Tutorial letter 201/2/2019

Basic Statistics
STA1510

Semester 2

Department of Statistics

SOLUTIONS TO ASSIGNMENT 01

QUESTION 1

The mode $=87$ and 72. The dataset is bimodal.
Option 2

QUESTION 2

The median, $Q_{2}=61$.
Option 4

QUESTION 3

The distance between Q_{1} and Q_{3} is half the distance from the smallest to the largest observation.
Option 4

QUESTION 4

6 shoppers are between 20 and 29 years of age.
Option 3

QUESTION 5

$4+3=\frac{7}{30} \times 100=23.33 \%$ of the shoppers surveyed are 50 years or older.
Option 3

QUESTION 6

Weekly closing price of stocks is a continuous variable.
Option 2

QUESTION 7

$$
\begin{aligned}
P(\text { Business man }) & =\frac{12}{110} \\
& =0.1091
\end{aligned}
$$

Option 4

QUESTION 8

$$
\begin{aligned}
P(\text { not a farmer }) & =1-P(\text { farmer }) \\
& =1-\frac{24}{110} \\
& =0.7818
\end{aligned}
$$

Option 5

QUESTION 9

Mutually exclusive events.

$$
\begin{aligned}
P(A) & =0.40 \\
P(B) & =0.30 \\
P(A \cap B) & =0 \quad A \text { and } B \text { are mutually exclusive events } \\
\therefore \quad P(A \cup B) & =0.4+0.3 \\
& =0.7
\end{aligned}
$$

Option 3

QUESTION 10

$$
\begin{aligned}
E(X) & =\sum P\left(X_{i}\right) X_{i} \\
& =(0 \times 0.10)+(1 \times 0.2)+(2 \times 0.5)+(3 \times 0.15)+(4 \times 0.05) \\
& =1.85
\end{aligned}
$$

Option 4

QUESTION 11

Poisson distribution with $\lambda=3$ policies/week.

$$
\begin{aligned}
P(X \geq 1) & =1-P(X=0) \\
& =1-\frac{e^{-3} 3^{0}}{0!} \\
& =1-e^{-3} \\
& =0.9502
\end{aligned}
$$

Option 5

QUESTION 12

Binomial distribution with $\pi=0.25$

$$
n=5
$$

$$
\begin{aligned}
P(X=0) & =5 C_{0}(0.25)^{0}(0.75)^{5} \\
& =0.2373
\end{aligned}
$$

Option 4

QUESTION 13

Normal distribution with mean $=100$ and standard deviation $=5$

Option 1

QUESTION 14

Normal with $\mu=100$ and $\sigma=5$

$$
Z=\frac{X-\mu}{\sigma}
$$

$$
\text { So, } \begin{aligned}
X & =\mu+z \sigma \\
& =100+(1.96 \times 5) \\
& =109.80
\end{aligned}
$$

Option 3

QUESTION 15

$$
\begin{aligned}
& P(-1.44<Z<0.60) \\
= & 0.7257-0.0749 \\
= & 0.6508
\end{aligned}
$$

Option 3

QUESTION 16

Socio-economic status which was coded as $1=$ low income, $2=$ middle income, $3=$ high income is an ordinal scaled variable.

Option 4

QUESTION 17

Q_{1}, the lower quartile

$$
\begin{aligned}
Q_{1}^{\text {th }} & =\frac{n+1}{4}=\frac{14}{4}=3.5^{\text {th }} \text { which gives } \\
Q_{1} \text { as } \frac{3.3+3.4}{2} & =3.35
\end{aligned}
$$

Option 2

QUESTION 18

$P(A)=0.5, \quad P(B)=0.40$ and $P(A / B)=0.60$ then,

$$
\begin{aligned}
P(A \cap B) & =P(A \mid B) \times P(B) \\
& =0.6 \times 0.4 \\
& =0.24
\end{aligned}
$$

Contingency table

	$P(A)$	$P\left(A^{\prime}\right)$	
$P(B)$	0.24	0.16	0.4
$P\left(B^{\prime}\right)$	0.26	0.34	0.6
	0.5	0.5	1.0

$$
\begin{aligned}
\therefore \quad P\left(A \cap B^{\prime}\right) & =0.26 \text { alternatively } \\
P(A \cap B)+P\left(A \cap B^{\prime}\right) & =P(A) \\
\therefore \quad P\left(A \cap B^{\prime}\right) & =0.4-0.24 \\
& =0.26
\end{aligned}
$$

Option 4

QUESTION 19

Poisson distribution with $\lambda=250$ /month

$$
\begin{aligned}
P(X \geq 2) & =1-P(X \geq 1) \\
& =1-[P(X=0)+P(X=1)] \\
& =1-[0.0821+0.2052] \text { (Poisson from tables) } \\
& =1-0.2873 \\
& =0.7127
\end{aligned}
$$

Option 2

QUESTION 20

Option 5

