Tutorial letter 201/1/2019

Basic Statistics

STA1510

Semester 1

Department of Statistics

SOLUTIONS TO ASSIGNMENT 01

QUESTION 1

$\frac{12}{30} \times 100=40 \%$ of the students scored above 80% in the statistics exam.
Option 3

QUESTION 2

The mean $\bar{X}=39.33$ and the median $=38$. So, $\bar{X}>Q_{2}$ i.e. data is positively skewed
Option 3

QUESTION 3

The distance between Q_{1} and Q_{3} is half the distance from the smallest to the largest observation.
Option 3

QUESTION 4

The mean may be too heavily influenced by the larger observations and this gives too high an indication of the centre.

Option 2

QUESTION 5

Between 30 and 39 years, i.e. $\frac{9}{30}=30 \%$
Option 2

QUESTION 6

$\frac{9}{30}=30 \%$
Option 1

QUESTION 7

Nominal data are categorical data with all categories having equal importance.
Option 4

QUESTION 8

Populations, statistics, samples
Option 5

QUESTION 9

$P($ Business woman $)=\frac{8}{110}=0.0727$
Option 2

QUESTION 10

$$
\begin{aligned}
P(\text { not a teacher }) & =1-P \text { (teacher) } \\
& =1-\frac{66}{110} \\
& =0.40
\end{aligned}
$$

Option 3

QUESTION 11

Conditional events

$$
\begin{aligned}
P(A) & =0.4 \\
P(B) & =0.3 \\
P(A \cap B) & =0.4 \times 0.3 \quad A \text { and } B \text { independent } \\
& =0.12 \\
\therefore \quad P(B \mid A) & =\frac{0.12}{0.4}=0.3
\end{aligned}
$$

Option 5

QUESTION 12

If $\quad P(A)=0.2$
$P(B)=0.3$ and $P(A \mid B)=0.9$

$$
\text { then } \begin{aligned}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) & =P(A \mid B) \times P(B) \\
& =0.9 \times 0.3 \\
& =0.27
\end{aligned}
$$

Option 3

QUESTION 13

Two different ways exist. $1 R$ and $1 L$ OR select $1 L$ and $1 R$. So,

$$
\begin{aligned}
& P(R \text { then } L)=\left(\frac{5}{7}\right)\left(\frac{2}{6}\right)=\frac{5}{21} \\
& P(L \text { then } R)=\left(\frac{2}{7}\right)\left(\frac{5}{6}\right)=\frac{5}{21}
\end{aligned}
$$

then add the 2 joint probabilities $P(1 R$ and $1 L)=\frac{5}{21}+\frac{5}{21}=\frac{10}{21}=0.4762$

Option 1

QUESTION 14

$$
\begin{aligned}
P(0 \leq X \leq 3) & =1-0.05 \\
& =0.95
\end{aligned}
$$

Option 2

QUESTION 15

Poisson distribution with $\lambda=3$ policies/week

$$
\begin{aligned}
P(X=3) & =\frac{e^{-3} 3^{3}}{3!} \\
& =0.2240
\end{aligned}
$$

Option 1

QUESTION 16

Binomial distribution with $\pi=0.25$.
$n=5$

$$
\begin{aligned}
P(X>3) & =P(X=4)+P(X=5) \\
& =0.0146+0.0010 \text { from tables } \\
& =0.0156
\end{aligned}
$$

Option 3

QUESTION 17

Normal distribution with mean $=100$ and standard deviation $=5$

Option 2

QUESTION 18

Normal with $\mu=100$ and $\sigma=5$

$$
Z=\frac{X-\mu}{\sigma}
$$

So,

$$
\begin{aligned}
X & =\mu+Z \sigma \\
& =100+(-1.96 \times 5) \\
& =90.20
\end{aligned}
$$

Option 2

QUESTION 19

$P(Z>-1.44)=0.9251$ from the normal tables.
Option 5

QUESTION 20

Symmetrical area between $-z_{1}$ and $+z_{1}$
Option 5

