Tutorial letter 202/1/2019

Basic Statistics STA1510

Semester 1

Department of Statistics

SOLUTIONS TO ASSIGNMENT 02

Define tomorrow.

Sampling distribution of the proportion

Option 2

QUESTION 2

Confidence interval for μ (σ known)

$$n = 50$$

 $\bar{X} = R2500$ $\sigma = R600$

90% confidence interval for μ

$$\bar{X} \pm Z_{\frac{\sigma}{\sqrt{n}}}$$

2500 ± 1.645 (84.8528)
[2360.42 ≤ μ ≤ 2639.58]

We are 90% confident that the mean monthly rent will be between R2360.42 and R2639.58.

Option 1

QUESTION 3

Confidence interval for μ (σ unknown).

$$n = 20$$

$$\bar{X} = 600 \text{ km}$$

$$S = 50 \text{ km}$$

95% confidence interval for μ .

$$\bar{X} \pm t_{\frac{s}{\sqrt{n}}}$$

600 ± (2.093) (11.1803)
[576.60 ≤ μ ≤ 623.40]

We are 95% confident that the average distance covered on one tank will be between 576.60 km and 623.40 km.

Option 1

QUESTION 4

Confidence interval for proportion

$$p = \frac{30}{100} = 0.3$$

90% confidence interval for π

$$p \pm Z \sqrt{\frac{p (1 - p)}{n}}$$

0.3 ± (1.645) (0.0458)
0.3 ± 0.0753
[0.2247 < π < 0.3753]

We are 90% confident that the proportion of students who pay their own fees will between 22.47% and 37.53%.

Option 3

QUESTION 5

Hypothesis test for proportion, Z_{STAT}

$$p = \frac{36}{200} = 0.18 \qquad \alpha = 0.01$$

$$H_0 : \pi \ge 0.24$$

$$H_1 : \pi < 0.24 \rightarrow \text{ less than}$$
Reject $H_0 \text{ if } Z_{STAT} < -2.33$

$$\sigma_p = 0.0302$$

$$\therefore Z_{STAT} = \frac{0.18 - 0.24}{0.0302} = -1.99$$

Hypothesis test for proportion, Z_{STAT}

$$\pi = 0.60 \quad p = \frac{300}{450} = 0.67$$

$$\alpha = 0.05$$

$$H_0 : \pi = 0.6 \rightarrow \text{ exactly } 60\%$$

$$H_1 : \pi \neq 0.6$$

$$\therefore Z_{STAT} = \frac{0.67 - 0.6}{0.0231}$$

$$= 3.03$$

Option 4

QUESTION 7

Hypothesis testing: State H_0 and H_1 using information in Question 6.

$$H_0$$
 : $\pi = 0.6 \rightarrow$ exactly 60%
 H_1 : $\pi \neq 0.6$, a two-tailed test.

Option 3

QUESTION 8

 χ^2 critical value

$$\alpha = 0.01 \quad df = (3-1)(2-1) = 2$$

 $\therefore \chi^2_{2;0.01} = 9.210 \text{ from } \chi^2 \text{ table.}$

Option 5

QUESTION 9

Simple linear regression analysis

$$b_0 = 2112.80$$

 $b_1 = 0.67$
 $\hat{y} = 2112.80 + 0.67x$

When x = 600 then $\hat{y} = 2112.80 + 0.67$ (600) = R2514.80

When x = 940 then $\hat{y} = 2112.80 + 0.67 (940) = R2742.60$

Simple linear regression analysis. Referring to Question 9, since r = 0.7996 or 0.80 then $r^2 = 63.94\%$ r > 0 means there is a positive relationship between quantity of units sold and the annual sales.

Option 3

QUESTION 11

Sample distribution of the proportion

Option 5

QUESTION 12

Hypothesis testing for μ the *p*-value

$Z_{STAT} = -1.59$	$H_0: \mu = 50$
: $P(Z < -1.59)$	$H_1: \mu < 50$ lower tail test

Option 2

QUESTION 13

 χ^2 hypothesis testing: Conclusions. $\alpha = 0.10$ df = (2 - 1) (2 - 1) = 1 $\therefore \chi^2_{\text{critical}} = \chi^2_{1;0.10} = 2.706$

	Yes	No	
Cold	10 (6.3)	110 (113.7)	120
Warm	11 (14.7)	269 (265.3)	280
	21	379	400

χ^2_{STAT}	=	2.173 + 0.1204 + 0.9313 + 0.0516
	=	3.2763

Since $\chi^2_{STAT} > \chi^2_{critical}$ \therefore Reject H_0 at 10% level.

Option 3

QUESTION 14

Simple linear regression and correlation analysis. Interpretation of r^2 .

$$r^2 = 0.82$$
 or 82%

The interpretation is that 82% of the variation in the dependent variable can be explained by the variation in the independent variable.

Correlation analysis. Determine r

$$SSR = b_0 \sum Y_i + b_1 \sum X_i Y_i - \frac{\left(\sum Y_i\right)^2}{n}$$

= -0.3517 (59.97) + 0.1156 (1496.69) - $\frac{(59.97)^2}{30}$
= -21.0914 + 173.0174 - 119.88
= 32.046
$$SST = \sum Y_i^2 - \frac{\left(\sum Y_i\right)^2}{n} = 155.3025 - \frac{(59.97)^2}{30}$$

= 35.4225
 $\therefore r^2 = \frac{SSR}{SST} = \frac{32.046}{35.4225} = 0.9047$

Since b_1 is positive, r will be the positive square root of 0.9047.

$$r = 0.9512$$