## Tutorial letter 202/2/2019

Basic Statistics<br>STA1510

Semester 2

Department of Statistics

SOLUTIONS TO ASSIGNMENT 02

## QUESTION 1

Sampling distribution of the mean

$$
\begin{aligned}
\mu=40000 \mathrm{~km} \quad \sigma_{\bar{X}} & =\frac{400}{\sqrt{45}} \\
\sigma=4000 \mathrm{~km} & =596.2848 \\
& P(39000<\bar{X}<41500) \\
& P\left(\frac{39000-40000}{596.2848}<Z<\frac{41500-40000}{596.2848}\right) \\
& P(-1.68<Z<2.52) \\
= & 0.9941-0.0465 \\
= & 0.9476
\end{aligned}
$$



## Option 1

## QUESTION 2

Confidence interval for the proportion.

$$
p=\frac{30}{100}=0.3
$$

$99 \%$ confidence interval for $\pi$

$$
\begin{aligned}
& p \pm Z \sqrt{\frac{p(1-p)}{n}} \\
& 0.3 \pm 2.58 \sqrt{\frac{0.3 \times 0.7}{100}} \\
& 0.3 \pm 0.1182 \\
& {[0.1818 \leq \pi \leq 0.4182]}
\end{aligned}
$$

We are $99 \%$ confident that the proportion of students who pay their own fees will be between $18.18 \%$ and $41.82 \%$.

## Option 5

## QUESTION 3

Confidence interval for $\mu$ ( $\sigma$ unknown).

$$
\begin{aligned}
n & =10 \\
\bar{X} & =9.25 \\
S & =2.21
\end{aligned}
$$

$99 \%$ confidence interval for $\mu$.

$$
\begin{aligned}
& \bar{X} \pm t_{\frac{s}{\sqrt{n}}} \\
& 9.25 \pm(3.2498)(0.7) \\
& {[6.9751 \leq \mu \leq 11.5249]}
\end{aligned}
$$

We are $99 \%$ confident that the mean number of hours the battery will last in an iPod will be between 6.975 hours and 11.52 hours.

## Option 2

## QUESTION 4

Confidence interval for the $\mu$ ( $\sigma$ known)

$$
\begin{aligned}
n & =50 \\
\bar{X} & =\mathrm{R} 2500 \\
\sigma & =\mathrm{R} 500
\end{aligned}
$$

95\% confidence interval for $\mu$

$$
\begin{aligned}
& \bar{X} \pm Z \frac{\sigma}{\sqrt{n}} \\
& 2500 \pm 1.96(70.7107) \\
& {[2361.41 \leq \mu \leq 2638.59]}
\end{aligned}
$$

We are $95 \%$ confident that the mean monthly rent will be between R2361.41 and R2638.59.

## Option 4

## QUESTION 5

Hypothesis test for proportion, $Z_{S T A T}$

$$
\begin{aligned}
p & =\frac{36}{200}=0.18 \quad \alpha=0.01 \\
H_{0} & : \pi \geq 0.24 \\
H_{1} & : \pi<0.24 \rightarrow \text { less than } \\
\text { Reject } H_{0} \text { if } Z_{S T A T} & <-2.33 \\
\sigma_{p} & =0.0302 \\
\therefore Z_{S T A T} & =\frac{0.18-0.24}{0.0302}=-1.99
\end{aligned}
$$

Option 5

## QUESTION 6

Hypothesis test for $\mu$ the $p$-value

$$
\begin{aligned}
n & =45 \quad \sigma=4 \text { years } \\
\bar{X} & =30 \text { years } \\
\alpha & : 0.01 \\
H_{0} & : \pi \leq 28 \\
H_{1} & : \mu>28 \rightarrow \text { upper tail test } \\
Z_{\text {stat }} & =\frac{30-28}{0.5963} \\
& =3.35
\end{aligned}
$$

So, $P(Z>3.35)=0.00040$ the $p$-value.


Option 4

## QUESTION 7

Hypothesis testing: Rejection region using information in Question 6.

$$
\begin{aligned}
\alpha & =0.01 \\
H_{0} & : \mu \leq 28 \\
H_{1} & : \quad \mu>28 \rightarrow \text { upper tail test } \\
& \sigma \text { known. } \\
& \therefore \quad Z_{\text {critical }}=Z_{0.01}=2.33
\end{aligned}
$$

Reject $H_{0}$ if $Z_{\text {stat }}$ is $>2.33$.
Option 1

## QUESTION 8

$\chi^{2}$ hypothesis testing

$$
\begin{aligned}
\chi_{2 ; 0.05}^{2} & =5.991 \\
Z_{\text {stat }} & =28.70
\end{aligned}
$$


28.70 is greater than 5.991 therefore, reject $H_{0}$ at $5 \%$ level.

Option 3

## QUESTION 9

Simple linear regression analysis

$$
\begin{aligned}
b_{0} & =854.10 \\
b_{1} & =-4.33 \\
\therefore \quad \hat{y} & =854.10-4.33 x
\end{aligned}
$$

When $x=100$ then $\hat{y}=854.1-4.33(100)=421.10$
When $x=140$ then $\hat{y}=854.1-4.33=(140)=247.90$
Option 4

## QUESTION 10

Correlation analysis
Referring to Question 9, since

$$
\begin{aligned}
r & =-0.87 \text { or }-0.8663 \\
r^{2} & =75.05 \%
\end{aligned}
$$

$r>0$ inverse relationship.

## Option 1

## QUESTION 11

Sample distribution of the mean $\mu$.

$$
\begin{aligned}
\mu & =75 \\
\sigma & =12 \\
n & =36
\end{aligned}
$$

$$
\begin{aligned}
P(\bar{X}>78) & =P\left(Z<\frac{78-75}{2}\right) \\
& =P(Z>1.5)
\end{aligned}
$$



Option 4

## QUESTION 12

Sampling distribution of the proportion.

$$
\begin{aligned}
& n=200 \\
& \pi=0.06 \\
& P(P>0.58) \\
&= P\left(Z>\frac{0.58-0.6}{\sqrt{\frac{0.6(0.4)}{200}}}\right) \\
&= P(Z>-0.578) \\
&= 0.7190
\end{aligned}
$$



Option 5

## QUESTION 13

$\chi^{2}$ hypothesis testing. Conclusion

$$
\left.\begin{gathered}
\alpha=0.10 \\
d f=(2-1)(2-1)=1 \\
\therefore \quad \chi_{\text {critical }}^{2}=\chi_{1 ; 0.10}^{2}=2.706 \\
\\
\\
\\
\hline \text { Cold } \\
\hline \text { Yes } \\
\hline \text { Warm } \\
\hline
\end{gathered} \right\rvert\,
$$

since $\chi_{\text {stat }}^{2}>\chi_{\text {critical }}^{2} \quad \therefore$ Reject $H_{0}$ ate $10 \%$ level.
Option 3

## QUESTION 14

Simple linear regression and correlation analysis. Interpretation of $r^{2}$.

$$
r^{2}=0.82 \text { or } 82 \%
$$

The interpretation is that $82 \%$ of the variation in the dependent variable can be explained by the variation in the independent variable.

Option 2

## QUESTION 15

Correlation analysis. Determine $r$

$$
\begin{aligned}
S S R & =b_{0} \sum Y_{i}+b_{1} \sum X_{i} Y_{i}-\frac{\left(\sum Y_{i}\right)^{2}}{n} \\
& =-0.3517(59.97)+0.1156(1496.69)-\frac{(59.97)^{2}}{30} \\
& =-21.0914+173.0174-119.88 \\
& =32.046 \\
S S T & =\sum Y_{i}^{2}-\frac{\left(\sum Y_{i}\right)^{2}}{n}=155.3025-\frac{(59.97)^{2}}{30} \\
& =35.4225 \\
& \therefore \quad r^{2}=\frac{S S R}{S S T}=\frac{32.046}{35.4225}=0.9047
\end{aligned}
$$

Since $b_{1}$ is positive, $r$ will be the positive square root of 0.9047 .

$$
r=0.9512
$$

Option 2

