Tutorial letter 202/2/2019

Basic Statistics STA1510

Semester 2

Department of Statistics

SOLUTIONS TO ASSIGNMENT 02

Define tomorrow.

Sampling distribution of the mean

$$\mu = 40\ 000\ \text{km} \qquad \sigma_{\bar{X}} = \frac{400}{\sqrt{45}}$$

$$\sigma = 4\ 000\ \text{km} \qquad = 596.2848$$

$$P\ (39\ 000 < \bar{X} < 41\ 500)$$

$$P\left(\frac{39\ 000 - 40\ 000}{596.2848} < Z < \frac{41\ 500 - 40\ 000}{596.2848}\right)$$

$$P\ (-1.68 < Z < 2.52)$$

$$= 0.9941 - 0.0465$$

$$= 0.9476$$

$$0.9476$$

$$0.9476$$

Option 1

QUESTION 2

Confidence interval for the proportion.

$$p = \frac{30}{100} = 0.3$$

99% confidence interval for π

$$p \pm Z \sqrt{\frac{p (1 - p)}{n}}$$

$$0.3 \pm 2.58 \sqrt{\frac{0.3 \times 0.7}{100}}$$

$$0.3 \pm 0.1182$$

$$[0.1818 \le \pi \le 0.4182]$$

We are 99% confident that the proportion of students who pay their own fees will be between 18.18% and 41.82%.

Option 5

Confidence interval for μ (σ unknown).

$$n = 10$$

 $\bar{X} = 9.25$
 $S = 2.21$

99% confidence interval for μ .

$$\bar{X} \pm t_{\frac{s}{\sqrt{n}}}$$

9.25 ± (3.2498) (0.7)
[6.9751 ≤ μ ≤ 11.5249]

We are 99% confident that the mean number of hours the battery will last in an iPod will be between 6.975 hours and 11.52 hours.

Option 2

QUESTION 4

Confidence interval for the μ (σ known)

$$n = 50$$

$$\bar{X} = R2 500$$

$$\sigma = R500$$

95% confidence interval for μ

$$\bar{X} \pm Z \frac{o}{\sqrt{n}}$$

2500 ± 1.96 (70.7107)
[2361.41 < μ < 2638.59]

We are 95% confident that the mean monthly rent will be between R2361.41 and R2638.59.

Option 4

QUESTION 5

Hypothesis test for proportion, Z_{STAT}

$$p = \frac{36}{200} = 0.18 \qquad \alpha = 0.01$$

$$H_0 : \pi \ge 0.24$$

$$H_1 : \pi < 0.24 \rightarrow \text{ less than}$$
Reject H_0 if $Z_{STAT} < -2.33$

$$\sigma_p = 0.0302$$

$$\therefore Z_{STAT} = \frac{0.18 - 0.24}{0.0302} = -1.99$$

Option 5

Hypothesis test for μ the *p*-value

$$n = 45 \quad \sigma = 4 \text{ years}$$

$$\bar{X} = 30 \text{ years}$$

$$\alpha : 0.01$$

$$H_0 : \pi \le 28$$

$$H_1 : \mu > 28 \rightarrow \text{ upper tail test}$$

$$Z_{\text{stat}} = \frac{30 - 28}{0.5963}$$

$$= 3.35$$

So, P(Z > 3.35) = 0.00040 the *p*-value.

Option 4

QUESTION 7

Hypothesis testing: Rejection region using information in Question 6.

$$\alpha = 0.01$$

$$H_0 : \mu \le 28$$

$$H_1 : \mu > 28 \rightarrow \text{upper tail test}$$

$$\sigma \text{ known.}$$

$$\therefore \quad Z_{\text{critical}} = Z_{0.01} = 2.33$$

Reject H_0 if Z_{stat} is > 2.33.

Option 1

QUESTION 8

 χ^2 hypothesis testing

$$\chi^2_{2;0.05} = 5.991$$

 $Z_{\text{stat}} = 28.70$

28.70 is greater than 5.991 therefore, reject H_0 at 5% level.

Option 3

QUESTION 9

Simple linear regression analysis

$$b_0 = 854.10$$

 $b_1 = -4.33$
 $\therefore \hat{y} = 854.10 - 4.33x$

When x = 100 then $\hat{y} = 854.1 - 4.33$ (100) = 421.10

When x = 140 then $\hat{y} = 854.1 - 4.33 = (140) = 247.90$

Option 4

QUESTION 10

Correlation analysis Referring to Question 9, since

$$r = -0.87$$
 or -0.8663
 $r^2 = 75.05\%$

r > 0 inverse relationship..

Option 1

QUESTION 11

Sample distribution of the mean μ .

$$\mu = 75$$

$$\sigma = 12$$

$$n = 36$$

Sampling distribution of the proportion.

 χ^2 hypothesis testing. Conclusion

$$\alpha = 0.10$$

$$df = (2-1)(2-1) = 1$$

$$\therefore \chi^{2}_{\text{critical}} = \chi^{2}_{1; 0.10} = 2.706$$

$$\boxed{\begin{array}{c|c|c|c|c|}\hline \text{Ves} & \text{No} \\\hline \hline \text{Cold} & 10(6.3) & 110(113.7) & 120 \\\hline \hline \text{Warm} & 11(14.7) & 269(265.3) & 280 \\\hline & 21 & 379 & 400 \\\hline \end{array}}$$

$$\chi^{2}_{\text{stat}} = 2.173 + 0.1204 + 0.9313 + 0.0516$$

$$= 3.2763$$

since $\chi^2_{\text{stat}} > \chi^2_{\text{critical}}$ \therefore Reject H_0 ate 10% level.

Option 3

QUESTION 14

Simple linear regression and correlation analysis. Interpretation of r^2 .

 $r^2 = 0.82$ or 82%

The interpretation is that 82% of the variation in the dependent variable can be explained by the variation in the independent variable.

Option 2

QUESTION 15

Correlation analysis. Determine r

$$SSR = b_0 \sum Y_i + b_1 \sum X_i Y_i - \frac{\left(\sum Y_i\right)^2}{n}$$

= -0.3517 (59.97) + 0.1156 (1496.69) - $\frac{(59.97)^2}{30}$
= -21.0914 + 173.0174 - 119.88
= 32.046
$$SST = \sum Y_i^2 - \frac{\left(\sum Y_i\right)^2}{n} = 155.3025 - \frac{(59.97)^2}{30}$$

= 35.4225
 $\therefore r^2 = \frac{SSR}{SST} = \frac{32.046}{35.4225} = 0.9047$

Since b_1 is positive, *r* will be the positive square root of 0.9047.

$$r = 0.9512$$

Option 2