CASIO. FX-82ZA PLUS

1. MthI0 (Maths Input / Output format)
2. LineI0 (Linear Input / Output format)
3. Deg (Degrees - angle unit)
4. Rad (Radians - angle unit)
5. Gra (Gradians - angle unit)
6. Fix (number of Decimal places)
7. Sci (number of Significant digits)
8. Norm (Exponential display range)

9. ab / c (Mixed fraction format)
10. d/c (Improper fraction format)
11. STAT (Frequency column on / off)
12. TABLE $(\mathrm{f}(x) / \mathrm{f}(\boldsymbol{x})$ and $\mathrm{g}(\boldsymbol{x}))$
13. Disp (Decimal Point: Dot / Comma)
14. Auto Power Off ($\mathbf{1 0 m i n} / 60 \mathrm{~min}$)
15. CONT (Adjusts display contrast)
(BOLD = default settings)
[MODE] 1. Computational - normal scientific calculations
16. Statistics - data handling \& regression
17. Table - graph work \& functions

$$
1: 00 \mathrm{MP} \quad 2: 3 \mathrm{TAT}
$$ 3: TABLE

How to CLEAR (Initialise) your calculator: SHIFT 9 B AC
This returns the mode \& setup to the initial default settings \& clears the memory.

MODE 1: Computational

COMMON FRACTIONS	
	$\begin{aligned} & \frac{a b}{c} \Leftrightarrow \frac{d}{c} Y \\ & S \Leftrightarrow D \end{aligned}$ Convert solution to a decimal Convert solution to a mixed number

Casio Scientific Technology Tip

ONLY use ON when switching the scientific calculator on.
To clear your screen, rather use $A C$ this saves your calculator's temporary memory (see the $\boldsymbol{\Delta}$ in the top right corner of the screen)
Use
to review previous calculations.

EXPONENTS x^{2}	x^{-1}
	$\begin{gathered} \left(4^{2}\right)^{5} \\ 0\left(4 x^{2}\right) \text { 可回 } \\ =1048576 \end{gathered}$

SURDS $\sqrt{\square}$	

How to set your calculator to round off to 2 decimal places

1:MthIo 2:LineIo 3:Deg 4:Rad 5:Gra E:Fix $7: S 0 i$ B:Norm	\square Now select decimal places 2	Fix 0^9\%

How to clear your calculator from rounding off to 2 decimal places

	$\begin{gathered} \text { SHIFT MODE } 8 \\ \text { Select } \\ 2 \\ 2 \end{gathered}$	
Norm 1 is the default setting and gives answers in scientific notation. e.g. $1 \div 50000=2 \times 10^{-5}$ Norm 2 is generally preferred as answers are only expressed in scientific notation when they are too big to fit on the screen. e.g. $1 \div 50000=0.00002$		

PERCENTAGES

SHIFT \square

A. WRITING A FRACTION AS A PERCENTAGE

Write $\frac{126}{150}$ as a percentage $=84 \%$	

B. FINDING THE PERCENTAGE OF AN AMOUNT

Find 15% of 1250.
$=187,5$

C. PERCENTAGE INCREASE

Increase 2000 by 15%	2000 0 0000
$=2300$	x 105 SHIFT 0

D. PERCENTAGE DECREASE

Decrease 2000 by 15\%	
= 1700	X 155 SHIFT 0

SCIENTIFIC NOTATION

1. CONVERTING FROM SCIENTIFIC NOTATION TO A WHOLE NUMBER OR DECIMAL
Convert to a whole number
3×10^{4}
$=30000$
$\times 10^{x}$
(3) $\times 10^{0} 4$ 回

2. CONVERTING TO SCIENTIFIC NOTATION

> Convert to scientific notation with four significant digits:

12673
12 6 7 3 困 $=1,267 \times 10^{4}$

Set your calculator to SCIENTIFIC NOTATION:

SHIFT MOOE 7
Select how many significant digits
Sci 0×97
4

HOUR/DEGREE, MINUTE, SECOND CALCULATIONS

0999
 A. CONVERTING FROM A DECIMAL TO HOURS, MINUTES \& SECONDS

How long will it take to travel a distance of 534 km , if your average speed is $90 \mathrm{~km} / \mathrm{h}$?

$$
\begin{aligned}
\text { Time }=\frac{\text { distance }}{\text { speed }} & =\frac{534}{90} \quad 503040000 \\
& =9,333 \ldots \\
& =5 \text { hours } 56 \text { minutes } 0 \text { seconds }
\end{aligned}
$$

B．CONVERTING FROM HOURS，MINUTES \＆SECONDS TO A DECIMAL

At what speed are you travelling if 150 km takes 1 hour 16 minutes and 17 seconds？

$$
\begin{aligned}
& \text { Speed }=\frac{\text { distance }}{\text { time }}=\frac{150}{1^{\circ} 16^{\circ} 17^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
& =117,981 \ldots \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

PRIME FACTORISATION $\stackrel{\text { ACT }}{8}$ SHIFT 0,0
 Find the prime factors of 458631 $=3^{2} \times 131 \times 389$ $=3^{2} \times 131 \times 389$
 458636 （SHIFT 0

TRIGONOMETRY

A．FINDING THE VALUE OF TRIG IDENTITIES

$\sin \cos \tan$

Find the value of：

$$
\frac{\sin 315^{\circ} \cos 150^{\circ}}{\tan 60^{\circ} \cos 300^{\circ}}
$$

$\sin 315 \pi \cos 15009 \tan 600 \cos 30000$

$$
=\frac{\sqrt{2}}{2}
$$

B．FINDING TRIG ANGLES

Find the value of θ

$$
\begin{aligned}
& \sin \theta=\frac{\sqrt{3}}{2} \\
& \text { SHIFT } \sin \text { 国 } 3 \text { 回 } 2 \text { 回 } \theta=60^{\circ}
\end{aligned}
$$

MEMORIES (A, B, C, D, E, F, X, Y)

To assign the result of $3+5$ to variable A	$3 \square 5$ (SHIFT $\times 1 \rightarrow$
To multiply the contents of variable A by 10	(1IPMA $\Theta \times 100$
To recall the contents of variable A	(1C) $(-)$

On the calculator financial maths calculations are done as a continuous calculation.
If you use the memory keys you do not have to key in the same numbers repeatedly.

MODE 3: Table

A.GENERATE TABLES TO SKETCH GRAPHS

1. $y=2 x+3 \quad-1 \leq x \leq 3$

Key Sequence:

- Input $f(x)$ formula \boldsymbol{Z}
to input the variable x :
(ALPHA $)$
- $g(x)=\boldsymbol{Z}$
- Set boundaries for your table:

Start? -1 回
End? 3 -
Step? 1 O

- And the co-ordinates to plot are:
$(-1 ; 1)(0 ; 3)(1 ; 5)(2 ; 7)(3 ; 9)$

On screen:
$f(\mathrm{X})=2 \mathrm{n}+2$

Remember: $A C$ returns you to the formula

2. Compare: $y=\sin x$ and $y=\cos x$ for $x \varepsilon\left[0^{\circ} ; 360^{\circ}\right]$

Key Sequence: \quad On screen:

- Input $f(x)$ formula \boldsymbol{Z}
- Input $g(x)$ formula $\#$
- Set boundaries for your table:

Start? 0
End? 360
You need to carefully select the STEPS (or INTERVALS) for your graph.
Consider the equations as a guideline.
Step? 900
$f(X)=\sin (X) \quad g(X)=\cos (X)$

B.FINANCIAL MATHS IN TABLE MODE

R1 000 is invested at a compound interest rate of $\mathbf{1 0 \%}$ per annum. Calculate the value of the investment after:

$$
\begin{aligned}
\text { i. } & 1 \text { year } \\
\text { ii. } & 2 \text { years } \\
\text { iii. } & 3 \text { years } \\
\text { iv. } & 4 \text { years }
\end{aligned}
$$

It is useful to do this in TABLE mode because n is changing.
Given:
$\mathrm{P}=1000$
$i=10 \%=\frac{10}{100}=0,1$
$n=\boldsymbol{x}$
$\mathrm{A}=?$$\quad \mathbf{A = 1 0 0 0 (\mathbf { 1 } + \mathbf { 0 , 1 }) ^ { n }}$
Key Sequence:

- Input $f(x)$ formula \boldsymbol{Z}
- $g(x)=\boldsymbol{Z}$
- Set boundaries for your table:

Start? 1 E
End? 4 -
Step? 1 E
i. 1 year; $\mathrm{A}=\mathrm{R} 1$ 100,00
ii. 2 years; $A=R 1$ 210,00
iii. 3 years; $A=R 1331,00$
iv. 4 years; $A=$ R1 464,10

On screen:

$f(X)=1000(1+.1)$

$$
f(x)=40(1+.1)^{x}
$$

MODE 2: Statistics

玉: ЗTAT

1. Single variable / Data handling
2. Linear regression
3. Quadratic regression
4. Logarithmic regression
5. Exponential regression
6. AB exponential regression
7. Power regression
8. Inverse regression

1. DATA HANDLING

Example: The following data set represents the maximum temperatures over a 5 day period, determine the:
a. Sum of the data set
b. Number of elements in the data set
c. Arithmetic mean
d. Standard deviation

Temperature (${ }^{\circ} \mathbf{C}$)

Solution:	Key Sequence:
Set your calculator to Stats mode for Single variable data	(100E 21
Enter the data into the table	
Clear the screen - ready for the Single variable sub menu	AC SHIFT 1

Breakdown of Single variable sub menu

Key	Menu Item		Explanation
1：Type	Stats menu		Change statistical calculation type
2：Data			Displays inputted data
3：Sum	1： 2×2	2： $2 x$	1．Sum of squares 2．Sum
4：Var	$\begin{aligned} & 1: 1 \\ & 3: 6 x \end{aligned}$	$\begin{aligned} & \frac{3}{4}: \bar{x} \end{aligned}$	1．Number of samples 2．Mean 3．Population standard deviation 4．Sample standard deviation
5：MinMax	1：minx	2：max x	1．Minimum value 2．Maximum value

Solution：	Key Sequence：
a．Sum of the data set $\Gamma X=125$	（3） 2
b．Number of elements in the data set 17＝ 5	SHIFT 140
c．Arithmetic mean $\bar{x}=25$	SHIIT 104 2
d．Standard Deviation $\mathrm{K}^{-1} \mathrm{~K}=\mathbf{1 , 6 7 3 3 2 0 0 5 3}$	SHIFT 1430

How to set up a frequency table：
SHIFT MODE $\odot 3$

```
1:的空 2:d,c
3:STAT 4:TABLE
S:DiSF G:AFO
7:10.ᄋNT
```

Fredtericy
1: ロート ジロFF

2．LINEAR REGRESSION

Example：Let＇s investigate whether there is a linear relationship between temperature and atmospheric pressure．The data is shown in the table below：

\boldsymbol{x} Temperature $\left({ }^{\circ} \mathbf{C}\right)$	\boldsymbol{y} Atmospheric pressure $(\mathbf{k P a})$
10	100,3
15	100,5
20	101,0
25	101,1
30	101,4

The pressure depends on the temperature so；
Temperature is the \boldsymbol{x} variable and Pressure the \boldsymbol{y} variable．

Solution:	Key Sequence:
Set your calculator to Stats mode for Bivariate data	M00E 2 2
Enter the data into the table: Input x-values Use the [REPLAY] arrows to move the cursor to the y column. Input y-values	
Clear the screen - ready for the Regression sub menu	AC SHIFT 1

Breakdown of Regression sub menu

Key	Menu Item		Explanation
5: Reg			1. Regression co-efficient of A
	1: F	2:	2. Regression co-efficient of B
	S: ${ }^{*}$	4: \%	3. Correlation co-efficient r
	5: \%		4. Estimated value of x
			5. Estimated value of y

Solution:	Key Sequence:
Calculate the Correlation co-efficient $\mathrm{r}^{-}=\mathbf{0 , 9 8 2 6 0 7 3 6 8 9}$	$5 \times 3 \mathrm{~B}$

\mathbf{r} is very close to +1 , telling us there is a strong positive linear correlation between temperature and atmospheric pressure.

We can now work out the values of A and B in the equation of the regression line (line of best fit): $\boldsymbol{y}=\mathbf{A}+\boldsymbol{B x}$

Calculate the value of \mathbf{A} $\mathrm{A}=99,74$	SHIIT 150
Calculate the value of \mathbf{B} $E_{i}=0,056$	SHIIT 150 2
$y=99,74+0,056 x$	

Once you know the equation of the regression line you can then make projections about the atmospheric pressure for other temperatures or the temperature for other pressures.

What is the temperature if the atmospheric pressure is 100 kPa . $1 \square \overline{0}=4.642857143$	1050
What is the atmospheric pressure when the temperature is $18^{\circ} \mathrm{C}$. $189=100.748$	(1) 8 SHFT 155

PERMUTATIONS \& COMBINATIONS

When we want to find the number of possible ways of picking r objects from a group of \boldsymbol{n} :

Example: When playing the lotto, a player chooses 6 numbers from 49 .
It costs R3,50 to play a set of numbers.
How much would it cost to buy every possible combination of 6 numbers, to ensure obtaining the winning combination?

Cost: \quad Ans $\times 3 \square 5$ R48 943 356,00

SELECTING RANDOM SAMPLES

Let the calculator choose a random sample of Integers between 1 and 49, to play the lotto:

NOTE every calculator will give a different string of numbers (Integers are repeated)

Calculators play a vital role in the classroom: not by substituting Mathematics, but by supplementing our subject. It's conventional Mathematics by new methods.

