Tutorial letter 201/2/2019

Basic Statistics STA1510

Semester 2

Department of Statistics

SOLUTIONS TO ASSIGNMENT 01

Define tomorrow.

The mode = 87 and 72. The dataset is bimodal.

Option 2

QUESTION 2

The median, $Q_2 = 61$.

Option 4

QUESTION 3

The distance between Q_1 and Q_3 is half the distance from the smallest to the largest observation.

Option 4

QUESTION 4

6 shoppers are between 20 and 29 years of age.

Option 3

QUESTION 5

 $4+3 = \frac{7}{30} \times 100 = 23.33\%$ of the shoppers surveyed are 50 years or older.

Option 3

QUESTION 6

Weekly closing price of stocks is a continuous variable.

Option 2

QUESTION 7

$$P$$
 (Business man) = $\frac{12}{110}$
= 0.1091

Option 4

$$P (\text{not a farmer}) = 1 - P (\text{farmer})$$
$$= 1 - \frac{24}{110}$$
$$= 0.7818$$

Option 5

QUESTION 9

Mutually exclusive events.

$$P(A) = 0.40$$

$$P(B) = 0.30$$

$$P(A \cap B) = 0 \quad A \text{ and } B \text{ are mutually exclusive events}$$

$$\therefore P(A \cup B) = 0.4 + 0.3$$

$$= 0.7$$

Option 3

QUESTION 10

$$E(X) = \sum_{i=1}^{n} P(X_i) X_i$$

= (0 × 0.10) + (1 × 0.2) + (2 × 0.5) + (3 × 0.15) + (4 × 0.05)
= 1.85

Option 4

QUESTION 11

Poisson distribution with $\lambda = 3$ policies/week.

$$P(X \ge 1) = 1 - P(X = 0)$$

= $1 - \frac{e^{-3}3^0}{0!}$
= $1 - e^{-3}$
= 0.9502

Option 5

Binomial distribution with $\pi = 0.25$

$$n = 5$$

$$P(X = 0) = 5C_0 (0.25)^0 (0.75)^5$$

= 0.2373

Option 4

QUESTION 13

Normal distribution with mean = 100 and standard deviation = 5

Option 1

QUESTION 14

Normal with $\mu = 100$ and $\sigma = 5$

So,
$$X = \mu + z\sigma$$

= 100 + (1.96 × 5)
= 109.80

Option 3

QUESTION 15

Option 3

QUESTION 16

Socio-economic status which was coded as 1 =low income, 2 =middle income, 3 =high income is an ordinal scaled variable.

Option 4

QUESTION 17

 Q_1 , the lower quartile

$$Q_1^{\text{th}} = \frac{n+1}{4} = \frac{14}{4} = 3.5^{\text{th}}$$
 which gives
 $Q_1 \text{ as } \frac{3.3+3.4}{2} = 3.35$

Option 2

P(A) = 0.5, P(B) = 0.40 and P(A/B) = 0.60 then,

$$P(A \cap B) = P(A|B) \times P(B)$$
$$= 0.6 \times 0.4$$
$$= 0.24$$

Contingency table

	P(A)	P(A')	
P(B)	0.24	0.16	0.4
P(B')	0.26	0.34	0.6
	0.5	0.5	1.0

$$\therefore P(A \cap B') = 0.26 \text{ alternatively}$$

$$P(A \cap B) + P(A \cap B') = P(A)$$

$$\therefore P(A \cap B') = 0.4 - 0.24$$

$$= 0.26$$

Option 4

QUESTION 19

Poisson distribution with $\lambda = 250/\text{month}$

$$P(X \ge 2) = 1 - P(X \ge 1)$$

= 1 - [P(X = 0) + P(X = 1)]
= 1 - [0.0821 + 0.2052] (Poisson from tables)
= 1 - 0.2873
= 0.7127

Option 2

QUESTION 20

