Tutorial letter 202/1/2019

Basic Statistics

STA1510

Semester 1

Department of Statistics

SOLUTIONS TO ASSIGNMENT 02

QUESTION 1

Sampling distribution of the proportion

$$
\begin{aligned}
& \pi= 0.95 \quad \sigma_{p}=\sqrt{\frac{0.95(0.05)}{100}} \\
& p= \frac{91}{100}= \\
& \therefore \quad 0.91 \quad=0.0218 \\
& \therefore \quad P(p>0.90) \\
& P\left(Z>\frac{0.90-0.95}{0.0218}\right) \\
& P(Z>-2.29) \\
&= 0.9890 \text { from the } Z \text { tables }
\end{aligned}
$$

Option 2

QUESTION 2

Confidence interval for μ (σ known)

$$
n=50 \quad \bar{X}=\mathrm{R} 2500 \quad \sigma=\mathrm{R} 600
$$

90% confidence interval for μ

$$
\begin{aligned}
& \bar{X} \pm Z_{\frac{\sigma}{\sqrt{n}}} \\
& 2500 \pm 1.645 \text { (84.8528) } \\
& {[2360.42 \leq \mu \leq 2639.58]}
\end{aligned}
$$

We are 90% confident that the mean monthly rent will be between R2360.42 and R2639.58.

Option 1

QUESTION 3

Confidence interval for μ (σ unknown).

$$
\begin{aligned}
n & =20 \\
\bar{X} & =600 \mathrm{~km} \\
S & =50 \mathrm{~km}
\end{aligned}
$$

95\% confidence interval for μ.

$$
\begin{aligned}
& \bar{X} \pm t_{\frac{s}{\sqrt{n}}} \\
& 600 \pm(2.093)(11.1803) \\
& {[576.60 \leq \mu \leq 623.40]}
\end{aligned}
$$

We are 95% confident that the average distance covered on one tank will be between 576.60 km and 623.40 km .

Option 1

QUESTION 4

Confidence interval for proportion

$$
p=\frac{30}{100}=0.3
$$

90% confidence interval for π

$$
\begin{aligned}
& p \pm Z \sqrt{\frac{p(1-p)}{n}} \\
& 0.3 \pm(1.645)(0.0458) \\
& 0.3 \pm 0.0753 \\
& {[0.2247 \leq \pi \leq 0.3753]}
\end{aligned}
$$

We are 90% confident that the proportion of students who pay their own fees will between 22.47% and 37.53%.

Option 3

QUESTION 5

Hypothesis test for proportion, $Z_{S T A T}$

$$
\begin{aligned}
p & =\frac{36}{200}=0.18 \quad \alpha=0.01 \\
H_{0} & : \pi \geq 0.24 \\
H_{1} & : \pi<0.24 \rightarrow \text { less than } \\
\text { Reject } H_{0} \text { if } Z_{S T A T} & <-2.33 \\
\sigma_{p} & =0.0302 \\
\therefore Z_{S T A T} & =\frac{0.18-0.24}{0.0302}=-1.99
\end{aligned}
$$

Option 4

QUESTION 6

Hypothesis test for proportion, $Z_{S T A T}$

$$
\begin{aligned}
\pi & =0.60 \quad p=\frac{300}{450}=0.67 \\
\alpha & =0.05 \\
H_{0} & : \pi=0.6 \rightarrow \text { exactly } 60 \% \\
H_{1} & : \pi \neq 0.6 \\
\therefore \quad Z_{S T A T} & =\frac{0.67-0.6}{0.0231} \\
& =3.03
\end{aligned}
$$

Option 4

QUESTION 7

Hypothesis testing: State H_{0} and H_{1} using information in Question 6.

$$
\begin{aligned}
& H_{0}: \pi=0.6 \rightarrow \text { exactly } 60 \% \\
& H_{1}: \quad \pi \neq 0.6, \text { a two-tailed test. }
\end{aligned}
$$

Option 3

QUESTION 8

χ^{2} critical value

$$
\begin{aligned}
\alpha & =0.01 \quad d f=(3-1)(2-1)=2 \\
\therefore \quad \chi_{2 ; 0.01}^{2} & =9.210 \text { from } \chi^{2} \text { table } .
\end{aligned}
$$

Option 5

QUESTION 9

Simple linear regression analysis

$$
\begin{aligned}
b_{0} & =2112.80 \\
b_{1} & =0.67 \\
\hat{y} & =2112.80+0.67 x
\end{aligned}
$$

When $x=600$ then $\hat{y}=2112.80+0.67(600)=\mathrm{R} 2514.80$
When $x=940$ then $\hat{y}=2112.80+0.67(940)=\mathrm{R} 2742.60$
Option 3

QUESTION 10

Simple linear regression analysis.
Referring to Question 9, since $r=0.7996$ or 0.80 then $r^{2}=63.94 \%$
$r>0$ means there is a positive relationship between quantity of units sold and the annual sales.

Option 3

QUESTION 11

Sample distribution of the proportion

$$
\begin{aligned}
& n=200 \\
& \pi=0.6 \\
& P(p>0.58) \\
& P\left(z>\frac{0.58-0.6}{\sqrt{\frac{0.6(0.4)}{200}}}\right) \\
= & P(Z>-0.578) \\
= & 0.7190
\end{aligned}
$$

Option 5

QUESTION 12

Hypothesis testing for μ the p-value

$$
\begin{array}{ll}
Z_{\text {STAT }}=-1.59 & H_{0}: \mu=50 \\
\therefore \quad P(Z<-1.59) & H_{1}: \mu<50 \text { lower tail test }
\end{array}
$$

Option 2

QUESTION 13

χ^{2} hypothesis testing: Conclusions.
$\alpha=0.10$
$d f=(2-1)(2-1)=1$
$\therefore \quad \chi_{\text {critical }}^{2}=\chi_{1 ; 0.10}^{2}=2.706$

	Yes	No	
Cold	$10(6.3)$	$110(113.7)$	120
Warm	$11(14.7)$	$269(265.3)$	280
	21	379	400

$$
\begin{aligned}
\chi_{S T A T}^{2} & =2.173+0.1204+0.9313+0.0516 \\
& =3.2763
\end{aligned}
$$

Since $\chi_{S T A T}^{2}>\chi_{\text {critical }}^{2} \quad \therefore$ Reject H_{0} at 10% level.
Option 3

QUESTION 14

Simple linear regression and correlation analysis. Interpretation of r^{2}.

$$
r^{2}=0.82 \text { or } 82 \%
$$

The interpretation is that 82% of the variation in the dependent variable can be explained by the variation in the independent variable.

Option 2

QUESTION 15

Correlation analysis. Determine r

$$
\begin{aligned}
S S R & =b_{0} \sum Y_{i}+b_{1} \sum X_{i} Y_{i}-\frac{\left(\sum Y_{i}\right)^{2}}{n} \\
& =-0.3517(59.97)+0.1156(1496.69)-\frac{(59.97)^{2}}{30} \\
& =-21.0914+173.0174-119.88 \\
& =32.046 \\
S S T & =\sum Y_{i}^{2}-\frac{\left(\sum Y_{i}\right)^{2}}{n}=155.3025-\frac{(59.97)^{2}}{30} \\
& =35.4225 \\
& \therefore \quad r^{2}=\frac{S S R}{S S T}=\frac{32.046}{35.4225}=0.9047
\end{aligned}
$$

Since b_{1} is positive, r will be the positive square root of 0.9047 .

$$
r=0.9512
$$

Option 2

