
COS2611/202/1/2012

Tutorial Letter 202/1/2012
Programming: Data Structures

Semester 1
School of Computing
This tutorial letter contains solutions to
assignment 02

Bar code

COS2611

2

Tutorial matter received so far
COS2611/101/3/2012 General information and assignments

COS2611/201/1/2012 Solutions to Assignment 1

COS2611/202/1/2012 This letter: Solutions to Assignment 2

Dear student

The purpose of this tutorial letter is to supply the solutions for Assignment 2.

Please feel free to contact any of the lecturers with any problems, suggestions and/or
queries. For this purpose, we appeal to you to make use of the myUnisa forum where
solutions to problems/questions and answers to queries posted on the forum are
available to the benefit of all students. We also encourage you to actively participate
in this forum by providing support (not complete solutions!) to your fellow students.

COS2611/202

3

Question 1: Linked Lists [5]

Show what is produced by the following C++ code. Assume the node is in the usual info-link
form with info of type int. (list and ptr are pointers of type nodeType.)

list = new nodeType;
list->info = 20;
ptr = new nodeType;
ptr->info = 28;
ptr->link = NULL;
list->link = ptr;
ptr = new nodeType;
ptr->info = 30;
ptr->link = list;
list = ptr;
ptr = new nodeType;
ptr->info = 42;
ptr->link = list->link;
list->link = ptr;
ptr = list;
while (ptr != NULL)
{
cout << ptr->info << endl;
ptr = ptr->link;
}

Solution:

30
42
20
28

4

Question 2: Linked Lists [20]

Solution:
template <class Type>
void orderedLinkedList<Type>::mergeLists(orderedLinkedList<Type> &list1,

orderedLinkedList<Type>
&list2)
{

nodeType<Type> *lastSmall; //pointer to the last node of
// the merged list.

nodeType<Type> *first1 = list1.first;
nodeType<Type> *first2 = list2.first;

count = list1.count + list2.count;

if (list1.first == NULL) //first sublist is empty
{

first = list2.first;
list2.first = NULL;

count = list2.count;
}
else if (list2.first == NULL) // second sublist is empty

{
first = list1.first;
list1.first = NULL;
count = list1.count;

}
else
{

if (first1->info < first2->info) //Compare first nodes
{

first = first1;
first1 = first1->link;
lastSmall = first;

}
else
{

first = first2;
first2 = first2->link;
lastSmall = first;

}

while (first1 != NULL && first2 != NULL)
{

if (first1->info < first2->info)
{

lastSmall->link = first1;
lastSmall = lastSmall->link;
first1 = first1->link;

}
else
{

lastSmall->link = first2;
lastSmall = lastSmall->link;
first2 = first2->link;

}
} //end while

COS2611/202

5

if (first1 == NULL) //first sublist exhausted first
lastSmall->link = first2;

else //second sublist exhausted first
lastSmall->link = first1;

list1.first = NULL;
list1.last = NULL;
list2.first = NULL;
list2.last = NULL;
count = list1.count + list2.count;
}

} //end mergeList

Test program:
//22 34 56 2 89 90 0 -999
//14 56 11 43 55 -999

#include <iostream>
#include "orderedLinkedList.h"

using namespace std;

int main()
{

orderedLinkedList<int> newList, list1, list2;

int num;

cout << "Enter numbers, for list1, ending with -999" << endl;

cin >> num;

while(num != -999)
{

list1.insert(num);
cin >> num;

}

cout << "list1: ";
list1.print();
cout << endl;
cout << "Length of list1: " << list1.length() << endl;

cout << "Enter numbers, for list2, ending with -999" << endl;

cin >> num;

while(num != -999)
{

list2.insert(num);
cin >> num;

}

6

cout << endl;

cout << "list2: ";
list2.print();
cout << endl;
cout << "Length of list2: " << list2.length() << endl;

newList.mergeLists(list1, list2);

cout << "newList after merging lis1 and list2" << endl;
newList.print();
cout << endl;
cout << "Length of the newList: " << newList.length() << endl;

return 0;
}

Question 3: Recursion [6]

Write a recursive function that finds and returns the sum of elements of an int array.
Also write a program to test your function.

Solution:
int sumArray(const int list[], int first, int length)
{
if (length-first == 1)
return list[first];
else
return list[first] + sumArray(list, first + 1, length);
}

Test Program:
int main()
{
int list[10]={1,2,3,4,5,6,7,8,9,10};
int listB[1] = {5};
cout << "Sum list = " << sumArray(list,0,10) << endl;
cout << "Sum listB = " << sumArray(listB,0,1) << endl;
return 0;
}

COS2611/202

7

Question 4: Stacks[6]

Write a program to transfer elements from stack S1 to stack S2. The order of the
elements must remain as they were on the original stack S1. You may use one additional
stack. Use the Stack class from the Standard Template Library.

Solution:
template < class Type >
void reverseStack(stack<Type> &S1)
{

stack<Type> temp ;

while (!S1.empty())
{

temp.push(S1.top());
S1.pop();

}
while (!temp.empty())
{

S2.push(temp.top());
temp.pop();

}
}

The original stack S1. The temp stack after the first
while loop. Notice that the
elements are in reverse.

The contents of stack S2 after
the second while loop. Notice
that the elements are in
required order.

Note:
• Drawing a diagram of what the question requires may help in understanding

the problem.
• When elements are moved from one stack into another, their order is

reversed. Observe how the helper (temp) stack is used. How would the
helper stack be used if you were supposed to reverse stack S1? Look, if
you return elements in S2 to S1, they will be reversed.

8

Question 5: Queues [6]

Write a function reverseQ that uses a local stack to reverse the contents of a queue. Use
the following header:
template < class object >
void reverseQ (queueType < Object > &q)
You can make use of any member function of class queueType. Note that this function
is not a member of class queueType.

Solution:
template < class Type >
void reverseQ (queueType < Type > &q)
{

stack<Type> s
while (!q.isEmptyQueue())
{

s.push(q.front);
q.deleteQueue();

}
while (!s.empty())
{

q.addQueue(s.top);
s.pop();

}
}

Original queue The first while loop removes the
front element (FIFO) from
queue and places it into the
stack. Finally, the last element
of the queue is at the top (LIFO)
of the stack.

Top element inserted in front of
the queue reversing them in the
process.

Note:
• Reversing elements in the queue requires a helper stack. No matter how many

queues you use, the order of element never changes (unless you use one queue
for to hold one element). Unlike the stack, the elements can be changed by
using other stacks. It requires one only one queue to change the order of a
stack, but it requires two additional stack to change its order.

COS2611/202

9

Question 6: Searching [6]

Describe how the binary search algorithm searches for 27 in the following list:
5, 6, 8, 12, 15, 21, 25, 31.

Solution:

Position 0 1 2 3 4 5 6 7

Values 5 6 8 12 15 21 25 31

Binary search algorithm searches for elements in a sorted list. It compares the search
element with the middle element in the list, if the search element is equal to the middle
element, the position of this element is returned. Otherwise, the lower left or the upper
right of the middle element is searched.

Position 0 1 2 3 4 5 6 7

Values 5 6 8 12 15 21 25 31
 First = 0 Mid=3 last=7

In the above list, 27 is compared to 12. Surely, 27 should be on the upper right of the list.
The new search list is shaded below.

Position 0 1 2 3 4 5 6 7

Values 5 6 8 12 15 21 25 31
 First = 4 Mid= 5 last=7

Again, compare 27 with 21. 27 must be on upper right.

Position 0 1 2 3 4 5 6 7

Values 5 6 8 12 15 21 25 31
 First = 6
 Mid= 6 last=7

27 should be on the right of 25.

10

Position 0 1 2 3 4 5 6 7

Values 5 6 8 12 15 21 25 31
 First = 7
 Mid=7
 last=7
Lastly, compare 27 and 31, but now 27 should on the left of 31. Our new search list is:
Position 0 1 2 3 4 5 6 7

Values 5 6 8 12 15 21 25 31
 Last= 6 First = 7
This end the search because first if greater than last. 27 is not in the list.

Question 7: Sorting[20]

a) Selection sort.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

11 8 9 4 2 5 3 12 6 10 7

2 8 9 4 11 5 3 12 6 10 7

2 3 9 4 11 5 8 12 6 10 7

2 3 4 9 11 5 8 12 6 10 7

2 3 4 5 11 9 8 12 6 10 7

2 3 4 5 6 9 8 12 11 10 7

2 3 4 5 6 7 8 12 11 10 9

2 3 4 5 6 7 8 12 11 10 9

2 3 4 5 6 7 8 9 11 10 12

2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 11 12
The shaded area is sorted
• Find the smallest element in the unsorted list.
• Move it to the beginning of unsorted list.

COS2611/202

11

b) Insertion sort

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

11 8 9 4 2 5 3 12 6 10 7

8 11 9 4 2 5 3 12 6 10 7

8 9 11 4 2 5 3 12 6 10 7

4 8 9 11 2 5 3 12 6 10 7

2 4 8 9 11 5 3 12 6 10 7

2 4 5 8 9 11 3 12 6 10 7

2 3 4 5 8 9 11 12 6 10 7

2 3 4 5 6 8 9 11 12 10 7

2 3 4 5 6 8 9 10 11 12 7

2 3 4 5 6 7 8 9 10 11 12
The shaded area is sorted
• Find the first unsorted element in the unsorted list.
• Move it to the proper place.

c) Quick sort

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
11 8 9 4 2 5 3 12 6 10 7
3 4 2 5 9 11 8 12 6 10 7
2 3 4 5 9 11 8 12 6 10 7
2 3 4 5 9 11 8 12 6 10 7
2 3 4 5 7 11 8 9 6 10 12
2 3 4 5 6 7 8 9 11 10 12
2 3 4 5 6 7 8 9 11 10 12
2 3 4 5 6 7 8 10 9 11 12
2 3 4 5 6 7 8 9 10 11 12

The shaded area is sorted
• Quick sort partition the list into two.
• Sort the lower sublist, then the upper sublist.

In the first row, the pivot selected is 5, using this pivot the list is sorted with elements
smaller than the pivot on the left and elements greater than the pivot on the right after
the pivot has been swapped to its final position 3. Note that this position (of the pivot)
marks the final sorted position of the element. Also note that all elements on the left are

12

less than the pivot and on right are greater than pivot in all iterations.

The list on the left of the previous pivot (position 0-2) is sorted next. The pivot is 4 and
the list is sorted as previously. Repeat until all elements on the left are sorted, then sort
the elements on the right.

Question 8: Tree [6]

Inorder: DCBEAFG
Inorder traversal:- Traverse the left subtree
 Visit the node
 Traverse r the right subtree

Preorder: ABCDEFG
Preorder traversal:- Visit the node

 Traverse the left subtree
 Traverse r the right subtree

Postorder: DCEBGFA
Postorder traversal:- Traverse the left subtree

 Traverse r the right subtree
 Visit the node

UNISA©2012

