 −1.4415
5 1.7094 −1.4415

This is obtained from the following computer code (written in MATLAB), which suggests that New-
ton’s method converges, since the process stops after 5 iterations.

x(1)=1; y(1)=-1; dxy=[1;1]; tol=10^(-5);

i=1;

while (sqrt(dxy(1)^2+dxy(2)^2)>tol)

jac=[2*x(i),2*y(i);3*x(i)^2,3*y(i)^2];

b=[x(i)^2+y(i)^2-5;x(i)^3+y(i)^3-2];

dxy=-inv(jac)*b;

x(i+1)=x(i)+dxy(1);

y(i+1)=y(i)+dxy(2);

i=i+1;

end

To perform exactly three iterations of the Newton’s algorithm, the code is changed as follows:

18

COS2633/202

x(1)=1; y(1)=-1; dxy=[1;1];

for i=1:3

jac=[2*x(i),2*y(i);3*x(i)^2,3*y(i)^2];

b=[x(i)^2+y(i)^2-5;x(i)^3+y(i)^3-2];

dxy=-inv(jac)*b;

x(i+1)=x(i)+dxy(1);

y(i+1)=y(i)+dxy(2);

end

Question 4

(4.1)

The required difference table (note that these are differences, not divided differences, as
can be seen in [1, p.129]) is as follows:

x f ∆f ∆2f ∆3f ∆4f
−0.5 5

10
0 15 −16

−6 16
0.5 9 0 12

−6 4
1 3 4

−2
1.5 1

On the other hand, considering the relationship

f
[k]
i = f [xi, xi+1, . . . , xi+k] =

1

k!hK
∆kf (xi)

where h = xi+1 − xi and s = x−x0

h
, the divided-difference table is as follows:

xi fi f
[1]
i f

[2]
i f

[3]
i f

[4]
i

−0.5 5
20

0 15 −32
−12 64/3

0.5 9 0 −8
−12 16/3

1 3 8
−4

1.5 1

19

(4.2)

From the theory, we know that the n−th order difference of any n−th degree polynomial
is constant. Therefore, we require a fourth degree polynomial to fit the five data points
in the given table exactly.

(4.3)

The (forward) Newton-Gregory interpolating polynomials of degree n (for equispaced
points) are as follows (see [1, pp. 129-131]):

(2) Pn(x) = f (x0) +
n∑

k=1

(
s

k

)
∆kf (x0)

Since we can always (uniquely) fit a second degree polynomial through any three data
points, we consider

(3) P2(x) = f (x0) +

(
s

1

)
∆f (x0) +

(
s

2

)
∆2f (x0)

and to fit P2(x) to the points with x−values 0.5, 1 and 1.5, we let x0 = 0.5 so that
s = 2x − 1. (Remember that h = 1

2
). Simplifying and substituting s by 2x − 1 in (3)

yields
P2(x) = f (x0) + (2x− 1)∆f (x0) + (2x− 1)(x− 1)∆2f (x0) .

From our difference table we know that f (x0) = 9, ∆f (x0) = −6 and ∆2f (x0) = 4. So

(4) P2(x) = 9− 6(2x− 1) + 4(2x− 1)(x− 1) = 8x2 − 24x+ 19.

We may now approximate f(1.25) by means of our interpolating polynomial (4):

f(1.25) ≈ 8(1.25)2 − 24(1.25) + 19 = 1.5.

(4.4)

The error of Pn(x), an n−th degree interpolating polynomial, is given by

E(x) =
(x− x0) (x− x1) · · · (x− xn) f (n+1) (ξ)

(n+ 1)!

with ξ on the smallest interval that contains {x0, x1, . . . , xn, x} [1, p. 135]. In the case
of equispaced points, we may express E(x) in terms of s = (x− x0) /h:

E(x) =

(
s

n+ 1

)
hn+1f (n+1) (ξ) ,

with ξ as before. Since f(x) and therefore also f (n+1)(x) are not known, we use

f (n+1) ≈ ∆n+1f(x)

hn+1
,

20

COS2633/202

yielding

(5) E(x) ≈
(

s

n+ 1

)
∆n+1f (x) .

As expected, this is just the first neglected term in (2).
Using (5), we obtain the following approximation to the error in (4.3):

E(x) ≈ 2(2(1.25)− 1)(1.25− 1)(2(1.25)− 3)∆3f (x0)

6

(4.5)

The n−th degree Lagrange interpolating polynomial through the points (x0, f (x0),
(x1, f (x1), . . . , (xn, f (xn) is

Pn(x) =
n∑

j=0

Ln,j(x)f (xj) where Ln,j(x) =
n∏

i=0
i6=j

(x− xi)
(xj − xi)

.

Given the data points (0.5, 9), (1, 3) and (1.5, 1), we fit the second degree Lagrange
interpolating polynomial:

P2(x) =

[
(x− 1)(x− 1.5)

(0.5− 1)(0.5− 1.5)

]
9 +

[
(x− 0.5)(x− 1.5)

(1− 0.5)(1− 1.5)

]
3 +

[
(x− 0.5)(x− 1)

(1.5− 0.5)(1.5− 1)

]
1

= 18(x− 1)(x− 3/2)− 12(x− 1/2)(x− 3/2) + 2(x− 1/2)(x− 1)

So,
P2(1.25) = 1.5.

As expected we obtain the same result as in (4.3), since the n−th degree polynomial
that passes through n+ 1 data points, is unique.

(4.6)

Splines form an important and very useful class of approximating functions. In this
module we are only concerned with cubic splines. One possible reason for this is that
they are in some sense both complex enough to be useful and simple enough to use with
ease. We give a formal definition of cubic spline interpolation to help you understand the
formulas used in solving the problem of the question. This definition does not appear
explicitly in [1], so please take note!
Construction of a Cubic spline interpolant
Given a function f on [a, b] and a set of so-called nodes, a = x0 < x1 < · · · < xn = b, a
cubic spline interpolant, Q, for f is a function that satisfies the following conditions:

(a) Q is a cubic polynomial, denoted Qi, on the subinterval [xi, xi+1] for each i =
0, 1, . . . , n− 1.

(b) Q(xi) = f(xi) for each i = 0, 1, . . . , n.

(c) Qi+1(xi+1) = Qi(xi+1) for each i = 0, 1, . . . , n− 2.

21

(d) Q′i+1(xi+1) = Q′i(xi+1) for each i = 0, 1, . . . , n− 2.

(e) Q′′i+1(xi+1) = Q′′i (xi+1) for each i = 0, 1, . . . , n− 2.

(f) The following boundary conditions (specific to a natural cubic spline) are satisfied:

Q′′(x0) = Q′′(xn) = 0.

Here, the conditions (a), (b), (c), (d) and (e) define a cubic spline. If on top of that,
condition (f) is satisfied, then we have a natural cubic spline. However, condition (f) can
be replaced by something else (a different set of boundary conditions), and this leads
to a different type of cubic spline. Note that [1] uses S(x) for Q(x). Also notice how
we use Q(x) when referring to the spline interpolant in general, but Qi(x) if we want to
refer to the cubic polynomial on subinterval [xi, xi+1]. In the rest of our discussion we
use whichever notation is clearer or more convenient.
In principle, to construct a cubic spline interpolant as defined above, we must determine
4n coefficients, four for each Qi, i = 0, 1, . . . , n−1. To be able to do this in a unique way,
we need 4n (independent) equations. Where do they come from? Well, requirements
(b), (c), (d) and (e) of the definition provides us with n + 1, n − 1, n − 1 and n − 1
respectively, a total of 4n−2. The remaining two are obtained from the set of boundary
conditions we use.
Following the approach in [1], we let yi denote f(xi), i = 0, 1, . . . , n, hi = xi+1−xi, and
write the cubic polynomial Qi for the i−th subinterval as

(6) Qi(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3.

Then

(7) Q′i(x) = bi + 2ci(x− xi) + 3di(x− xi)2

and

(8) Q′′i (x) = 2ci + 6di(x− xi).

So by condition (b) of the definition and (6), we have

(9) yi = ai

and

(10) yi+1 = yi + bihi + cih
2
i + dih

3
i .

By condition (e) of the definition and (8), we have

(11) Si = Q′′(xi) = Q′′i (xi) = 2ci

and

(12) Si+1 = Q′′(xi+1) = Q′′i (xi+1) = 2ci + 6dihi.

22

COS2633/202

By (11) and (12), we get

(13) ci =
Si

2

and

(14) di =
Si+1 − Si

6hi
.

By (14), (13), (9) and (10), we get

yi+1 =
Si+1 − Si

6hi
h3i +

Si

2
h2i + bihi + yi.

Solving for bi yields

(15) bi =
yi+1 − yi

hi
− 2hiSi + hiSi+1

6
.

By (b) and (d) of the definition (7), we get

y′i = bi

and
y′i = bi−1 + 2ci−1hi−1 + 3di−1h

2
i−1.

So

(16) bi−1 + 2ci−1hi−1 + 3di−1h
2
i−1.

By (16), (15), (14), (13) and (9), and simplifying we obtain

(17) hi−1Si−1 + (2hi−1 + 2hi)Si + hiSi+1 = 6(f [xi, xi+1]− f [xi−1, xi])

for i = 1, 2, . . . , n − 1, i.e. n − 1 equations in the n + 1 unknowns Si, i = 0, 1, . . . , n.
Notice that these equations hold irrespective of the set of boundary conditions. Choosing
the set of boundary conditions supplies us with two additional equations by which we
can eliminate S0 and Sn as unknowns, leaving us with an (n − 1)−dimensional linear
system with S1, . . . , Sn−1 as unknowns. Once S1, . . . , Sn−1 are known, ai, bi, ci and di,
i = 1, 2, . . . , n are obtained by means of (14), (13), (15) and (9).
Up to now we have not taken in account the choice of boundary conditions. The following
question arises: Having chosen a set of boundary conditions, how does this choice impact
on (17)? We answer this question with respect to the boundary conditions given in (f)
of the definition above.
S0 = Sn = 0, so for i = 1 and i = n− 1, (17) becomes

(18) (2h0 + 2h1)S1 + h1S2 = 6(f [x1, x2]− f [x0, x1])

and

(19) hn−2Sn−2 + (2hn−2 + 2hn−1)Sn−1 = 6(f [xn−1, xn]− f [xn−2, xn−1])

23

respectively.
Application to the points in the question
Four evenly spaced points are given, as well as their images via f , where the cubic spline
will match f(x). Thus, if n is the number of subintervals determined by the given data
points, then n = 3. The required cubic spline will be in the form

S(x) =

S0(x) = a0 + b0(x− x0) + c0(x− x0)2 + d0(x− x0)3 x ∈ [x0, x1]
S1(x) = a1 + b1(x− x1) + c1(x− x1)2 + d1(x− x1)3 x ∈ [x1, x2]
S2(x) = a2 + b2(x− x2) + c2(x− x2)2 + d2(x− x2)3 x ∈ [x2, x3]

Let hi = xi+1 − xi for each i such that 0 ≤ i ≤ n − 1 = 2 (see [1, pp. 144-160]) where
the xi are given data and n = 3. According to the theorem in [1, p. 149], the coefficient
matrix is a square matrix, of size 4× 4, and tridiagonal. The expressions for calculating
each coefficient of the matrix is also known.
In this case, h0 = x1 − x0 = 0.5; similarly, h1 = h2 = 0.5; also, a0 = 15, a1 = 9, a2 = 3,
a3 = 1. The problem reduces to solving the system Ax = b where

A =

1 0 0 0
h0 2(h0 + h1) h1 0
0 h1 2(h1 + h2) h2
0 0 0 1

 b =

0

3
h1

(a2 − a1)− 3
h0

(a1 − a0)
3
h2

(a3 − a2)− 3
h1

(a2 − a1)
0

 x =

c0
c1
c2
c3

and this simplifies to

A =

1 0 0 0

0.5 2 0.5 0
0 0.5 2 0.5
0 0 0 1

 b =

0
0
24
0

 x =

c0
c1
c2
c3

which yields

c0 = 0 c1 = −16

5
c2 =

64

5
c3 = 0

Solving for b0, b1, b2, then d0, d1, d2 yields

b0 = −172/15; b1 = −196/15; b2 = −124/15;

and
d0 = −32/15; d1 = 32/3; d2 = −128/15.

Hence the required cubic spline is defined as follows:

S(x) =

S0(x) = 15− 172

15
(x− 0) + 0(x− 0)2 − 32

15
(x− 0)3 x ∈ [0, 0.5]

S1(x) = 9− 196
15

(x− 0.5)− 16
5

(x− 0.5)2 + 32
3

(x− 0.5)3 x ∈ [0.5, 1]

S2(x) = 3− 124
15

(x− 1) + 64
5

(x− 1)2 − 128
15

(x− 1)3 x ∈ [1, 1.5]

24

COS2633/202

Question 5

In order to construct and graph the required cubic Bezier polynomials, we follow the procedure of [1,
pp. 165-169].

(5.1)

The given points are

[
x0
y0

]
=

[
0
0

]
with guide-point p0 =

[
1
1

]
;[

x1
y1

]
=

[
5
2

]
with guide-point p1 =

[
6
1

]
.

In parametric form the set of points on this cubic Bezier curve is

P (t) =

[
x(t)
y(t)

]
, 0 ≤ t ≤ 1.

where x(0) = x0, y(0) = y0, x(1) = x1, and y(1) = y1.
The cubic Bezier polynomial is given by

x(t) = [2(x0 − x1) + 3(α0 + α1)]t
3 + [3(x1 − x0)− 3(α1 + 2α0)]t

2 + 3α0t+ x0

y(t) = [2(y0 − y1) + 3(β0 + β1)]t
3 + [3(y1 − y0)− 3(β1 + 2β0)]t

2 + 3β0t+ y0

Using the guide-points, the values of the coefficients are α0 = 1, β0 = 1, α1 = −1, and
β1 = 1.
So, the constructed Bezier polynomial, as required, is

x(t) = −10t3 + 12t2 + 3t;
y(t) = 2t3 − 3t2 + 3t.

(5.2)

The endpoints remain unchanged, but with the guide-points

p0 =

[
0.5
0.5

]
and p1 =

[
5.5
1.5

]
.

In the same way as in (5.1) above, we obtain the values of the coefficients as; α0 = 1/2,
β0 = 1/2, α1 = −1/2, and β1 = 1/2 and the constructed Bezier polynomial, as required,
is

x(t) = −10t3 + 27
2
t2 + 3

2
t;

y(t) = −t3 + 3
2
t2 + 3

2
t.

(5.3)

Again, the endpoints remain unchanged, but with the guide-points

p0 =

[
2
2

]
and p1 =

[
6
3

]
.

In the same way as in (5.1) above, we obtain the values of the coefficients as; α0 = 2,
β0 = 2, α1 = −1, and β1 = −1 and the constructed Bezier polynomial, as required, is

x(t) = −7t3 + 6t2 + 6t;
y(t) = −t3 − 3t2 + 6t.

25

The graphs of the cubic Bezier curves for all three cases are given in Figure 1, where the output from
question (5.1) is in red (bottom curve from the right), that from question (5.2) in green (middle curve
from the right), and that from question (5.3) in blue (top curve from the right).

Figure 1: Cubic Bezier Curves for Question 5

Question 6

(6.1)

It is clear from the data that m = 8. Note that
∑

denotes
∑m

i=1 and in particular,∑8
i=1. We assume the functional relationship

y = a0 + a1x+ a2x
2 + a3x

3,

and proceed as in [1, pp. 498-506]. This leads to the four normal equations to be solved
for a0, a1, a2, and a3.

(20)

8a0 + a1
∑
xi + a2

∑
x2i + a3

∑
x3i =

∑
Yi

a0
∑
xi + a1

∑
x2i + a2

∑
x3i + a3

∑
x3i =

∑
xiYi

a0
∑
x2i + a1

∑
x3i + a2

∑
x4i + a3

∑
x5i =

∑
x2iYi

a0
∑
x3i + a1

∑
x4i + a2

∑
x5i + a3

∑
x6i =

∑
x3iYi

26

COS2633/202

From our given data we obtain

(21)

∑
xi = 7.400

∑
x2i = 8.7200

∑
x3i = 11.3480∑

x4i = 15.5108
∑
x5i = 21.8584

∑
x6i = 31.4840∑

Yi = 8.2253
∑
xiYi = 10.7313

∑
x2iYi = 14.7269∑
x3iYi = 20.8326

Solving the linear system, we obtain

a0 = −0.0181
a1 = 0.2469
a2 = 0.4047
a3 = 0.2656

Our approximating function is therefore

y = −0.0181 + 0.2469x+ 0.4047x2 + 0.2656x3.

We summarize the results as follows:

i xi Yi yi Yi − yi
1 0.2 0.0504 0.0496 0.0009
2 0.3 0.0984 0.0996 −0.0011
3 0.6 0.3328 0.3331 −0.0003
4 0.9 0.7266 0.7255 0.0011
5 1.1 1.0972 1.0967 0.0005
6 1.3 1.5697 1.5703 −0.0006
7 1.4 1.8487 1.8496 −0.0009
8 1.6 2.5015 2.5009 −0.0006

The sum of square error, S, is 5.1× 10−6.

(6.2)

We use the same data as in question 6.1.
We assume the functional relationship

y = beax.

Linearizing the exponential form, we obtain

ln y = ln b+ ax,

and fit the new variable z = ln y as a linear function of x, as before.
We now assume the functional relationship

z = a0 + a1x,

and proceed as before. This leads to the two normal equations to be solved for a0 and
a1.

(22)
ma0 + a1

∑
xi =

∑
lnYi

a0
∑
xi + a1

∑
x2i =

∑
xi lnYi.

27

From our given data we obtain

(23)
∑
xi = 7.4000

∑
x2i = 8.7200∑

lnYi = −4.6500
∑
xi lnYi = 0.7750

So, by (23), (22) becomes

(24)
8a0 + 7.4a1 = −4.65

7.4a0 + 8.72a1 = 0.7750.

Solving (24) as before, we obtain

a0 = −3.0855
a1 = 2.7073

so that
b = ea0 = 0.0457.

Our approximating function is therefore

y = 0.0457e2.7073x.

We summarize the results as follows:

i xi Yi yi Yi − yi
1 0.2 0.0504 0.0526 −0.0022
2 0.3 0.0984 0.0565 0.0419
3 0.6 0.3328 0.0699 0.2629
4 0.9 0.7266 0.0864 0.6402
5 1.1 1.0972 0.0995 0.9977
6 1.3 1.5697 0.1146 1.4551
7 1.4 1.8487 0.123 1.7257
8 1.6 2.5015 0.1417 2.3598

The sum of square errors, S, is 12.1402

(6.3)

We use the same data as in question 6.1.
We assume the functional relationship

y = bxa.

Linearizing the exponential form, we obtain

ln y = ln b+ a lnx,

and fit the new variable z = ln y as a linear function of x, as before.
We now assume the functional relationship

z = a0 + a1 lnx,

28

COS2633/202

and proceed as before. This leads to the two normal equations to be solved for a0 and
a1.

(25)
ma0 + a1

∑
lnxi =

∑
lnYi

a0
∑

lnxi + a1
∑

(lnxi)
2 =

∑
(lnxi) lnYi.

From our given data we obtain

(26)
∑

lnxi = −2.26544654
∑

(lnxi)
2 = 4.7239205788∑

lnYi = −4.64996574
∑

(lnxi) lnYi = 8.959052285

So, by (26), (25) becomes

(27)
8a0 − 2.26544654a1 = −4.64996574

−2.26544654a0 + 4.7239205788a1 = 8.959052285.

Solving (27) as before, we obtain

a0 = −0.0511285981
a1 = 1.872009283,

so that
b = ea0 = 0.9501564743.

Our approximating function is therefore

y = 0.9501564743x1.872009283.

We summarize the results as follows:

i xi Yi yi Yi − yi
1 0.2 0.0504 0.0466999 0.003746009
2 0.3 0.0984 0.0997611 −0.001335108
3 0.6 0.3328 0.3651675 −0.032397579
4 0.9 0.7266 0.7800755 −0.053475583
5 1.1 1.0972 1.1357496 −0.038549679
6 1.3 1.5697 1.5527378 0.016962129
7 1.4 1.8487 1.7838082 0.064891736
8 1.6 2.5015 2.2903910 0.211108968

The sum of square errors, S, is 0.0545

(6.4)

The graph of the approximating function in (6.1), (6.2) and (6.3), as well as the given
data points, are shown in Figure 2, where the output from question (6.1) is in red
(middle curve from the right), that from question (6.2) in green (top curve from the
right), and that from question (6.3) in blue (bottom curve from the right). Note that
the approximation from question (6.1) is the closest to the given data.

29

Figure 2: Least Squares Approximations for Question 6

Question 7

(7.1) We need to use different numerical techniques to approximate the integral∫ 1.3

0.75

(
sin2 x− 2x sinx+ 1

)
dx

(a) Composite trapezoidal rule with n = 8.

Here, we have h = 1.3−0.75
8

= 0.06875. Therefore the interval [0.75, 3] is divided into
8 subintervals with nodes x0, x1, . . . , x8 where x0 = 0.75, x8 = 1.3, xi = x0 + i · h.
Also, fi = f(xi) for all i, where f(x) = sin2 x−2x sinx+1. Hence the approximation
of the integral is

I ≈ h

2
(f0 + 2f1 + 2f2 + 2f3 + 2f4 + 2f5 + 2f6 + 2f7 + f8)

Note that the values of x are in radians. If you wish to convert them to degrees,
you may do so by using the formula

xdegrees =
180

π
xradians

The values of f(xi) at xi, i = 0, 1, . . . , 8 are given in the table below.

30

COS2633/202

i xi (in radians) xi (in degrees) f(xi)
0 0.75 42.95454545 f0 = 0.442173259
1 0.81875 46.89204545 f1 = 0.33747317
2 0.8875 50.82954545 f2 = 0.224888693
3 0.95625 54.76704545 f3 = 0.104966722
4 1.025 58.70454545 f4 = −0.021627743
5 1.09375 62.64204545 f5 = −0.154101955
6 1.1625 66.57954545 f6 = −0.291527471
7 1.23125 70.51704545 f7 = −0.432834221
8 1.3 74.45454545 f8 = −0.576806905

And finally the approximation of the integral is I ≈ −0.020630474

(b) Gaussian quadrature

The Gaussian quadrature process in general is described in [1, pp.228-234]. The
three-term Gaussian quadrature method is implemented in two steps: Transform
our integral from 0.75 to 1.3 into an integral from −1 to 1 by a linear change of
variable; then use the roots and corresponding coefficients of the third Legendre
polynomial (see Table 4.12 [1, p.232]) to determine the required approximation.
Note that the three-term Gaussian quadrature gives exact results for polynomials
of degree 2× 3− 1 = 5 or less.

• To make the transformation∫ b

a

f(x)dx −→
∫ 1

−1
g(t)dt

we let t = mx+ p and we find m and p such that when x = a, we have t = −1
and when x = b, we have t = 1. Thus we obtain the following system to be
solved for m and p

{
ma+ p = −1
mb+ p = 1

=⇒

m =

2

b− a
p =

a+ b

a− b

Therefore

t =
2

b− a
x+

a+ b

a− b
⇐⇒ x =

1

2
[(b− a)t+ a+ b]

and hence (since this means dx =
b− a

2
dt),

∫ b

a

f(x)dx =

∫ 1

−1
f

(
(b− a)t+ (b+ a)

2

)(
b− a

2

)
dt

as in equation (4.41) in [1, p.233]. Hence

g(t) =
b− a

2
f

(
(b− a)t+ (b+ a)

2

)

31

• Since we are implementing a three-term Gaussian quadrature, our nodes (xi)
are the roots of the third Legendre polynomial which is

P3(t) = t3 − 3

5
t = t

(
t2 − 3

5

)
The roots of this polynomial are

t0 = −
√

3

5
≈ −0.774597 t1 = 0 t2 =

√
3

5
≈ 0.774597

and the corresponding coefficients (from Table 4.12 in [1, p.232]) are

c0 =
5

9
c1 =

8

9
c2 =

5

9

Since a = 0.75 and b = 1.3, we obtain

g(t) =
0.55

2
f

(
0.55t+ 2.05

2

)
where f(x) = sin2 x− 2x sinx+ 1

And the required approximation is∫ 1

0

sinx

x
dx ≈ c0g(t0) + c1g(t1) + c2g(t2)

=
5

9
g

(
−
√

3

5

)
+

8

9
g(0) +

5

9
g

(√
3

5

)
≈ −0.0203766519

(c) Simpson’s
3

8
rule

The formula for the Simpson’s
3

8
rule is given in Equation (4.27) in [1, p.199]. To

approximate
∫ b

a
f(x)dx, we divide [a, b] into three intervals of equal length. Hence

we get x0 = a, x1 = a + h, x2 = a + 2h and x3 = b, where h =
b− a

3
. Note

that we can also use the composite Simpson’s rule. This would imply dividing the
interval [a, b] into a number of subintervals that is a multiple of three, and applying
Simpson’s rule on every three consecutive subintervals, starting from a.
In our case, we are applying the normal Simpson’s rule. Here, a = 0.75 = x0, b =

1.3 = x3, x1 = 0.75 +
0.55

3
=

2.8

3
, x2 = 0.75 +

1.1

3
=

3.35

3
, where h =

b− a
3

=
0.55

3
,

and the formula for the Simpson’s rule is∫ x3

x0

f(x)dx ≈ 3h

8
[f(x0) + 3f(x1) + 3f(x2) + f(x3)]

=
0.55

8
[f(0.75) + 3f(2.8/3) + 3f(3.35/3) + f(1.3)]

≈ −0.0203301860

32

COS2633/202

(7.2) Estimating truncation errors

• In (7.1(a)): For the composite trapezoidal rule, from Theorem 4.5 in [1, p.206],
the truncation error is given by

b− a
12

h2|f ′′(ξ)| for 0.75 < ξ < 1.3

and with our values of a, b and h, the truncation error is (for 0.75 < ξ < 1.3)

1.3− 0.75

12
×
(

0.55

8

)2

|f ′′(ξ)| = 13

60009
|f ′′(ξ)|

We can go further and find a maximum value for |f ′′(ξ)| to have a bound on the
error. Indeed, from f(x) = sin2 x− 2x sinx+ 1, it follows that

f ′(x) = sin 2x− 2 sinx− 2x cosx and f ′′(x) = 2 cos 2x− 4 cosx+ 2x sinx

A rough sketch of the graph of f ′′ indicates that f ′′ is increasing on [0.75, 1.3];
note that f ′′(a) ≈ −1.7628 and f ′′(b) ≈ −0.2785; therefore the maximum value of
the error is

13

60009
|f ′′(a)| ≈ 3.8189× 10−4

• In (7.1(c)): For Simpson’s rule, from Equation (4.27) in [1, p.199], the truncation
error is given by

3h5

80
|f (4)(ξ)| for 0.75 < ξ < 1.3

and with our values of a, b and h, the truncation error is (for 0.75 < ξ < 1.3)

3(0.55/8)5

80
|f (4)(ξ)| = 1

17362219
|f (4)(ξ)|

Again, we can go further and find a maximum value for |f (4)(ξ)| to have a bound
on the error.

33

(7.3) We need to give the analytical solution (exact value) of the integral∫ 1.3

0.75

(
sin2 x− 2x sinx+ 1

)
dx

Note that Taylor expansion of sin x will just lead to an approximation of the integral
while a direct approach with trigonometric transformations and integration by parts
leads to the exact value of the integral.

First note that sin2 x = 1
2
(1 − cos 2x). Also note that the values of x are in radians.

Then our calculation follow:∫ 1.3

0.75

(
sin2 x− 2x sinx+ 1

)
dx

=

∫ 1.3

0.75

(
1

2
− 1

2
cos(2x)− 2x sinx+ 1

)
dx

=

[
3

2
x− 1

4
sin(2x)

]1.3
0.75

− 2

∫ 1.3

0.75

x sinx dx (then we use integration by parts)

=

[
3

2
x− 1

4
sin(2x)

]1.3
0.75

− 2

(
[−x cosx]1.30.75 +

∫ 1.3

0.75

cosx dx

)
=

[
3

2
x− 1

4
sin(2x)

]1.3
0.75

− 2
(
[−x cosx+ sinx]1.30.75

)
=

[
3

2
x− 1

4
sin(2x) + 2x cosx− 2 sinx

]1.3
0.75

≈− 0.0203767960

The actual errors are as follows:

• In (7.1(a)): E = | − 0.0203767960− (−0.020630474)| ≈ 2.53678× 10−4

• In (7.1(b)): E = | − 0.0203767960− (−0.0203766519)| ≈ 1.4410× 10−7

• In (7.1(c)): E = | − 0.0203767960− (−0.0203301860)| ≈ 4.6610× 10−5

Question 8

Consider the integral ∫ ∫
R

√
1 + [fx(x, y)]2 + [fy(x, y)]2 dA

where, z = f(x, y), x2 + y2 + z2 = 9; z ≥ 0 and R = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. We have

x2 + y2 + z2 = 9 ⇐⇒ z2 = 9− x2 − y2 ⇐⇒ z = ±
√

9− x2 − y2

But z = f(x, y) and z ≥ 0, hence f(x, y) =
√

9− x2 − y2 therefore fx and fy (note that fx means ∂f
∂x

and fy means ∂f
∂y

) are defined as follows:

fx(x, y) =
−x√

9− x2 − y2
and fy(x, y) =

−y√
9− x2 − y2

34

COS2633/202

Thus

1 + [fx(x, y)]2 + [fy(x, y)]2 =
9

9− x2 − y2

Our integral then becomes∫ 1

0

∫ 1

0

√
1 + [fx(x, y)]2 + [fy(x, y)]2 dA = 3

∫ 1

0

∫ 1

0

1√
9− x2 − y2

dx dy

(8.1) Trapezoidal rule in both directions

The trapezoidal rule is explained in [1, p.194, 195, 206, 207, 235, 236] for standard and
composite options, for single and double integrals.
Consider x as a constant and let yj = c+ jk, j = 0, 1, 2, . . . ,m, and k = (d− c)/m. By
the Trapezoidal rule, we have∫ d

c

f(x, y)dy ≈ k

2

[
f (x, y0) + 2

m−1∑
j=1

f (x, yi) + f (x, ym)

]
.

Therefore,

(28)
∫ b

a

∫ d

c

f(x, y)dydx ≈ k

2

∫ b

a

f (x, y0) dx+ k
m−1∑
j=1

∫ b

a

f (x, yi) dx+
k

2

∫ b

a

f (x, ym) dx.

Now let xi = a + ih, i = 0, 1, 2, . . . , n and h = (b− a)/n. Then, by approximating the
single integrals in the right hand side of equation (28) with the Trapezoidal rule, the
double integral may be approximated by

kh

4

[
f (x0, y0) + 2

n−1∑
i=1

f (xi, y0) + f (xn, y0)

]

+
kh

2

m−1∑
j=1

[
f (x0, yj) + 2

n−1∑
i=1

f (xi, yj) + f (xn, yj)

]

+
kh

4

[
f (x0, ym) + 2

n−1∑
i=1

f (xi, ym) + f (xn, ym)

]
.

Implementing the latter approximation with n = 2 and m = 2 (i.e. h = 0.5 and k = 0.5)
yields

3

∫ 1

0

∫ 1

0

1√
9− x2 − y2

dx dy ≈ 1.046152967.

Note: As an exercise, find out the approximation to the given double integral when
n = m = 1.

35

(8.2) Simpson’s 1
3

rule in both directions

The Simpson 1
3

rule is explained in [1, p.195, 196, 205, 206, 237] for standard and
composite options, for single and double integrals.
Consider x as a constant and let yj = c + jk, j = 0, 1, 2, . . . ,m, and k = (d − c)/m,
where m is an even integer. By Simpson’s 1

3
rule, we have:∫ d

c

f(x, y)dy ≈ k

3

f (x, y0) + 2

m/2−1∑
j=1

f (x, y2j) + 4

m/2∑
j=1

f (x, y2j−1) + f (x, ym)

 .
Therefore,

(29)

∫ b

a

∫ d

c

f(x, y)dydx ≈ k

3

∫ b

a

f (x, y0) dx+
2k

3

m/2−1∑
j=1

∫ b

a

f (x, y2j) dx

+
4k

3

m/2∑
j=1

∫ b

a

f (x, y2j−1) dx+
k

3

∫ b

a

f (x, ym) dx.

Now let xi = a+ ih, i = 0, 1, 2, . . . , n and h = (b−a)/n, where n is also an even integer.
Then, by approximating the single integrals in the right hand side of equation (29) with
Simpson’s 1

3
rule, the double integral may be approximated by

kh

9

f (x0, y0) + 2

n/2−1∑
i=1

f (x2i, y0) + 4

n/2∑
i=1

f (x2i−1, y0) + f (xn, y0)

+

2kh

9

m/2−1∑
j=1

f (x0, y2j) + 2

n/2−1∑
i=1

f (x2i, y2j) + 4

n/2∑
i=1

f (x2i−1, y2j) + f (xn, y2j)

+

4kh

9

m/2∑
j=1

f (x0, y2j−1) + 2

n/2−1∑
i=1

f (x2i, y2j−1) + 4

n/2∑
i=1

f (x2i−1, y2j−1) + f (xn, y2j−1)

+
kh

9

f (x0, ym) + 2

n/2−1∑
i=1

f (x2i, ym) + 4

n/2∑
i=1

f (x2i−1, ym) + f (xn, ym)

 .
Implementing the latter approximation with n = 2 and m = 2 (i.e. h = 0.5 and k = 0.5)
yields

3

∫ 1

0

∫ 1

0

1√
9− x2 − y2

dx dy ≈ 1.0403781466.

(8.3) Three-term Gaussian quadrature in both directions

The Gaussian Quadrature rule is explained in [1, p.228-234, 240] for single and double
integrals.
In order to apply Gaussian quadrature we need to transform the intervals of integration
(a, b) and (c, d) both to (−1, 1). We know from our textbook that∫ 1

−1
f(x)dx ≈

n∑
i=1

wif (ti)

36

COS2633/202

where wi and ti are the Gaussian weights and points respectively. Let us now consider
the integral ∫ d

c

f(x, y)dy.

By letting

y =
(d− c)t+ (d+ c)

2
,

so that dy =

(
d− c

2

)
dt, it follows that

∫ d

c

f(x, y)dy =

(
d− c

2

)∫ 1

−1
f

(
x,

(d− c)t+ (d+ c)

2

)
dt.

Similarly, by letting

x =
(b− a)s+ (b+ a)

2
,

so that dx =

(
b− a

2

)
ds, it follows that

∫ b

a

∫ d

c

f(x, y)dydx =

(
b− a

2

)(
d− c

2

)∫ 1

−1

∫ 1

−1
f

(
(b− a)s+ (b+ a)

2
,
(d− c)t+ (d+ c)

2

)
dtds.

The double integral∫ 1

−1

∫ 1

−1
f

(
(b− a)s+ (b+ a)

2
,
(d− c)t+ (d+ c)

2

)
dtds

may now be approximated by an n−term Gaussian quadrature formula

Gn =
n∑

i=1

wi

n∑
j=1

wjf

(
(b− a)pj + (b+ a)

2
,
(d− c)pi + (d+ c)

2

)
.

So, ∫ b

a

∫ d

c

f(x, y)dydx =

(
b− a

2

)(
d− c

2

)
Gn.

By implementing this approximation with n = 3, since we have a = c = 0 and b = d = 1,
it follows that

G3 =
3∑

i=1

wi

3∑
j=1

wjf

(
pj + 1

2
,
pi + 1

2

)
where

p1 = −
√

3

5
, p2 = 0, p3 =

√
3

5
and w1 =

5

9
, w2 =

8

9
, w3 =

5

9

Then we get

3

∫ 1

0

∫ 1

0

1√
9− x2 − y2

dx dy ≈ 1

2
× 1

2
× 4.161006249325179 = 1.040251562331295.

37

REFERENCES

[1] Richard L. Burden and Douglas J. Faires. Numerical Analysis. ninth edition. BROOKS/COLE,
CENGAGE learning 2011.

38

