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it follows that the estimate of CL, x IR, is

Yi

cl, xir, =
tr, x sn,

Moreover, experience has shown that when considering either monthly or quarterly data,
we can average out ir; and thus calculate the estimate cl, of CL, by using

ity + cin 4+ ¢l 4in

Cl: =
; 3

That is, cl, is a three-period moving average of the cl, x ir, values.

Finally, we calculate the estimate ir, or IR, by using the equation
‘ cl, xr,

ir, =
‘ ol
The calculations of the values of cl, and ir, for the Tasty Cola data are summarized in
Table 7.2(b). Since there are only three years of data, and since most of the values of c,
are near 1, we cannot discern a well-defined cycle. Furthermore, in examining the values
of ir,, we cannct detect a pattern in the estimates of the irregular factors.

Traditionally, the estimates tr,, sn,, cl, and ir, obtained by using the multiplicative
decomposition method are used to describe the time series. However, we can also use
these estimates to forecast future values of the time series. If there is no pattern in the
rregular component, we predict that IR, will equal one. Therefore, the point forecast of

Ve is
=85, g, sl

f a well-defined cycle exists and can be predicted. The point forecast is

Yr =1 Xsn,

f a well-defined cycle does not exist or if CL, cannot be predicted. For our Tasty Cola exam-
ple, where

tr, = by + bt = 380.163 + 9.489¢

the point forecasts of the n = 36 historical Tasty Cola sales are given in Table 7.2(a). The
point forecasts of future Tasty Cola sales in the 12 months of year 4 are as given in Table 7.4.
For example, the point forecast of sales in period 44 is

};a4 = 1y, X SNy
[380.163 + 9.489(44)](1.693) = 797.699(1.693)
= 1350.50

Although there is no theoretically correct prediction interval for y,, the authors have found
that a fairly accurate (approximate) 100(1 — 0)% prediction interval for y; is

[y, + B,1100(1 - 0)]]
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TABLE 7.4 Forecasts of Future Values of Tasty Cola Sales Calculated Using Multiplicative Decomposition
t sn, tr,=380.163 + 9.489t  y,=tr,xsn,  B{95) [y, - B(95). ¥. + B.(95)] .

37 493 731.273 360.52 26.80 [333.72, 387.32] 352
38 596 740.762 441.48 26.92 [414.56, 468.40] 445
39 595 750.252 446.40 27.04 [419.36, 473.44] 453
40 680 759.741 516.62 27.17 [489.45, 543.79] 541
41 564 769.231 433.85 27.30 [406.55, 461.15] 457
42 986 778.720 767.82 27.44 [740.38, 795.26] 762
43 1.467 788.209 1156.30 27.59 [1128.71, 1183.89] 1194
44 1.693 797.699 1350.50 27.74 [1322.76, 1378.24] 1361
45 1.990 807.188 1606.30 27.89 [1578.41, 1634.19] 1615
46 1.307 816.678 1067.40 28.05 [1039.35, 1095.45] 1059
47 1.029 826.167 850.12 28.22 [821.90, 878.34] 824
48 .600 835.657 501.39 28.39 [473, 529.78] 495

where B,[100(1 — o)] is the error bound in a 100(1 — )% prediction interval

[tr. + B.[100(1 - ar)]]

for the deseasonalized observation
d, =TR; + &,
=By + Bt + g

For example, using SAS to predict d; on the basis of t by using the above trend line
find that a 95% prediction interval for dy, is

[769.959, 825.439]
This implies that

825.439 - 769.959
2

B,,[95] =

=27.74
It follows that an approximate 95% prediction interval for yuq is
[1350.50 — 27.74, 1350.50 + 27.74] = [1322.76, 1378.24]

In Table 7.4 we present 95% prediction intervals (calculated by the above method) for 7=
Cola sales in the 12 months of year 4.

Suppose that we actually observe Tasty Cola sales in year 4 and that these sales =
as given in Table 7.4. In Figure 7.4 we plot the observed and forecasted sales for z° =
sales periods. In practice the comparison of the observed and forecasted sales in y=z
through 3 would be used by the analyst to determine whether the forecasting egus
adequately fits the historical data. An adequate fit (as indicated by Figure 7.4, for exams
might prompt an analyst to use this equation to calculate forecasts for future time peric
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One reason that the Tasty Cola forecasting equation
¥, = 1r. csn,
(380.163 + 9.489¢t)sn,

provides reasonable forecasts is that this equation muftiplies sn, by tr,. Therefore, as the
average level of the time series (determined by the trend) increases, the seasonal swing
of the time series increases, which is consistent with the data plots in Figures 7.2 and
7.4, For example, note from Table 7.3 that the estimated seasonal factor for August is
1.693. The forecasting equation yields a predicticn of Tasty Cola sales in August of year 1
equal to
f/a = [380.163 + 9.48%(8)](1.693)
= (456.075)1.693)
=772.13
This implies a seasonal swing of 772.13 — 456.075 = 316.055 (hundreds of cases) above
456.075, the estimated trend. The forecasting equation yields a prediction of Tasty Cola
sales in August of year 2 equal to
Voo = [380.163 + 9.489(20)](1.693)
= (569.943)(1.693)
= 964.91
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/.2

which implies an increased seasonal swing of 964.91 — 569.943 = 394.967 (hundrac
of cases) above 569.943, the estimated trend. In general, then, the forecasting equatc
is appropriate for forecasting a time series with a seasonal swing that is proportiona! -
the average level of the time series as determined by the trend—that is, a time sers
exhibiting increasing seasonal variation. In fact, sometimes increasing seasonal variat«

is referred to as multiplicative seasonal variation.

ADDITIVE DECOMPOSITION

Consider a time series that exhibits constant seasonal variation. When the parame:==
describing the series are not changing over time, the time series can sometimes be n
eled adequately by using what is called the additive decomposition model.

The additive decomposition model is

v, = TR, + SN, + CL, + IR,

Here TR,, SN,. CL,, and IR, are again defined to be, respectively, trend, seasos
cyclical, and irregular factors. However, in this case these factors are additive ra
than multiplicative.

The additive decomposition method can be used to obtain point estimate
sn,. cl,, and ir, of the above factors. The procedure begins with the calculation of o=
tered moving averages, CMA,. The centered moving average is regarded as an ¢
mate of TR, + CL,. Since the model

v, = TR, + SN, + CL, + IR,
implies that

SN, + IR, = v, — (TR, + CL)
it follows that the estimate sn, + ir, of SN, + IR, is

sn, + ir, = y, = (tr, + cl) = v, — CMA,

In order to obtain sn, we group the values of sn, + ir, by like seasons (months. ¢

ters, etc., as appropriate). For each season we compute the average sn, of the sn. -

values for that season. We obtain seasonal factors by normalizing the sn, values s : :
the normalized values sum to zero. The normalization is accomplished by subtrac "

the quantity L% ,51,/L from each of the sn, values. That is, the estimate of SN

L
sn, = §n, — {ZSI],/LJ
t=1
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We next calculate the deseasonalized observation in time period 7 to be
d, = y, — sn,

Subtracting sn, from the observation y, removes the seasonality from the data and allows
us to estimate the trend better. We obtain the estimate tr, of the trend TR, by fitting a
regression equation to the deseasonalized data. For example, a linear trend

TRI = BO + Bir
or a quadratic trend
TR, = By + Byt + B,t?

might be fitted to the deseasonalized observations.
Since the model

v, = TR, + SN, + CL, + IR,
implies that
CL, +IR, = y, — TR, — SN,
it follows that we compute the estimate of CL, + IR, to be
cl, +ir, = y, = tr, = sn,

In order to average out ir,, we compute a three-period moving average of the cl, + ir,
values. That is, the estimate of CL, is
] (cl,_, +ir,_;) + (cl, +ir) + (cl,,, + i)
el = - :

' 3

Finally, we calculate the estimate of IR, to be
ir, = (cl, +1ir,) —cl,

The estimates tr,, sn,, ¢l,, and ir, are generally used to describe the time series. We
can also use these estimates to compute predictions. If there is no pattern in the irreg-
ular component, we predict IR, to equal zero. It follows that the point forecast of v, is

y, = tr, +sn, +cl,
if a well-defined cycle exists and can be predicted. The point forecast is
y, = tr, + sn,

if no well-defined cycle exists or if CL, cannot be predicted. Although there is no the-
oretically correct prediction interval for y, an approximate 100(1 — 0)% prediction
interval for v, is

[7, + B[100(1 — )]]
where B,[100(1 — )] is the error bound in a 100(1 — a)% prediction interval
[tr, £ B[100(1 = a)]]

for the deseasonalized observation d, = y, — sn,.



