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m defined to be, respectively, trend, seasonal,
Jowever, in this case these factors are additive rather

mbeusedtoobtampantmw.

Scanned by CamScanner



-
N <b)
[
- C
[+
O
()]
e
g1
o
)
O
o]
[¢B)
[
e
[+
(&)
w




‘L. Suppose that the time series yy, ¥, ... ¥, has -'
- slowly changing over time but has no trend or seasonal pattern.
estimate €, for the level (or mean) of the time series in time period
given by the smoothing equation

€= oy, +(1 - o),

where « is a smoothing constant between 0 and 1, and €7 is the
estimate of the level (or mean) of the time series in time period ' —

2. A point forecast made in time period T for yz, is
¥ ol T) =€ &= L 2ol

3 Hrt=1, then:

95% prediction interval computed in time period T for yry

vl e e S Y

€, :I,lL"ﬂS]

——
‘
L
|
’
Yo
S

% prediction interval computed in time period T for y

£

¥ 2
€1 £ 2 0p5p5V1 + a"]

In general for any . a 95% prediction interval computed in time
period T for y;, . 1s

prt—

€r 2 2p0utyl + (5~ l)all

where the standard error s at time 7 18

[T [T
i -5 ~DF (S = 6P
g = e = 1 ; - = 1'§ '..-_... _.’_.....__
et ) ¥ Yo o e

Note: There is not general agreement on dividing the SSE by (7'~ number ' %
smoothing constants). However, we use this divisor because it agrees with the

nential smoothing with a. = 034 to forecast future monthly cod catches. Fro
we see that £,, = 354.5438 is the estimate made in month 24 of the leve
. thecodcatch data. it follows that the pont forecast made in month 2
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_ /(362 - 360 66677 + (381 360.7125F +---+ (365 - 3
_ [28089.14

o, S

= 3495

Now, we can compute prediction intervals as follows:
e A 95% prediction interval made in month 24 for y;s is

(3545438 + 7 o,q5] = [354.5438 + 1.96(34.95)]
- [286.04, 423.05)

e A 95% prediction interval made in month 24 for yg is

(354 5438 + 7, s V1 + a3] - {354.5438 +£1.96(34.95\1+ (.034)2]
— [286.00, 423.09]

e A 95% prediction interval made in month 24 for yy; is

(3545438 £ 2 51 + '2'{12] x [354.5433 +1.96(34.951 + 2(.034)2]
' — [285.96, 423.12)

Notice that since the smoothing constant o, is small, the increase in the length of the pre-

diction intervai is very smali. :
Now assume that we observe a cod catch in January of year 3 of y,5 = 384, Computers

have become 5o fast with quick access to such a large storage capacity that one t:@u[d
develop 3 forecasting system, even for thousands of itemns, that would repeat the process
in Example 8.1 to find 2 new and s when a new observation is obtained. However, one
of the wradinonal advantages of exponential smoothing is that we need only our |
mate to find new point forecasts. For the cod catch data, we can update €4 10 €55 by

the smoothing equation
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Furthermore, it follows that a 95% prediction interval made in m
[355.5453 % 7 ,qs] = [355.5453 + 1.96(34.95)]
= [287.04, 424.05] :
and a 95% prediction interval made in month 25 for ys; is

[355 5453 £ 7, 5V1 + u?] [355 5453 + 1.96(34.95)\1+ (03
= [287.00, 424.09]

In general, note that the smoothing equation
€, = oy +(1 =),
implies
Cra =y, +(L-a)p,
Substitution, therefore, gives us
tr=ayy +(1 - a)faye, + (1 —a)l, ,]
= ay; + (1 - way,, + (1 - a)?*€,,

substituting recursively for €;,, €.3,..., €, and €,, we obtain

vy + (1 =)oy, +-+-+ (1 - o) 'oy, + (1= a)’ €,
efficients measuring the mnmbuuon of the observations Yy, Y7i, Y2, -« . ¥y ase ;
ake, (1 —a)e,..., (1-a) ', respectively, and are decreasing exponenually'

" sges Borthis reason we refer to this procedure as simple exponential smoothing.
Since the coefhicients are decreasing exponentially, the most recent observation
~makes the largest contribution to the current estimate for the level (or mean). Older
servations make smaller and smaller contributions to this estimate. Thus, remote
Srervanions are “dampened out” of the current estimate of the level (or mean) as time
sdvances The rate at which remote observations are dampened out depends on the
smoothung constant «. For example, if o = .9 we obtain coefficients .9, .09, .009,
WL For values of anear 0, remote observations are dampened out more slowly.
The chowce of 2 smoothing constant « is usually made by simulated forecasting of a
hastorical data set as illustrated in Example 8. 1.
The smoothing equation may be written in what is called the “error correction
form” as follows.

A i e i o

JR—

e

ERRORCOIIRECHONFORM

The error correction form for the smoothing equatwnmsll!ple exponential
smoothing:

€T=€,u,+d(yr-*€§;§).?.' A
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8.3

tageous, when there is trend in the time series data, to use double

with one parameter instead of Holt's two- ling
; parameter smoothing (see Section
tracking signals for time series with trend were based on smoothing methods w
parameter. F“mmomﬂmmmwpmcedumbmedmmmodehfﬁ '
nential smoothing methods to aid in better identification of the correct smoott
method (see Hyndman et al., 2002). e

HOLT'S TREND CORRECTED
EXPONENTIAL SMOOTHING

Suppose that a time series displays a linear trend. If the time series is increasing or
decreasing at approximately a fixed rate, then the time series may be described by the
tinear trend model (see Section 6.1)

Yo = Bo + B+

The level (or mean) at ime T'is B, + B,7, and the level (or mean) attime 7 — 1is fig +
37 — 1. Thus, the increase or decrease in the level of the time series from time period
T — 1totume period T 1s

[Bu + B[T] = [[30 o B1(T -] = Bl

This fixed rate of increase or decrease §, is called the growth rate.

Holt's trend corrected exponential smoothing is appropriate when both the _level-anc_l
the growth rate are changing. A model different from the linear trend model is needed B
o d;scﬁbe the changing level and growth rate (see optional Section 8.6). To imPlem‘,’.'{tﬁi ;
Holt's trend corrected exponential smoothing, we let {7, denote the estimate of thelevel S
of the time series in time period T — 1, and we let by, denote the estimate of thegmwth,
rate of the time series in time 7' — 1. Then, if we observe a new u.me' senes-value Ir J
time period 7, we use two smoothing equations to update the estimates Cry and by
The estimate of the level in time period T uses the smoothing constant o and is

Er=ay + (= )€y +br_ 4]

This equation says that ¢ equals a fraction o of _the Pewly obseljved"ti};;e :
yr plus a fraction (1 — o) of [, + brl, wh:ch is the esﬁmatedo; e ley
time series in time period T, as calculated using esnmateeer_lan 71 €€
time period T — 1. The estimate of the growth rate of the time series
T uses the smoothing constant yandis _

S L +0-
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period 0. One way to do this is 1o fit a least squares trend line to pa
historical data and let the y-intercept be €, and the slope be by. For e

TABLE 8.1 Weekly Thermostat Sales

206 189 172 233
245 244 210 303
185 209 205 282
169 207 244 2901
162 211 218 280
177 210 182 255
207 173 206 312
216 194 211 296
193 234 273 307
230 156 248 281
212 206 262 308
192 188 258 280
162 162 233 345

Note: Read downward left to right.

Source: Reprinted from R. G. Brown (1962),
Smoothing, Forecasting, and Prediction of
Discrete Time Series, p. 431, by permission of
Prentice-Hall, Inc. Suggested by an example in
Abraham and Ledolter (1983).
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s it o .

) Saiver in Excel for finding a (alpha) and y (gamma) that minimize the SSE

: g kf;_'rm qamma SSE u;qugre _ ’-,«» st
52 0247 0095 38884 77768 2189,
Actual Forecast Squar 9.‘?.? .
Time Themostat Growth Made Last Forecast = Forecast

Period Saies (y) Level Rate  Penod ErTor Evor 28

0 202 6246 -0.3682 e

206 2031805 -0.2804 2022564 37436 14.0145)
o 2 245 2132921 07074 202.9001 42 0999 1772._49911,:
10 3 185 2068413 00270 2139995 -259996, 840.9751)
58 49 281 3010910 42475 3076757 -266757 7115940
50 3083059955  4.3100 3053386 26614.  7.0833)

51 280 3028248 35080 3103055 -303055 918.4226

52 345 3159460 45040 3064237 385763 1488.1288!

(b) Excel spreadsheet with the values for @, 7. 5. €55, and bg, when SSE is minimized

in Figure 8.6 and reoptimize (that Is, run Solver with different values) to seeif a minim""u |
SSE has been found in Figure 8.7. pan

To illus_trate the forecasting of thermostat sales, we use s, = 315.9460 and
4.5040 to find the point forecasts for ¥s3. ¥sa, and yss as follows:

Y5352) = €, + by, = 3159460 4 4.5040 = 320.45
Y4l52) = €5, + 2b, = 315.9460 . 2(4.5040) = 324,954

Y5552) = €5, + 3b;, = 315 9460 3(4.5040) = 329.458

| r 0 ok 3 i
1 order to compute the 95% prediction Intervals, we use the forecast errors in Figu

5. This figure gives the one-period-ahead foreca

when we use a = 0247 and Y= .095, the smoothing constants that minimize
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Then, a 95% prediction interval for yq, is

[¥52052) & 2,951 = (€5, + byy) £ 2 55)
= |320.45 + 1.96(27.89)]
= [320.45 + 54.66)
= [265.79, 375.11]

a 95% prediction interval for ys, is

[ﬁg,,(SZ) + zmms\lk 21 -0-7'Y)'2]

= [(532 + 2b)) £ 251+ a2l + PP

= [324.954 +1.96(27.89)\1 + (24720 + .095)2]

= [324.954 1 56.63]
- [268.32, 381.58]

and 2 95% prediction interval for yss is

(75552 £ 212551 + 021+ 77 + al(i+ 27 |

= [(tsz +3b;,) £ 2 asSy1+ a1+ 7P + o?(1+ 27)2]

- [329.458 + 1.96(27.89)1+ (247701 + 035F + (247701 + 2(099) |

=[329.458 + 58.86)
= [270.60, 388.32]
Eurthermore, if we observe ys3 = 330, we can either find a new optimal acand ythatmin-
imize the SSE for 53 time periods and compute a new s, or we can simply revise the -e's;i— Bt
mate for the level and growth rate and our forecasts as follows: ‘
€s3= ays3 +(1- a)(€s; + bs,) |
= 247(330) + .753(315.946 + 4.50¢ ]
= 322.8089
b5;=7'l353—€521+(1-7)b51 b
= .095[322 8089 — 315.9460] + .905(4 5040)
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EXAMPLE 8.4

ot alter the chaice. ol the smoothing parameters that minimize the SSE.
the Tormulas for the point forecasts and the 95% prediction intervals re

vame 1Uis, however, easier to relate the error correction form of the equa
the state space models of optional Section 8.6. The error correction form
smoothing equations for the additive Holt- Winters method is given in the fo _

DOX

ERROR CORRECTION FORM

The error correction form for the smoothing equations in the additive
Holt-Winters method:
Cr=Cp v b ralyy = (Cpy + by + 50y )]
by = by, + a¥lyy ~ (€7_, + by, +s0;_,)]

Sy = snp_; + (1 - a)d{y, — (€p_ + by, +s0;_)))

Consider the quarterly sales of the TRK-50 mountain bike presented in Exercise 6.3 of
Chapter 6. Table 6.8 presents four years of quarterly sales of the TRK-50 mountain bike
for the previous four years at a bicycle shop in Switzerland. The mountain bike sales are
plotted in Figure 6.32. This plot suggests that the mountain bike sales display a linear
demand and constant (additive) seasonal variation. Thus, we apply the additive
Holt-Winters method to these data in order to find forecasts of future mountain bike
sales.

We begin by finding estimates for the initial level, trend, and four seasonal factors.
For seasonal data we need to use at least four or five years of data to find estimates for
the seasonal factors. Hence, we first fit a least squares regression line to all four years of
the available data rather than just half the data. As in Holt's trend corrected exponential
smoothing, we let the y-intercept be €, and the slope of the regression line be b,. For exam-

ple, the Excel regression output in Figure 8.9 gives the following least squares regression
equation:

J, = 2085 + .980882t

Thus, we choose £, =20.85 and b, = .9809. These values have been copied to the cells

that correspond to the level and growth rate at time O in the Excel spreadsheet of '
Figure 8.9. ;

The seasonal factors are found by the following three-step procedure:

1. We use the least squares regression equation to compute J, for each
that is used in finding the least squares regression equaﬁon In our "
ﬁfm&:eﬁwryeaﬁ df“data t= 1 2 5as s 15
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Exce! spreadibeet of the additive Holt-Winters methad for quarterly mountain © bike m :

.. :ana 0 as 10 598
o
ppha  genma  delts ssquars ¢ : : g
Be a4y o Hnee 19W BT | e
{
. Actual Forecas! Squared frny
Bihe Growth Seasonal Made Les Forecast Forecast R
. Sales Lovel Rale | Factor Pencd Emor . Enor : L

3 14 162 - il
2 65529 ' i
1 18 5721 Regression Mult

U 208500 09809 -109088 fsimates Detranded Average R Square |
1 {0 23070 10286 140254 76147 23853 568% 216309 -118309 -14. 2162i usted R
2 31 235585 10608 66418 208895 11106 1 7913 228118 816882 65529 Sl_&n

3 3 245731 10472 185575 431815 01815 0032 717926 192074 185721 'Ob

4 '6 258780 10729 -108057 147115 1 2885 16603 247735 BT7735 -10.9088 :
5 yase 37079 2576544 147544 00000 ANOVA 1
E‘ ¥
7
g
8

s o

11 265658 10344 -14.1794 12,925

!
37318 10096 65424 342420 12420 15427, 267353 6.2847 i
15 279776 009712 184040 469190 -19190 36825  27.7162 17.2838 ‘Re
17 %8702 00483 -108972 181431 -11431 13067 286971 -11.6971 Residual |
14 93707 00186 142985 154892 14892 22176 296779 -156779 Total
0 3 W12 09019 54759 3BB317 08317 06918 306568 53412 -
n 50 311391 09133 184497 494289 05711 03262 316397 18.3603 o

12 21 320214 09102 -10.9096 211553 -0.1553 00241 326206 -116206 'Inierce :

13 19 330050 09176 -142692 186331 03669 01346 336015 -1468015 X Variable
14 41 340428 09206 65240 403%5 06015 03618 345824 6478, . 1
'§8 5 %2881 0912 105759 53422 15778 24894 355632 13.4388 :
16 25 %1813 09544 -109%6 2533% 03396 01153 BS54 1541 L

These values are shown in the column of “regression estimates.” For

y, = 20.85 +.980882(1) = 21.8309 &

and o ,{
< = 20.85 + .980882(5) = 25.7544 ‘-f';_.*-'

2. Next we detrend the data by computing y, — J, for each time period tha ti
to estimate the least squares regression line. For the mountain bike data
compute y, — ¥, for the four years of data, t = 1, 2,..., 16.

These values are shown in the column of Figure 8. 9 cailed "Detren&{
example, o

¥ — ¥y =10 -21.8309 = —-11.8309
and

Ys

ys =11-257544 = 14, 7544

Scanned by CamScanner



B

118300 4 (~14.7584) + (- +(=
. Al

3:%¥ 4V
3 s

15.6779)
= -14.2162 .

Sirnlarly, we find (by copying the Excel formula) that

sn_, = 6.5529 is the seasonal factor fofquamr 2 .
sn_, = 18,5721 is the seasonal factor for quarter 3
10,9088 is the seasonal factor for quarter 4

he L seasonal factors to be 0. Notice that our fo
ountain bike sales do have an average of 0, and'

SNg =

We want the average of t

¥y

seasonal factors for the m
s always 0 when using these three steps.

After finding the initial values for the level, trend, and fo
to use the smoothing equations. In this example, we use _ .
hing equations. gither form of the smoothing equ jtions wnli
s as in Figure 8.9. starting with the initial values, we calculate a point

time origin 0 10 be

91(0)=ee.+bo+'5“1-4 ‘_eu*bg-f?mé s
_ 20.85 + 9089 +(-14.2162)

smoot
numbe
y, from
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Usmg the error correction squation for by, the estimate for thel Grow

period 1 5
b, = b, +ayly, - €+ by, + 509l
= by, + wyly; = y4(O)
9809 + (.2)(.1(2.3853)
- 1.0286

Using the error correction equation for sny, the estimate for the seasonal fa

pertod 118
sn, = sy, + (1= @) dly, = (€5 + by + sny_y)]
s, + (8). My, = y(0)
14 2162 + (.08)(2.3853)
= ~14.0254

it follows that a point forecast of y, in time period 1 is

y, D =€, +b +sn, , =€, +b +sn,
= 22.3079 + 1.0286 + 6.5529
= 29.8895

Since the actual mountain bike sales in time period 2 is y, = 31, the forecast enm
¥, = ¥5() = 31-29.8895 = 1.1105

We continue this process for all 16 time periods. We also compute the squared
errors and the sum of the squared forecast errors (SSE). The results of this process
played in Figure 8.9, where we can see that SSE = 25.2166. |

To find “good” values to use for o, y, and 8, we select the values that minit
sum of the squared forecast errors (SSE). Figure 8.10 shows the results of using_
find the minimum SSE. We see that the minimum SSE = 18.7975 is obtained t
561, y=0, and 5 =0, and that s = 1.2025. We also see that the final estima
level, growth rate, and seasonal factors are ¢, = 36.3426, bg= 9809 sn

from the initial estimates. :
~ Wenow look at the process of computing point forecasts and 95!
: vals. We use the estimates from Figure 8.10 that produced the mmi ur

' Wd Y17 Yie, @nd yyq are :

| Scaned by CamScanner



Levet  Rate = Factor Penod | Ewor  Enor

208500 09805 -10.9088 Estimates Detrended. Mr;r“
B2

bwm Made w Forecast chu!

BLFi
B 6629 |
18 5721 Rogunmn

B2 09809 142162 THI7 2353 56896 21 8X9 na:m -14

3161 09809 B5528 70X 02960 00988 228118 81682

40098 09000 185721 4368691 08691 07563 2379% 19,2074 tasm‘

%7685 00RO 65520 397088 07088 05024 26733 62647
77041 09800 185721 463114 -1.3114] 17198 27.7162, 17.2838 , ,
79423 09809 109088 170762 00762 00058 286971 1166871 Flelndua! RS,
S5%s 00800 142162 147070 07070, 04998, 296779 156779 Total 15

SO N el L hD e T L L

00

\ 977 Dos9 55529 360806 00608 00037 306588 53412

J
’

)
J

..-._.,_.,
e LRI -

[ S5

N i

s, B
(5}

t;n Ao | -
= w0

63
(0]
(

76 00809 .DO088 148818 11182 12603 2477% 877% -109089,
750 09800 142182 131823 21823 47622 25754 147544 00000 ANOVA

o0 00805 185721 490266 09734 09474, 316397 183603 Coefficient:

| 3405 00809 109088 210723 00723 00052 326206 -116206 Intercept 2085
\0S57 00800 142162 187053 02947, 00868, 336015 146015 XVanahia 0980882
03 09809 65529 406205 03795 01440 346824 64176 R

9153 09809 185721 538333, 1.1667 13612 355632 T D M

125 09800 -10.90898 259874 09874 09749 365441 ALY e f s B

Then, a 95% prediction interval for y, is
(71718 £ Zas5Vc | = [23.1073 + 1.9601202511)
= [23.1073 + 2.3569)
— [20.7504, 25.4642]

a prediction interval for ysg is

715(16)  2,0255:C, | = [44.8573 £ 1.96(1. 202511+ 02(1 + )2 |

£ [44.35731 1.96(1.2025)1+ (.5-51)2'(_“@):]. e
= (44.8573 + 2.7025) i
= [42.1548, 47.5598)

and a prediction interval for yyg 1S | _

[715016) £ 25255 | = [57.8574 £1.960.2025)1 + a1 + 77 + a1+ 2

[sa 8574  1.96( 20251+ (S617(1+ OF + 551)2(1 + 2(0)):]--‘ :
5513524::; S
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-wummmmm ymfﬁﬂmfwwmﬂ factor. Forﬁxm
ey data, the 95% prediction intervals for both typesafeapmenﬂaimthingmm
first year ave as follows:

027 Quarter 1. yy i(T) £ Zg36
2 _ Quarter 2: ¥y (1N 2 2545y 1+a2(1+7)2
BEE Quarter 3: ¥y () * ousu +alll ) + @i+ 297

Quarter 8: y,.,() + zms,s\jl + z[tx‘ﬁ + H)’l
) ju1

In the second year, the 95% prediction intervals for the two exponential smoothing meth-
ods differ starting with the term that corresponds to the first quarter of the second year
under the square root sign. The term for the additive Holt-Winters method is

e e e e el et i Lo e

[l +49) + (1 — o8]’
and the term for Holt's trend corrected exponential smoothing would be
(1 + 4y

Specifically, the intervals given by Holt-Winters method for the first and second quarters
of the second year are

—
Quarter 1: y, .(T)  z, 325_-5\ 1+ Y [0+ 1)) + [l + 4y) + (1 - o))
| j=1

3
Quarter 2: y, .. (T) = 2502515\‘:] + 2[02(1 + 7] + (001 + 4y) + (1 - SR + a2(1+ Sy)2

j=1

For monthly data the difference would appear in the first month of the second year.

Multiplicative Holt-Winters Method

If a time series has a linear trend with a fixed growth rate, B, and a fixed seasonal pat-

tern, SN,, with increasing (multiplicative) variation, the time series may be described
by the multiplicative model

e % = By +Bt) X SN, X IR,

I Here IR, is an irregular component, as discussed in Chapter 1. In the classical multi-
plicative decomposition method, we estimated the fixed seasonal factors, SN,, by
using a procedure involving centered moving averages (see Chapter 7). For this model

 the level at time T~ 1 is By + B, (T 1), and the leve] at howing
,mmmmfamemmg, el it

,- ,’ ,7“- ” :;‘—!
i DN, iRt 1 Baaer |




pocs, the kubeceipn T - Lof Sty |
T - L was the most recent time series value observed in the season being

a and thus was the most recent time series value used to help find snz.. Then,
- the estimate of the level of the time series in time period T uses the smoothing con-
~ stant o and 1s

€,= alyplsng )+ (1=-o)€p* by )
" where (y,/sn;_,) is the deseasonalized observation in time period 7. The estimate of
the growth rate in time period T uses the smoothing constant y and 15

b, = ¥z —€r )+ (1 - b7

The new estimate for the seasonal factor SN in time period T uses the smoothing con-

stant 8 and 1s
sn, = & Yl s )+ 14— d)sny_;

estimate of the newly observed seasonal variation.

where ( v,/€;) 1s an
Holt—Winters method in the following box.

We summarize the multiplicative

MULTIPLICATIVE HOLT-WINTERS METHOD

—— . m—

1. Suppose that the time series yi, ¥2.-..» Y €Xhibits linear trend locally and
has a seasonal pattern with increasing (multiplicative) seasonal variation
and that the level, growth rate, and seasonal pattern may be changing.
Then the estimate £ for the level, the estimate by for the growth rate,
and the estimate sny for the seasonal factor of the time series in time

period T are given by the smoothing equations
€,= alysny_ )+ (1~ )€+ b))
by = Y€y -, )+ 1= Nbry
sn, = 8(yrly) + (1= 8snpy
- wherea,y.and dare smoothing constants between O and 1, €7, and by |
; {'fis'mees&maﬁeinﬁmpeﬁod'f _ Lforthe seasonal factor, -




*’ra(ﬂt 'mm’r{\fcﬁ k’“ru :,)]
if t=1 then o = (£, + by
if t=3 then o, =o’(l+ 1)2(€1 + 51)2 + (€, + 2br)"
if t=3 then ¢, =a’(14+29)(€; + bV 3

+ (14 72 (€, + 2b, ) + (€, +3b,)

L

[ ]

if €t < 1l then
i

L)

Za(unm;m(r 4 by 4 (€, + by )

ii

U

a(l + [t = 1), + b, )
+al(1+ Y, + [t - l]b,)- + (€, + 1h, )

o ids v e R
Theo s dmdda i\ b8, ¥ 7

The relative standard error s, computed in time pcriod Tis

+ ‘ - .
2 :\',1\",(7:;1) 2 2 -i( I)sn, L 2
¥ (=1 [(l 1+bl lhnr L

gl — =

(For a better approximation and an exact formula, see Hyndman et al.,
2001.)

The three smoothing equations of the multiplicative Holt—-Winters method can
be put in the error correction form. Either form of the smoothing equations may
be used to implement exponential smoothing (for example, when setting up a
spreadsheet in Excel). Using the error correction form of the smoothing equations
does not alter the choice of the smoothing parameters that minimize the SSE.
Moreover, the formulas for the point forecasts and the 95% prediction intervals
remain the same. It is, however, easier to relate the error correction form of the equa-
tions to the state space models of optional Section 8.6, The error correction form

gﬁm smmﬂnng equattons for the multiplicative Holt-Winters method is given i0
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{6y + by 0y

b" = hl‘ p *“’f{h P 1 bf Imf J
"if L
Ly = (C,- 12* b‘rzlmr-ﬂ

SNy = sty 4 (1= @B S
r

The quarterty sales of Tiger Sports Drink for the last eight years are given in Table 8.2 and
a plot of the sales 1s shown in Figure 8.11. The plot indicates that there is a linear increase
in sales over the eight-year period and that the seasonal pattern is increasing as the level
of the time series increases. This pattern suggests that multiplicative Holt-Winters might
be Pmp{ovec‘ to forecast future sales.

We will use the smoothing equations 1o construct the spreadsheet in Figure 8.12.
However, we must first find initial values for the level ¢;, the growth rate by, and the sea-
sonal factors, sn_;, sn,, sn_,, and sn,. We need data for at least four or five years to find

TABLE 8.2 Quarterly Sales of Tiger Sports Drink (1000s of Cases)

Year
1 2 3 4 5 6 7 8

72 77 81 87 9% 102 106 115
116 123 131 140 147 162 170 177
136 146 158 167 177 191 200 218

96 101 109 120 128 434 142005345

oo TSl Ly R S -
N0 R bt o A

Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



to be 1. We do this by
) i '“‘ tn\i

i mmu,_,i. = L there is no correction to be made because CF = 1. In
~ orderto use the smoothing equations in the spreadsheet in Figure 8.12, the initial
seasonal factors have time subscripts for which the first season is in time
period 1 — L, the second season is in time period 2 — L, and the last season is in
time period L — £ = 0. Thus the initial seasonal factors are

=50 =120

For the quarterly sports drinks data, we find four initial seasonal factors. In this
case, CF = 4/3.9999 = 1.0000 and

sy = S, = S,(CF) = .706(1) = .7062
SNz = SNy, = Sp(CH = 1.1114() = 1.1114
sn_, = sny_, = 55(CP = 1.2937(1) = 1.2937
sn, =50, , = 5,(CP) = .8886(1) = .8886

These values are listed under “Index” in Figure 8.13 and copied to the cells for time peri-
0ds -3, —2, -1, and 0 under “Seasonal Factor” in Figure 8.12.
After finding the initial values for the level, trend, and four seasonal factors, we are

ready to use the smoothing equations. Starting with the initial values, we calculate a point
forecast of y, from time origin 0 to be

R TR G g Ny ST Y 8

e 70 = (€ + bokny = (6 + bykn.,
B = (95.2500 + 2.4706)(.7062)
= 69.0103

This point forecast is shown in Figure 8.12 under “Forecast Made La 4

' : A st Period.” Also shown

in the spreadsheet is the actual sales value ¥1 =72 and the forecast error, which is

= /(0] = 72 - 69.0103 = 2.9897

o rm“’m;u iSsetupusing =2, y= 1, and &= 1. In this example,
T £ _W S form MWW Either the original or the error cor-
G B e e S .ﬂpmducethesame numbers as in Figure 8.12.
the estimate of the level of the time
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by =l L)+ -by
= 198 5673 - 95.2500) + %2 4706)
= 2.5583

sny = ¥y, /€,) + (1= d)sny 4

3y, /€,)+ (1=238ksn_,
1(72/98.5673) + .9(.7062)
7086

it follows that a point forecast of y, in time period 1 i1s

v, = (€, + b)sn, , = (€,+b)sn_,
(98 5673 + 2.5553)(1.1114)
112.3876

Il

I

Since the actual sales value in time period 2 is y; = 116, the forecast error is
» ¥, —y,(1=116-112.3876 = 3.6124

Using the estimates that we just obtained, we can now compute the updated esti-

mates €5, b,, and sn; as follows:
€, = aly,/sn, o) + (1—aX¢(, +b,)
= aly,/sn_y) + (1—a)(¢, + b))

2(116/1.1114) + .8(98.5673 + 2.5553)
101.7726
bz 5 ('tz €) + (b= T)b1
.1(101.7726 - 98.5673) + .9(2. 5553)
= 2.6203
= B(y,/6;) + (1 8)sny._y
= S(g,fe,) - (1 ﬂm.,

li
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FIGURE 8.14
Findhng @, v and &
values that
minamize SSE using
™he muttiplicative
Holt-Winters
method for sports
drink sales

Nt fhat he F0rTs o ey
ing 31 time periods. We also com, COMMpuge E
e squared forecast errors (SSE). The reg;,

' hat SSE = 177.3;
of this process m&mﬂ&m\wmmt 3
“:Mﬂ &" values to use for o, v, and 8, we select the values that minimze the
mahwwmm Figure 8.14 shows the results of using Solver
firwct the ranimum SSE. We soe that we obtain the minimum SSE = 168.4753 when ¢ = 3%

gamma deta = SSE

ssquare s

0.336 0.046 0134 1684753 58095 24103 00108 00183
Forecast Squared Squared
Actual Growth Seasonal Made Last' Forecast Forecast Relative
Time Demand Level  Rate | Factor | Period Error  Ermor | Emor
-3 07062 '
-2 | 1.1714]
. 1.2937
0 952500 24706 08886 |
1 72 991415 25353 07089 690103 29897 89384 0001877
2 16 1025816 25765 1.1140 113.0036| 29964 89786 0000703
3. 136 1051470, 25760 1.2037| 136.0431' -0.0431, 0.0019  0.000000
4 %, 1078277 25808 08838 957207 02773 00769 000000
2 115 161749 2377, 0 7044] 1131539 18461, 3.4079] 000020
30 1771627095 22655 1.1038| 1815084 45084 203261 000067
31 218 1662958 23255 1793 2129210, 50790, 25.7960, 00005
32 149 1881213 23028 08908/ 150.3283] -1.3283 17643, 0000078 |

(b) Excel spreadsheet giving the minimum §
sn31., al"ld Sngz

SE with the values for o, y, 8, €3, bsy, Shas ™

Scanned by CamScanner



= .%M-ﬂgﬁmf“*“,* ks sl ke ._
P2 = (€ 20, = 1681213 420 302801.1038) = 1906560
535(32) = (fn + 3bnhn“ = 226.3834 » - ety
¥36(32) = (€, + ab,n,, = 157.9678

Before we compute the 95% prediction intervals, note that the formulas in the box
for these 95% prediction intervals use the relative standard error s, at time T rather
than the standard error s at time T. The reason for this change is the result of using

a muitiplicative model where the trend is multiplied by both the seasonal factor
and ﬂje rregular factor To find s, we find the sum of the squares of the relative errors
U= ylt=Dly, (t=1),t=1,2,.., T, rather than the sum of the squares of the errors,
[y: = yt- 1)), as follows:

: 7t=D |
o 32-3
172-59.01037 [116-113.0036]  [149-150.3283
L 690103 | 113.0036 1503283
'. 29
< oos
= St = . Sl =.0193 (see Figure 8.14b)

Then a 95% prediction interval for ;3 is

i 75232) £ 2 355, ..’c.;;](snud)] = [120.0467 + 1.96(.0193)(,{(4.’32 + b,z)z)(.7044)]
= [120.0467 +1.96(.0193)(168.1213 + 2.3028)(.7044)]
= [120.0467 + 4.5411]
= [115.5056, 124.5858]

To compute the 95% prediction interval for y;, we first compute

C, = a¥1+ Pt + by, P + (€, + 2by,Y
— (336)(1+ 0467(168.1213 + 2.3028) + (168.1213 + 2(2.3028)
= 33,422.1814

A [P < i 1

| n b mSanner |
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: Mmmuw-umminmaw '
* 8. 15(a). 1t is suggested in an exercise to search for better sm .
; wmumwdmﬁmmmmm 43
mmmmmmmmmmummh
Figure R 15(h) than in Figure 8.15(a). Hence, it is evident that the initial estimates of

o TR T

Qbs
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8.5

MSD 6812.61

0 e ———— e | g A
l 5 10 5 W 2B 30 35 40 45
Time
Period Forecast Lower Upper
37 355.96 240.99 470.95
38 426.31 309.52 543.10
39 436.69 317.90 555.49
40 SB5.60 384.60 626,60
41 431.71 308.32 555.10

(b) MINITAB output

the level, growth rate, and seasonal factors were found by different procedures. Fora
short time series, the poor fit at the beginning of the time series will not be negligible
and will result in wide prediction intervals.

DAMPED TREND AND
OTHER EXPONENTIAL
SMOOTHING METHODS

|

The methods presented so far include the most commonly used exponential methods:
simple exponential smoothing, Holt’s trend corrected exponential smoothing, the
additive Holt-Winters method, and the multiplicative Holt-Winters method. Another
common exponential smoothing method is Gardner and McKenzie’s damped trend
exponential smoothing. The damped trend method is appropriate for forecasting @
time series which has a growth rate that will not be sustained into the future and
whose effects should be dampened. Dampening the growth rate means to reduce it1?

size so that the rate of increase or decrease for the forecasts is slowing down. We firs
o _.emsmr a method for thnped ttend When there is no seasonal pattern.
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mumh&mmmmmww { : : R
€= ay, + (1 - u](tr,, *"hr..ﬂ o i g %
by = Y(€p = €y.y) + (1 = YDy '

where o and y are smoothing constants between O and |, and ¢ is a
damping factor between 0 and 1.

2. A point forecast made in time period T for yg,, is X
FraaT) =€, + (00 + 9°bp + -+ + 0°bp)
3. Iit = 1. thena95% prediction interval computed in time period T for

Yrals
7 a(T) £ 30551
If == 2. then « 95% prediction interval computed in time period T for
Frs2 18

[ % g1+ 20+ 07
1f == 1 then 2 95% prediction interval computed in time period T for

¥ras iS

[; (T £ 2 s 1+ @20+ @Y + a2(L+ 67 + ¢1‘y)2]
[f< > 4 then a 95% prediction interval computed in time period T for

¥ras Is

{' r'—'
[ymm t I’wzsr‘\{l + Zu"ﬂ +0,7)?

j=1

where ¢, = 0 + o +-+ 0.

Wec&nseematﬂ:eeﬁ'ectot'thegmwthme.:b-rinthepaintforecastisreducedﬁirﬂleﬁ :
for each addiﬁonalﬁmcpeﬁodinﬂleﬁum'e,pmvidedﬁslessman_l_; For.sxmple;-.-
if ¢ = .7, then s
)’r =+ .Tby
_ __e,.+ Tb,-t-(‘!)’br ‘tr‘*' 7br+ dﬁb,.

Biand
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B ‘t‘"r.u""hr-i +alyr = €rat oby_)]
By = by + a1y — (€roy *+ 0br-0l

d with either the additive Holt-Winters

For seasonal data we can use damped tren
method or the multiplicative Holt-Winters method.

ADDITIVE HOLT-WINTERS WITH DAMPED TREND
————————

1. The estimate ¢; for the level, the estimate b, for the growth rate, and the
estimate sny for the seasonal factor of the time series in time period T are

given by the smoothing equations
by = 16, - €, )+ A =7)br,
snp = 0y, —€;) + (1=298)sn,_;

where_a, v. and & are smoothing constants between Oand 1,and ¢ isa
damping factor between 0 and 1. The error correction form of the

€= €ry + 0bpy + ofyy — (€4 + 0bp_ +s07_)]
by = ¢by_; + oylyy — (€, + Oby_y + sny_g)l
AR | snp = sng_; + (1= )Ly, — (€p + 0bpy + snp_ )]
L o | Z AWWM&EEMMM T for yr,.is
 FreddT) =€yt @by + 9%y + -+ 07b) + SDreey
7+c1 1S thc‘“;mstrecem’ ’ estimate of the seasonal factor for the
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ye=! LR o &

where dJJ-f I i1 s an integer multiple of L and 0 otherwise and % l_;
=0+ o+ tg

MULTIPLICATIVE HOLT-WINTERS METHOD WITH DAMPED TREND
1. The esumate € for the level, the estimate b, for the growth rate, and the
estimate sn; for the seasonal factor of the time series in time period T are
given by the smoothing equations
€r=alypfsng_ )+ (1= o)(€p, + 0b_)
bT - T(er - fT_l) + (l o Y)¢b‘r-—l
sny = 8(y /€,.)+ (1 —8)snp_,

—

UNIVERSITY OF VENDA

where ¢, 7. and 8 are smoothing constants between 0 and 1, and ¢ is a
damping factor between 0 and 1. The error correction form of the
smoothing equations is

byr = €y + 0bp 0y, ]

b, =€, +0b  ta

Sy
by = by, + o Dy~ Seen . Sl t]
My
[yp = (€qy + 0bp_y)snyp ) )
snr=sn74,+(l—a)8 : Tle : Tk
T

2. A point forecast made in time period T for yy,, is
FrooT) = (€r+0by + 6%bp + -+« + @'y )80y, .,

where sny.._, is the “most recent” estimate of the seasonal factor for the
season corresponding to time period T + <.

b oind =
30 il -
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E isisb m
¢ = fu'a + = jir e, ﬂ,b«r)’ +(E, +0.b,)

= u‘{l [t~ TP, +0by ) 4o +
a1+ Y2 (€ + 0, bp)" + (€, + ¢.b, )
where ¢, =0 + ¢+t ¢
{For a better approximation and an exact formula, see Hyndman et al., 2001.)

When using damped trend methods, initial estimates can be obtained by utiliz-
ing the procedures presented for the Holt's trend corrected exponential smoothing, addi-
tive Holt—-Winters method, or the multiplicative Holt-Winters method. The choice of
smoothing constants and the damping factor is made by choosing the values that min-
imize the sum of the squared one-penod-ahead forecast errors (SSE).

We have introduced methods for cases with no trend, linear trend, or damped trend.
We have also provided methods to deal with no seasonal pattern, an additive seasonal
pattern, and a multiplicative seasonal pattern. There is an exponential smoothing
method that allows for exponential trend by multiplying the level by the growth rate
instead of adding them. It is possible to have any combination of the four types of trend
and three types of seasonality. In the next box, we show one more combination: no
trend and a multiplicative seasonal pattern.

NO TREND MULTIPLICATIVE HOLT-WINTERS METHOD

1. The estimate £, for the level, the estimate b, for the growth rate, and the
emm sny for the seasonal factor of the time series in time period 7 are

given by the smoothing equations
b = alyplsng ;) + (1 - a)(€;_)
sny = 8(yr/ey l_"’-q - 8)sn,_,

where @ and & are smoothing constants between 0 and 1.
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<15 mmn-.l ummwmwwﬁmwwmm
A soason corresponding 1o time petiod 7 4+«

A Anapproximate 95% mmmnmwr
- for yp,, when 1 € 1€ Lis

l‘{": ntir’ t 310111“-(""?'- + (t - llkiz )“‘,T"‘rn.-!.)]

(For a better approximation and an exact formala, see Hyndman et al.,
206 )

= S — S —

MODELS FOR EXPONENTIAL
SMOOTHING AND
PREDICTION INTERVALS

notation for the components (states) is

Component (state) Model  Estimate
Level in time period L; o
Growth rate in time period B, b,
Seasonal factor in time period SN, sn,

previous sec
example, @ 15 the estimate of the true value ). The new notation is

% This section is optional.

Every exponential smoothing method has a corresponding statistical model. Statistical
models are necessary for deriving formulas for prediction intervals. We will use state
space models with a single source of error for the exponential smoothing models. The
formulas for the prediction intervals in the preceding five sections were derived by using
the models of this section. Before presenting the state space models, we need to intro-
duce some new notation to distinguish the true values in the exponential smoothing
models from the estimates that are found in the exponential smoothing methods. The
components of exponential smoothing are called “states™ in state space models. The

The smoothing constants in the previous sections are estimates. To keep the notation
relatively simple we change notation slightly and require that all the estimates in the
tions for smoothing constants and the damping factor have hats (For
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observa _"quﬁmmdmornmtestateeqm.
X ¢ observat on is an equation for the value v, which can be observed,
~ The state equation mmummmmm) which are the level,
muﬂmmmﬁumoneﬁmepmodwmenmmmodm
have a random source of error ¢, The error term ¢, has a value from a normal distribu-
ton that has mean zero [that is, £(e,) = 0] and a standard deviation o [that is, Var(e) =
'] that is the same for cach and every time period. Moreover, the error terms ), €5, €,....
in different time periods are assumed to be statistically independent of each other.

The state space models for the single source of error models that we have stud-
ied in the previous sections of this chapter are presented in Table 8.3.

In order to see the relationship between the state space models and the exponen-
tial smoothing methods, one should relate the models to the error correction form of
the smoothing equations. For example, looking at the model for simple exponential
smoothing, we see from the observation equation that €, = y, — L,, and hence, the
state equation is L, = L., + a(y, — L,_). Since £, is an estimate for the level L, and
@& is an estimate of o, we see that the smoothing equation, €, = €_, + a(y, - €.,),
follows from the model.

TABLE 8.3 State Space Models for the Exponential Smoothing Methods

Model
Method Observation Equation State Equations
Simple exponential smoothing »=L,+g L,=L,, + cg,
Holt's trend corrected exponential =L+ B +¢ Li=L_,+ B, + as,
smoothing B, =B, + ay,
T - )r=L,,_;+Bf,|+SNF.L+l’., L,=L‘_1+B,_l+ﬂ.e..
B, = B, ) + ay,

SN, = SN, + (1 — a)d¢,
=Wy +B.)SN(1+¢) L=L+8B +a« (Lyy + By,

B; = B,.[ i 0.']‘(1:,_1 + Bn-l)fr

SN, = SN,; + (1 — @)8(SN,),

Y=Ly + 08, +¢ L= Ly + 6B, + c,
B, = ¢B,., + ay,

=L, +0B.;+ SN, +¢ Li=L_,+ B, +ae
BI=¢BJ-] 'HZ'YE;

SN, = SN:—L + (1 - a)de,

Y=L +B SN (1 +e) L,=L_, +¢B +all, +0B.)e
B, = 6B, + oy (L, + ¢B,.\)e, |
SN! = SN!-L 2 (1 by a)SSNf-LEI :

Y= Lo SN (1 + &) Li=L +ole |
SN, = SN, ; + (1 — a)8SN,_¢, i

R Y R ikt .vr-,a,_::.‘ \:sié.::i!s:ﬁ
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Then if we solve this equation for ¢, we find
¥ =y + B8N,
(L,  + B8N,
If we substitute the right side of this equation for ¢, in the three state equations for the

multiplicative Holt-Winters method, we obtain

[y = (Lyy + B SN, (]

g =

i B T T R
Y =1 =1 X SN,-;_
% e { S
B =B _,+ay Ly, ,,,(, g B E‘:.‘.’SP.";’:!
SN."!.
Ly, - (L, # B,_.)SN,;L]

SN, =SN,_, +(1- a)d ! B b

With one minor change we can see that the form of these equations is the same as the
error correction form if the estimates replace the true values. The minor change is in
the smoothing equation for the seasonal factor, where the state space model requires
that the revised values must depend on past time periods. Hence, we see a divisor of
L., + B, instead of L.

As stated at the beginning of the section, the models are needed to derive formulas
for the prediction intervals. One can also check that the models give us the point fore-
casts for the corresponding exponential smoothing methods. In the following exam-
ple we see how the point forecasts and the prediction intervals for simple exponential

smoothing are based on the model.

Assume that we have observed the values yy, ¥, ..., yr for the first T time periods. If
we have perfect information so that we know the values of Ly and a, then by using the
observation equation and state equation repeatedly, we would know the value of L;.
Now the mean or expected value of yr.., which is T periods in the future, is found as

follows:

fr=1 Elyr.)=Elr +&r) =Ely) +E€r) =L +0=1L;
ffr=2 Elyr,) =Ellry +Er) = Elly +08r, +Ery))

= E(ly) + 0E(er,y) + E(er,) = Ly
ifz = 3 E(yr.s) = Ellryy + Ery3) T Elrq + agr,; + e.r_»cs)._

= E(l; + €7, +0Er,, '*'%-ra): L




lfr«m + 1|mﬁaf(}'r o YM(T”

Again assuming that we have perfect information and thus know the value of L7, we

can find a formula for Var(yr.. = Vr.(T)) = Var(yp. — Ly as follows:
Kr=1 Vary,, - L) = Varl, + ¢, - ;) = Varle;) = ¢
fr=2 Vardy,,-4)=\Varl,, +¢&,, - L)
= Var(ly + agr,, + €1 = Ly)
= Var(og,,, + €r,,)
= a?Var(e; ) + Varler,,)
= oo’ + o2 = o¥a? + 1)

fr=3 Varly,;—L) = Varll,, + &r3 - L)
= Varlly,, + agp,; + €3 — Ly)
= Varlly + oy, + 08r,; + €3 — Ly)
= Varlog,,y + ogr,, + €7,3)
= a?Var(ey,,) + 02Var(e,,,) + Var(e,,3)
= oo’ + o’ + 6% = 62202 + 1)
and in general,
Varlyr.. — L) = Varlly + agp,y + OBy + -+ Or o + €py — Ly)
= aVarle,,,) + a?Var(e,,,) + -+ + o?Var(e,, ) + Var(er,,)
= (1~ Na’e? + 0 = o?[(t - o2 + 1]
Since the standard error s is an estimate of o, a 95% prediction interval for yr,. Is

€y % 200y s2(1 = N2 + 1)

€% 25T - 062 +1

- This is the formula for the 95% pmdit:ﬁqn-in;terval that was given in Section 8.1.

forecasts and prediction inter
the ate space models
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!i mmummqamuumm»mmmmw
model. We assume that (5, = 3545438, 0 » 3495, anda = 034.

2, w-mwrummmmmmmmmmdmmmw
distribution with mean 0 and standard deviation ¢ = 34,95

3. Avalue for s future cod catch in ime period 25 would be found with the
observation equation

Y = L)d + EP. = 3545438 + 83!

4. Avalue for a future cod catch in time period 26 would be found by using the state
eguation

Ly = Ly, + Qg5 = 354.5438 + (.034)e,,

and then the observation equation
Y26 = bs + €26

5. A value for a future cod catch in time period 27 would be found by using the state
equation

and then the observation equation
Yar = L + &y

Note: If one is given values for €55, €26, and €7, the equations in steps 3, 4, and 5 can read-
ily be used to compute yzs, Vae. and y;; (see Exercise 8.23).

If we generate many values for €5, €z, and &,,, say 10,000 of each, we would have-
many values for yss, Yze and y,, (10,000 values of each). Then we choose

1195, = 2.5th percentile of the 10,000 values for y,s
UL9S,s = 97.5th percentile of the 10,000 values for y,¢

The 95% prediction interval for y,s is
[LL9525.- UL9525]

Similarly, the 95% prediction intervals for y»5 and y,; are
[LL95;5, UL9S,e] and  [LL95;;, UL9S,)

AT ke b
ROIERIE 52\
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forecasts of 354.543g (,,

d 27 are 354.8518, 353 4 1

or [284,424] foryy

or [285, 422] fory,;

These intervals should be compared with the analytical intervals in Example 8.2. Although
the 95% prediction intervals that were derived analytically are more precise statistically,
the simulated intervals are very close Simulating intervals has some advantages. We can
find intervals for which we do not have analytical formulas. For example, we can readily
simulate 95% intervals for the cumulative cod catch for all three months of the cod catch
data and for time series when the multiplicative Holt-Winters method is appropriate. In
addition, the distribution for future values of a time series for which the multiplicative
Holt-Winters method is appropriate may not have a normal distribution even if the e, values
are normally distributed. Thus simulated prediction intervals may be the most reasonable

intervals.

TABLE 8.4 Entries for Simulation of y,s y35, and y,; for Cod Catch

n alpha SSE ssquare s ]
24 0.0343532 28089 1221.27 34.95
Smoothed Forecast Squared
R Actual Cod Estimate Made Forecast Forecast |
5 Time Period Catch y for Level Last Period Error Error
' 0 360.6667 |
1 362 360.7125 360.6667 1.3333 1.7778 |
2 381 361.4094 360.7125 20.2875 411.5838 :
3 317 359.8838 361.4094 —44.4094 1972.1959 5
g . - : |
; |
i 21 345 155.3733 3557424 —10.7424 115398 |
2 2 362 355.6010 355.3733 6.6267 439126
23 314 354.1719 355.6010 —-41.6010 17306423
24 365 354.5438 354.1719 10.8281 117.2486 ‘
Simulation
25 Yos =loa ¥ &5 Lns = Ly + ey €35
26 ¥is =has + & Log = Lys + azyg €26
£ 27 Yo = Log + €1 £
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foant Parod 25 Percentile o

0 0% 21V 85
Freguency Chan t.m Displayed 2.5% 285 7176
W : 5.0% 2066148
$0.0% 354 8518
95 %, A11.9697
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. penied & (Apuil of year 1) s 61 2380, as shown in

Figure 8.1,
¢ Vorify that €, an estimate made in period 4 (April
~of yoar 1) of the level of the cod catch time series,
is 3521142, as shown in Figure 8.1.
4. Venfy that the one-period-ahead forecast error for
period 5 (May of year 1) is 46,8858, as shown in
Figure 8.1.

8.2 Consider the Bay City Seafood Company cod

catch data in Figure 8.1.

a. Set up the Excel spreadsheet in Figure 8. 1.

b. Use the Excel spreadsheet to find the SSE when
a= 4

¢ Use tnial and emror to try to find the value of a that
minimizes the SSE.

d. Use Solver in Excel to find the value of a that
produces the minimum value for the SSE. Your
resulting spreadsheet should agree with Figure 8.2.

8.3 Consider the Bay City Seafood Company cod

catch data in Figure 8.2

a. Using the observed values of the first two years
(that is, use T = 24), find the point forecast and
95% prediction interval for the cod catch in month
28 (April of year 3).

b. Using the observed values of the first two years,
find the point forecast and 95% prediction interval
for the cod catch in month 29 (May of year 3).

8.4 Consider the Bay City Seafood Company cod

catch data in Figure 8.2.

a. If we observe a cod caich in February of year 3 to
be vy = 375, update the estimate for the level from
€15 10 €5 Recall that we already updated the level
to €, in Example 8.2.

b. Find the point forecasts and 95% prediction

~intervals made in time period 26 for the next three

months (March, April, and May).

8.5 Consider the weekly thermostat sales in Example

b

d. Verify that the one-period-ahead forecast error iy,

one-period-ahead forecast error i

: m3 | <26.7219, as shown in Figure § 6,

c. Verify that £, an estimate for the level made iy

W 3,18 2063775 and that by, an estimate for
the growth rate made in period 3, is 0180, as
shown in Figure 8.6.

pertod 4 is <37 3955, as shown in Figure 8 6,

8.6 Consider the weekly thermostat sales in Figure § 6,

p. Set up the Excel spreadsheet in Figure 8.6 with
€, = 202.6246 and b, = ~.3682.

b. Use this spreadsheet to find the SSE when a = |
andy = .1.

¢. Use trial and error to try to find the a and ¥ values
that minimize the SSE.

d. Use Solver, starting witha = .2 and y = .1, to find
the values of « and y that produce a minimum
value for 55E. The results should agree with
Figure 8.7,

¢. Setup the Excel spreadsheet in Figure 8.6 using
the error correction form of the smoothing
equations.

8.7 Use Excel to produce the regression output for
the thermostat sales as shown in Figure 8.6.

8.8 Consider the weekly thermostat sales in Figure

8.7(b).

a. Using the first 52 weeks of sales (that is, use T =
52), find the point forecast and 95% prediction
interval for sales in week 56.

b. Using the first 52 weeks of sales, find the point

forecast and 95% prediction interval for sales in
week 57.

8.9 Consider the weekly thermostat sales in

Figure 8.7(b).

a. In Example 8.3, after observing yg; = 330 we
revised the point forecasts and 95% prediction
intervals for the sales in weeks 54 and 55. Contin¥
this revision by finding revised point forecasts and

- 95% prediction intervals for weeks 56 and 57-

b. Suppose we now observe y, = 320, Use this neV
information to revise the estimates for the level
from €5; to €5, and the growth rate from b 10 st

§ e R SR
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WN find the values of a and v that
 minimize the SSE.

ll Find point forecasts and 95% prediction intervals

 for Japuary, February, and March of year 3.

8$.11 Comsider the sales of the TRK-50 mountain
bike in Example 8.4.
& Venfy the following esumates for the level,
growth rate, and scasonal factor: ¢, = 23.5586,
~ by = 1.0508. and sn, = 6.6418, as shown n

Figure 8.9.
.. Verify that the one-penod-ahead forecast error in
period 3 is — 1815
¢ Verify the following estimates for the level, growth
mae. and seasonal factor €, = 243731, b, =

10472, and sn, = 18 5575.

& Verify that the one-period-ahead forecast error in
period 4 is 1 2885,

8.92 Consider the sales of the TRK-50 mountain

bike in Figure 8.9.

& Set up the Excel spreadsheet in Figure 8.9 usmg
€y = 20.8500, b, = .9809, sn._; . =—14.2162, 50, =
6.5529, sn_, = 18.5721, and sny = ~10.9088.

b. Use Solver in your Excel spreadsheet from part (a)

o verify thata = 561, y=0.and § = () minimize
* the SSE. as shown in Figure 8.10.

I":'W&wamduc:ﬁlc regression output
% mm 50 mountain bike sales as shown in

igure 8.10.
3 mmm%%pmdacummmal
"dthemounrmnbmkcmthefourthquma

h w
wuﬁmmmm
fmqumzbu.gutumumiﬁﬁm-
812 and 8.13.

d. Repeat the process in parts (a) through (¢) to
verify that the initial estimate of the seasonal
factor for quarter 3 is sn_, = 1,2937, as shown in
Figure 8.12.

B.16 Consider the sales of the Tiger Sports Drink in

Example 8.5.

a. Verify the following estimates for the level, growth
rate, and seasonal factor: €, = 104.5393, b, =
2.6349, sn, = 1.2944, as shown in Figure 8.12.

b. Verify that the one-period-ahead forecast error in
period 4 is .7650.

¢. Venfy the following estimates for the level, growth
rate, and seasonal factor: €4 = 107.3464, b, =
2.6521, sn, = .8892, as shown in Figure 8.12.

d. Verify that the one-period-ahead forecast error in
period 5 is —.9479.

8.17 Consider the sales of the Tiger Sports Drink in

Figure 8.12.

a. Set up the Excel spreadsheet in Figure 8.12 using
€y = 95.2500, by = 2.4706, sn_y = .7062, sn_, =
1.1114, sn_; = 1.2937, and sn, = .8886.

b. Use Solver, starting with = 2, y=.1,and §=.1in
the Excel spreadsheet from part (a), to verify the
values o = .336, y=.046, and § = .134 minimize
the SSE, as shown in Figure 8.14(b).

8.18 Use Excel to produce the regression output for
the Tiger Sports Drink as shown in Figure 8.13.

B.19 Consider the sales of Tiger Sports Drink in

Figure 8.14.

a. Verity the point forecasts of the sales of Tiger
Sports Drink for quarter 3 (time period 35) and
quarter 4 (time period 36) as given in Example 8.5.

b. Verify the 95% prediction intervals for the sales of
Tiger Sports Drink for quarter 3 (time period 35) and
quarter 4 (time period 36) as given in Example 8.5.

8.20 Consider the sales of Tiger Sports Drink in

Figure 8.14. Supposcinthcﬁmtqnaﬂerofyeﬁr9 we
observe yi. = 124,

RO NI P C S TR =S s
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' 'MWMW= (6812.61)(36) =
245.253.96.

'8.22 Consider the Tusty Cola data of Table 7.1.
a. Set up an Excel spreadsheet to find smoothing
muummmssa

' mﬁtlmghthnctome’l‘asr)

!wﬁuﬂm.mmofmeﬁmﬁ:m
8.23 Consider the cod catch data in Example 8.7,

a. If the values for g, €y, and &y are 20, =15, and -5,

respectively, simulate by hand the values for y,
Yage A0 5.

b, If the values of ey, €54, and &, are 30, 4, and 22,
respectively, simulate by hand the values for y;,
Yo I.!'Id)’n.

8.24 Use Crystal Ball or some other simulation add-
in tor Excel 1o simulate the 95% prediction intervals
for the future values of ys3, Ysq, Y53, Yss, and vy for the
weekly thermostat sales data and compare the results
with the analytical prediction intervals in Example 8 3
and Exercise 8.8.

Scanned by CamScanner




(@) r= 1 perfect (b) Positive correlation (positive r): (¢) Little correlation (r near

posttive conelation ¥ INCTeases as x Increases in a 0). little linear relation-
stratght-line fashion ship between y and x
¥ v
®
- .o » -
L) &
® ® ®
» ® ®
El
e® o ® LI
® e, ®
X

a1

d) Negative correlation (negative r): (&) r=-1; perfect
decreases as x increases in a negative correlation

ctraimbt_lina fachion
straight-iine rashicon

If we have computed the least squares slope b, and r?, the method given in the
previous box provides the easiest way t0 calculate r. The simple correlation coeffi-
cient can also be calculated using the formula

SS

Yy

F= ——————
\SS8,.SS,,
Here SS,, and SS,, have been defined in Section 3.2, and SS,; denotes the total vari-

ation. which has been defined in this section. Furthermore, this formula for » auto-
matically gives r the correct (+ or —) sign. For instance, in the fuel consumption

problem, S5, = —179.6475, SS., = 1404.355, and §S,, = 25.549 (see Table 3.3 and

Figure 3.9). Therefore
SS -179.6475

¥y &

= 55.8S, | (1404355)(25.549)

It is important to make a couple of points. First, the value f’f the simpl.e corre-
lation coefficient is not the slope of the least squares line. If we wish to ﬁnfi this slope,
we should use the previously given formula fog' b,. Second, fugft correlation does not
. oIy that a cause-and-effect relationship exists. When r indicates that yandxare_
;;gh{y correlated, this says that y and x have a strong tendency to move together
in a straight-
: changes ny. Instead,

r

some other variable (or variables) could be causing the apparent -
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line fashion. The correlation does not mean that changes in x cause ;




