Tutorial letter 202/2/2017

Basic Statistics STA1510

Semester 2

Department of Statistics

SOLUTIONS TO ASSIGNMENT 02

CHAPTER 7

QUESTION 1

Sampling distribution (mean)

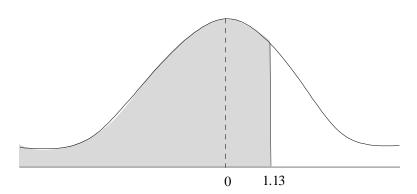
The standard deviation of the sampling distribution of the sample mean is also called the standard error of the mean

Option 4

QUESTION 2

Sampling distribution (proportion)

$$\pi = 0.12 \quad \text{and} \quad 150 = n \\ P(p < 0.15) = P\left(Z < \frac{p - \pi}{\sigma_p}\right) \\ \text{then } \sigma_p = \sqrt{\frac{\pi \ (1 - \pi)}{n}} = \sqrt{\frac{0.12 \ (0.88)}{150}} = 0.0265$$



$$P\left(z < \frac{0.15 - 0.12}{0.0265}\right)$$

$$= P(Z < 1.13)$$

$$= 0.8708$$

Option 1

QUESTION 3

$$\begin{array}{ll} \mu = 60, & n = 50, & \bar{X} = 57.1 \text{ and } & \sigma = 10 \\ P(\bar{X} > 57.1) \Rightarrow P\left(Z > \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}\right) & \text{then } & \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{50}} = 1.4142 \\ \therefore & P\left(Z > \frac{57.1 - 60}{1.4142}\right) \Rightarrow P\left(Z > -2.05\right) = 0.9798 \\ \text{Option 1} \end{array}$$

CHAPTER 8

QUESTION 4

Confidence interval (proportion)

Given:
$$n = 400$$
, $X = 80$ then $p = \frac{X}{n} = \frac{80}{100} = 0.8$
95% CI, $p \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{P(1-p)}{n}}$ then $p = 0.80$
 $Z_{\frac{\alpha}{2}} = Z_{0.025} = 1.96$
 $\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{(0.8)(0.2)}{100}} = 0.04$
 $\therefore p \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}} \Rightarrow 0.8 \pm (1.96)(0.04)$
 0.8 ± 0.0784
[0.7216; 0.8784]
Option 1

QUESTION 5

Confidence interval (mean, σ known)

Confidence interval (mean,
$$\sigma$$
 known)

Given: $\bar{X} = 160$, $\sigma = 45$, $n = 36$

95% CI for μ , $\bar{X} \pm t_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ then

$$\therefore \quad \bar{X} = 160, \qquad Z_{\frac{\alpha}{2}} = Z_{0.025} = 1.96$$

$$\frac{\sigma}{\sqrt{n}} = \frac{45}{\sqrt{36}} = 7.5$$

$$\therefore \quad \bar{X} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \Rightarrow 160 \pm (1.96)(7.5)$$
160 \pm 174.701

[145.30; 174.70]

We are 95% confident that the average lifespan of this light bulbs is between 145.30 and 174.70 hours

Option 1

QUESTION 6

Confidence interval (proportion)

Given:
$$n = 1000$$
, $\bar{X} = 410$ then $p = \frac{X}{n} = 0.41$
95% CI for π , $p \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}$ with $p = 0.41$
 $Z_{\frac{\alpha}{2}} = Z_{0.025} = 1.96$
 $\sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.41(0.59)}{1.000}} = 0.0156$
 $\therefore p \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}} \Rightarrow 0.41 \pm (1.96)(0.0156)$

 $0.41 \pm 0.0.0306$

[0.3794; 0.4406]

We are 95% confident that the proportion of first year loan defaults that are approved on the basis of falsified applications is between 37.94% and 44.06%.

Option 1

CHAPTER 9

QUESTION 7

Hypothesis test (porportion)

Given:

$$H_0: \pi = 0.40$$
 $\alpha = 0.05$ and

$$H_1: \pi > 0.40$$
 $p = 0.45, n = 49$

One tailed (night) test.

The standard error of the porportion is given by:

$$\sqrt{\frac{\pi (1-\pi)}{n}} = \sqrt{\frac{(0.4) (0.6)}{49}} = 0.07$$

Option 2

QUESTION 8

Hypothesis test (porportion)

$$Z_{\text{critical}} = Z_{\alpha} = Z_{0.05} = 1.645$$

Option 2

QUESTION 9

Hypothesis test (mean, σ known)

Given:
$$H_0: \mu = 50$$
 $H_1: \mu \neq 50$

$$n = 64$$
 $\bar{X} = 53.5$ and $\sigma = 10$

The valve of the standardized test statistic is given by

$$Z_{stat} = \frac{\bar{X} - \mu}{}$$
 with

The valve of the standard
$$Z_{stat} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$
 with $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{64}} = 1.25$ $Z_{stat} = \frac{53.5 - 50}{1.25} = 2.80$ Option 4

$$Z_{stat} = \frac{\sqrt{n}}{53.5 - 50} = 2.80$$

QUESTION 10

Hypothesis test (mean, p-value)

Given,

 $H_0: \mu = 50$

 $H_1: \mu \neq 50$ two-tailed test

$$Z_{stat} = 2.80$$

$$p$$
-value = $P(Z > 2.80) \times 2$
= 0.0026×2
= 0.0052 or 0.52%

Option 2

CHAPTER 11

QUESTION 11

 χ^2 distribution

Option 5 is the incorrect statement as the χ^2 curve is positively skewed. Option 5

QUESTION 12

 χ^2 test of independence χ^2 test statistic or χ^2_{stat} is given by

$$=\sum \frac{(f_0-f_e)^2}{f_e}$$

please find the expected frequencies $= f_e = \frac{\text{row total} \times \text{column total}}{n}$

	Beat	Youth	Grow	Live	Total
G	21.84	14.82	21.06	20.28	78
В	34.16	23.18	32.94	31.72	122
Total	56	38	54	52	200

$$\chi_{stat}^{2} = 0.6752 + 0.5366 + 0.0534 + 2.9388 + 0.4317 + 0.3431 + 0.0341 + 1.8789$$

$$= 6.8918$$

Option 3

CHAPTER 12

QUESTION 13

Simple linear regression

The coefficient of determinatin is given by: $r^2 = \frac{SSR}{SST}$ or just using the statistics mode of your calcuator to get r = 0.9798, then $r^2 = 0.96$. Option 2

QUESTION 14

Simple regression Using the calculator or fomrula, $b_0=12.0354$ and $b_1=1.416$ $\hat{Y}_i=12.0354+1.416X_i$ Option 4

QUESTION 15

Simple regression Given that X = 23

$$\hat{Y}$$
 = 12.0354 + 1.416 (23)
= 12.0354 + 32.568
= 44.60 approximate profit of R44.60

Option 1