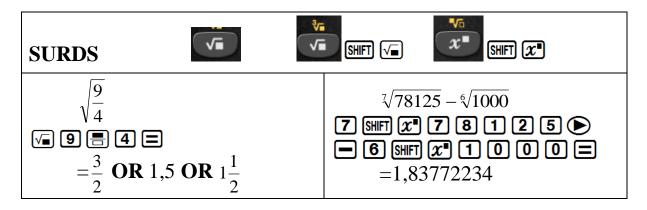

CASIO. FX-82ZA PLUS



[MODE] 1. Computational – normal scientific calculations
2. Statistics – data handling & regression
3. Table – graph work & functions

MODE 1: Computational

How to set your calculator to round off to 2 decimal places

1:MthIO 2:LineIO	SHIFT MODE 6	
3:De9 4:Rad 5:Gra 6:Fix 7:Sci 8:Norm	Now select decimal places	Fix 0~9?

How to clear your calculator from rounding off to 2 decimal places

1:MthIO 2:LineIO 3:De9 4:Rad 5:Gra 6:Fix 7:Sci 8:Norm	SHIFT MODE 8 Select 2	Norm 1~2?			
Norm 1 is the default setting and gives answers in scientific notation.					
e.g. $1 \div 50\ 000 = 2 \ \text{x}\ 10^{-5}$					
Norm 2 is generally preferred as answers are only expressed in scientific notation when					

Norm 2 is **generally preferred** as answers are only expressed in scientific notation when they are too big to fit on the screen.

e.g. $1 \div 50\ 000 = 0.00002$

PERCENTAGES

A. WRITING A FRACTION AS A PERCENTAGE

Write $\frac{126}{150}$ as a percentage. = 84%	126 🗏 150 🕞 🗙 100 Ξ
--	---------------------

B. FINDING THE PERCENTAGE OF AN AMOUNT

 Find 15% of 1 250.

 = 187,5

1 5 SHFT (X 1 2 5 0 = S+D

C. PERCENTAGE INCREASE

Increase 2 000 by 15% = 2 300

2000+2000	
X 1 5 SHIFT (=	

D. PERCENTAGE DECREASE

Decrease 2 000 by 15% = 1 700

20000 - 2000	
X 1 5 SHIFT (=	

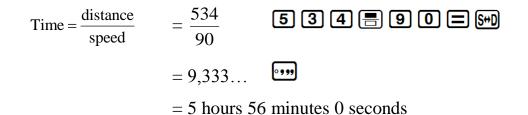
SCIENTIFIC NOTATION

1. CONVERTING FROM SCIENTIFIC NOTATION TO A WHOLE NUMBER OR DECIMAL

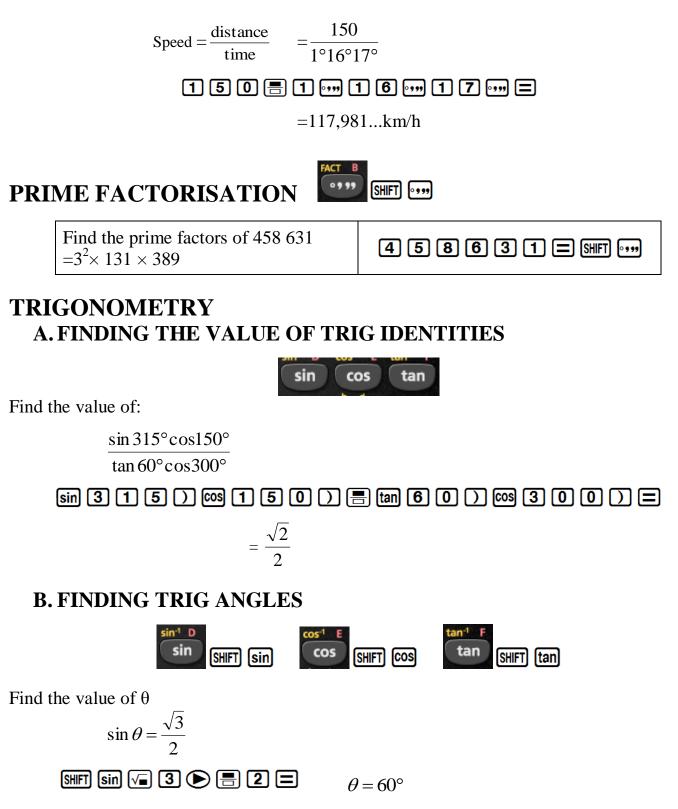
Convert to a whole number 3×10^4 =30 000

×10^x

2. CONVERTING TO SCIENTIFIC NOTATION


Convert to scientific notation with four significant digits: 12 673 1 2 6 7 3 \equiv =1,267 × 10⁴ Set your calculator to SCIENTIFIC NOTATION: SHFT MODE 7 Select how many significant digits SC-i 0~9? 4

HOUR/DEGREE, MINUTE, SECOND CALCULATIONS


A. CONVERTING FROM A DECIMAL TO HOURS, MINUTES & SECONDS

How long will it take to travel a distance of 534km, if your average speed is 90km/h?

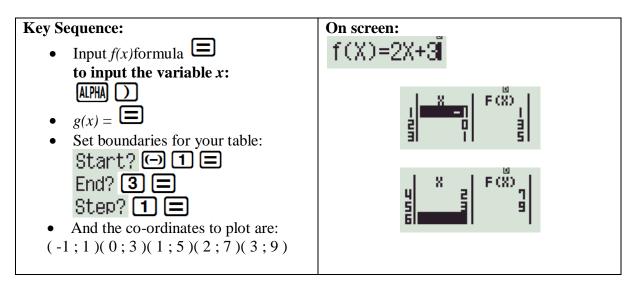
B. CONVERTING FROM HOURS, MINUTES & SECONDS TO A DECIMAL

At what speed are you travelling if 150km takes 1 hour 16 minutes and 17 seconds?

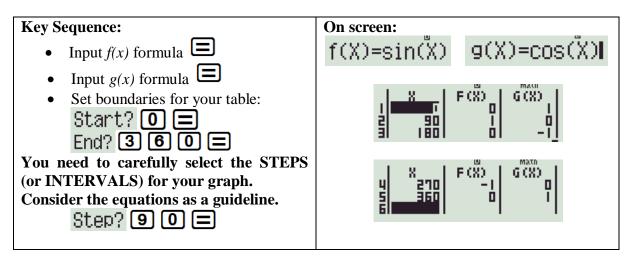
MEMORIES (A, B, C, D, E, F, X, Y)

To assign the result of $3 + 5$ to variable A	3 🕂 5 SHIFT RCL ()
To multiply the contents of variable A by 10	
To recall the contents of variable A	RCL ()

On the calculator financial maths calculations are done as a continuous calculation. If you use the memory keys you do not have to key in the same numbers repeatedly.

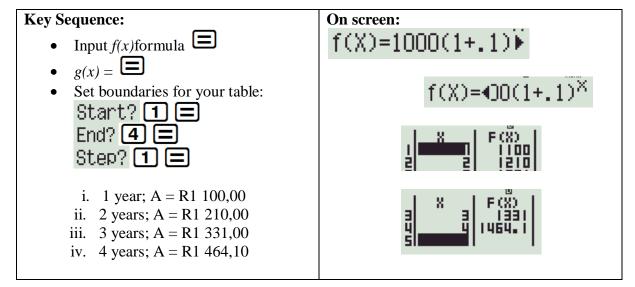

MODE 3: Table

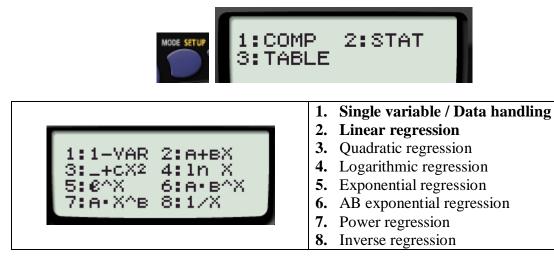
A.GENERATE TABLES TO SKETCH GRAPHS


1. y = 2x + 3

 $-1 \le x \le 3$

Remember: AC returns you to the formula


2. Compare: $y = \sin x$ and $y = \cos x$ for $x \in [0^\circ; 360^\circ]$


B.FINANCIAL MATHS IN TABLE MODE

R1 000 is invested at a compound interest rate of 10% per annum. Calculate the value of the investment after:

i. 1 year ii. 2 years iii. 3 years iv. 4 years It is useful to do this in TABLE mode because n is changing. Given: P = 1000 $i = 10\% = \frac{10}{100} = 0,1$ n = x A = ? $A = 1000 (1 + 0,1)^n$

MODE 2: Statistics

1. DATA HANDLING

Example: The following data set represents the maximum	Temperature (°C)
temperatures over a 5 day period, determine the:	22
a. Sum of the data set	25
b. Number of elements in the data set	26
c. Arithmetic mean	25
d. Standard deviation	27

Solution:	Key Sequence:
Set your calculator to Stats mode for Single variable data	MODE 2 1
Enter the data into the table	2 5 1 2 5 1 1 1 1 2 5 1 2 2 2 2 2 2 2 2
Clear the screen - ready for the Single variable sub menu 1:Type 2:Data 3:Sum 4:Var	AC SHIFT 1
5:MinMax	

Breakdown of Single variable sub menu

Key	Menu Item		Explanation
1: Type	Stats menu		Change statistical calculation type
2: Data			Displays inputted data
3: Sum	$1:\Sigma \times 2$	2 : Σχ	1. Sum of squares
	1:224	2:48	2. Sum
4: Var			1. Number of samples
	1:n	2:2	2. Mean
	3:0x	4:sx	3. Population standard deviation
			4. Sample standard deviation
5: MinMax	1:minX	2 • m 5 × X	1. Minimum value
	1.01102	2. max^	2. Maximum value

So	lution:	Key Sequence:	
a.	Sum of the data set $\Sigma \times = 125$	32 =	
b.	Number of elements in the data set $n = 5$	SHFT 1 4 1 =	
c.	Arithmetic mean $\overline{x} = 25$	SHFT 1 4 2 =	
d.	Standard Deviation $0 \times = 1,673320053$	SHIFT 1 4 3 =	

	How	to set up a frequency table: SHIFT MODE (3 1	
1:ab/c 3:STAT 5:Disp 7:∢CONT	4:TABLE 6:APO	Frequency? 1:ON 2:OFF	FREQ

2. LINEAR REGRESSION

Example: Let's investigate whether there is a linear relationship between temperature and atmospheric pressure. The data is shown in the table below:

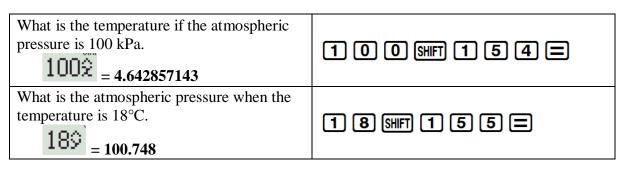
x Temperature (°C)	y Atmospheric pressure (kPa)
10	100,3
15	100,5
20	101,0
25	101,1
30	101,4

The pressure depends on the temperature so; Temperature is the *x* variable and Pressure the *y* variable.

Solution:	Key Sequence:		
Set your calculator to Stats	MODE 2 2		
Enter the data into the table:			
Input <i>x</i> -values	Input <i>x</i> -values		
Liss the [DEDI AV] amount			
Use the [REPLAY] arrows to column.	1 3 0 E		
Input y-values			
input y values		$100 \cdot 3 =$	
STAT	STAT 🔟	$100 \cdot 5 =$	
	4 [×] 25 101.1	[10]	
31 CUT TUTT		INDINAT	
Clear the screen - ready for			
1:Type	2:Data		
3:Sum	4:Van	AC SHIFT 1	
5:Re9	6:MinMax		

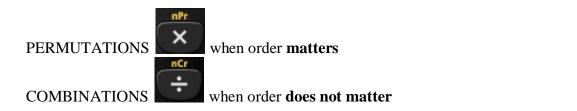
Breakdown of Regression sub menu

Key	Menu Item		Explanation
5: Reg			1. Regression co-efficient of A
	1:0	2:B	2. Regression co-efficient of B
		3. Correlation co-efficient r	
5:0	4. Estimated value of x		
			5. Estimated value of y


Solution:	Key Sequence:
Calculate the Correlation co-efficient r = 0.9826073689	53 =

r is very close to +1, telling us there is a **strong positive linear correlation** between temperature and atmospheric pressure.

We can now work out the values of A and B in the equation of the regression line (line of best fit): y = A + Bx


Calculate the value of \mathbf{A} $\mathbf{A} = 99,74$	SHIFT 1 5 1 =		
Calculate the value of B $\mathbf{B} = 0,056$	SHIFT 1 5 2 =		
y = 99,74 + 0,056x			

Once you know the equation of the regression line you can then make projections about the atmospheric pressure for other temperatures or the temperature for other pressures.

PERMUTATIONS & COMBINATIONS

When we want to find the number of possible ways of picking *r* objects from a group of *n*:

Example: When playing the lotto, a player chooses 6 numbers from 49. It costs R3,50 to play a set of numbers. How much would it cost to buy every possible combination of 6 numbers, to ensure obtaining the winning combination?

<u>Combination</u>	<u>ns</u> : 49 Shift ÷6	= 13 983 816
Cost:	Ans 🗙 3 • 5 =	R48 943 356,00

SELECTING RANDOM SAMPLES

Let **the calculator** choose a random sample of Integers between 1 and 49, to play the lotto:

NOTE every calculator will give a different string of numbers (Integers are repeated)

Calculators play a vital role in the classroom: not by *substituting* Mathematics, but by *supplementing* our subject. It's conventional Mathematics by new methods.