
 http://wikistudent.ws/Unisa

Chapter 1 - Introduction

Computer architecture = computer aspects visible to the programmer, that have a
direct impact on program execution. E.g. having a m ultiply instruction.

Computer organisation = operational units that realise the architectural
specifications, like hardware details transparent to the programmer. E.g. the
memory technology used.

Many computer models have the same architecture, bu t different organisations,
resulting in different prices & performance.

A particular architecture can span many years, with its organisation changing
every now and then.

With microcomputers, the relationship between archi tecture and organisation is
very close. Because these small machines don’t real ly need to be generation-to-
generation compatible, changes in technology influe nce both organisation and
architecture. E.g. RISC.

Structure = the way in which computer components are interre lated.

Function = how each component in the structure operates.

The computer hierarchy consists of different levels at which structure and
function can be examined.

Function
There are four basic functions a computer can perfo rm:

• Data processing
• Data storage
• Data movement
• Control

Structure
There are four main structural components:

• Central Processing Unit (CPU)
• Main memory
• I/O
• System interconnection

There are four main structural components of the CP U:
• Control unit
• Arithmetic & Logic Unit (ALU)
• Registers
• CPU interconnection

Chapter 2 - Computer evolution & performance

The stored-program concept = the idea of facilitating the programming process
by storing the program in memory, alongside the dat a, so that a computer can
get its instructions by reading them from memory, a nd you can alter a program
by setting the values of a portion of memory.

John von Neumann began the design of a new stored-p rogram computer, called the
IAS computer, which is the prototype of all subsequ ent general-purpose
computers.
All of today’s computers have the same general stru cture and function, and are
referred to as von Neumann machines.

Structure of the IAS computer:

1

 http://wikistudent.ws/Unisa

• Main memory (containing data and instructions)
• ALU (which performs operations on binary data)
• Control unit (which interprets the instructions and causes them to be

executed)
• I/O equipment

Computers are classified into generations based on the fundamental hardware
technology used. Each new generation has greater pr ocessing performance, a
larger memory capacity, and a smaller size than the previous one:

Generation Technology Typical speed
(operations per second)

1 Vacuum tube 40 000
2 Transistor 200 000
3 Small- and medium-scale integration 1 000 000
4 Large-scale integration 10 000 000
5 Very-large-scale integration 100 000 000

Moore’s law:
The number of transistors that can be put on a sing le chip doubles every 18
months.

Consequences of Moore’s law:
• Lower cost of computer logic and memory circuitry
• Shorter electrical path lengths, which increase ope rating speed
• Smaller computers
• Reduced power and cooling requirements
• Fewer inter-chip connections (with more circuitry), making

interconnections more reliable than solder connecti ons

Characteristics that distinguish a family of comput ers:
• Similar or identical instruction set
• Similar or identical operating system
• Increasing speed
• Increasing number of I/O ports
• Increasing memory size
• Increasing cost

Computers are becoming faster and cheaper, but the basic building blocks are
still the same as those of the IAS computer from ov er 50 years ago.

Microprocessor speed
The raw speed of the microprocessor won’t achieve i ts potential unless it is
fed a constant stream of work to do in the form of computer instructions.
Some ways of exploiting the speed of the processor:

• Branch prediction - The processor looks ahead and predicts which
instructions are likely to be processed next, prefe tching and buffering
them so that there’s more work available.

• Data flow analysis - The processor analyses which instructions are
dependent on each other’s data to create an optimis ed schedule of
instructions. Instructions are scheduled to be exec uted when ready,
independent of the original order, preventing delay s.

• Speculative execution - The processor uses branch prediction and data
flow analysis to speculatively execute instructions ahead of their
appearance in the program execution, holding the re sults in temporary
locations. The processor is kept as busy as possibl e by executing
instructions that are likely to be needed.

Performance balance = adjusting the organisation and architecture to c ompensate
for the mismatch between the capabilities of variou s computer components.

2

 http://wikistudent.ws/Unisa

Processor speed and memory capacity have grown rapi dly, but the speed with
which data can be transferred between main memory a nd the processor has lagged.
The interface between processor and main memory is the most crucial pathway in
the computer, because it is responsible for carryin g a constant flow of program
instructions and data between memory chips and the processor. If memory or the
pathway can’t keep up with the processor, valuable processing time is lost.
DRAM density is going up faster than the amount of main memory needed, which
means that the number of DRAMs per system is actual ly going down, so there is
less opportunity for parallel transfer of data.

Some ways of handling the DRAM density problem:
• Make DRAMs ‘wider’ rather than ‘deeper’, i.e. incre ase the number of bits

that are retrieved at one time, and also use wide b us data paths
• Make the DRAM interface more efficient by including a cache
• Reduce the frequency of memory access by using cach e structures between

the processor and main memory
• Use higher-speed buses to increase the bandwidth be tween processors and

memory, and use a hierarchy of buses to buffer and structure data flow

Handling of I/O devices:
The more sophisticated computers become, the more a pplications are developed
that support the use of peripherals with intensive I/O demands.
Processors can handle the data pumped out by these devices, but the problem is
in moving the data between processor and peripheral.

• Include caching and buffering schemes
• Use higher-speed interconnection buses and more ela borate bus structures
• Use multiple-processor configurations

Designers must strive to balance the throughput and processing demands of the
processor, main memory, I/O devices, and the interc onnection structures.
The design must cope with two evolving factors:

• The rate at which performance is changing differs f rom one type of
element to another

• New applications / peripherals keep on changing the nature of the demand
on the system

Hardware and software are generally logically equivalent , which means that they
can often perform the same function. Designers have to decide which functions
to implement in hardware and which in software. Cos t usually plays a role.
Hardware offers speed, but not flexibility.
Software offers flexibility, but less speed.

Intel’s Pentium
This is an example of CISC design.

Differences between some members of the Pentium fam ily:
Pentium Uses superscalar techniques, which allow mul tiple instructions

to execute in parallel
Pentium Pro Superscalar organisation, with aggressiv e use of register

renaming, branch prediction, data flow analysis, an d
speculative execution

Pentium II Incorporates Intel MMX technology to proc ess video, audio, and
graphics data efficiently

Pentium III Incorporates additional floating-point i nstructions to support
3D graphics software

Pentium 4 Includes additional floating-point and oth er enhancements for
multimedia

Itanium Uses a 64-bit organisation with the IA-64 ar chitecture

Evolution of the PowerPC
The 801 minicomputer project at IBM, together with the Ber keley RISC I
processor, launched the RISC movement. IBM then dev eloped a commercial RISC

3

 http://wikistudent.ws/Unisa

workstation, the RT PC . IBM then produced a third system, which built on the
801 and RT PC, called the IBM RISC System/6000 and referred to as the POWER
architecture . IBM then entered into alliance with Motorola and Apple, which
resulted in a series of machines that implement the PowerPC architecture
(derived from the POWER architecture).

The PowerPC architecture is a superscalar RISC syst em, and one of the most
powerful and best-designed ones on the market.

Chapter 3 - Computer functions and interconnections

Computer components

Almost all computer designs are based on the von Neumann architecture , which is
based on three key concepts :

• Data and instructions are stored in a single read-write memory
• The contents of this memory are addressable by location, without regard

to the type of data stored there
• Execution occurs sequentially (unless explicitly modified) from one

instruction to the next

The reasoning behind these concepts:
Previously programs were ‘stored’ by connecting log ic gates together, which was
difficult and cumbersome. Having the program stored in memory so that the
control unit can interpret and execute the instruct ions is called the stored
program concept. This is an improvement because the program can be changed or
an entirely new one stored without having to perfor m changes to the hardware.

Hardwired program = a program that is not stored in memory, but form s part of
the hardware. Logic components are physically and p ermanently connected, and
contain the sequence of steps that the program shou ld execute.

Memory - stores both instructions and data
• A set of locations (sequentially numbered addresses) contain binary

numbers that can be interpreted as either instructi ons or data
CPU - exchanges data with memory and I/O equipment

• MAR (Memory address register) specifies the address in memory for the
next read / write

• MBR (Memory buffer register) contains the data to b e written into
memory / receives the data from memory

• I/OAR (I/O address register) specifies a particular I/O device
• I/OBR (I/O buffer register) is used for exchanging data between an I/O

module and the CPU
I/O - transfers data from external devices to CPU a nd memory and vice versa

• Internal buffers temporarily hold data until they c an be sent on

Computer function

Instruction cycle = the processing required for a single instruction .
Two steps of instruction processing:

1. Fetch cycle: The processor reads instructions fro m memory one at a time
2. Execute cycle: The processor executes each instru ction

Program execution consists of repeating the process of instruction f etch and
instruction execution.
Program execution halts only if

• the machine is turned off,
• some sort of unrecoverable error occurs, or
• a program instruction halts the computer

Steps for program execution:
1. The address of the next instruction to be executed is determin ed

4

 http://wikistudent.ws/Unisa

2. The processor fetches the instruction from memory (The PC holds the
address of the instruction to be fetched next and i s incremented after
each fetch)

3. The fetched instruction is loaded into the IR (Instruction Register)
4. The control unit interprets (decodes) the instruction to see what is to

be done
5. (If required, address(es) of the operand(s) are determined)
6. (If required, the operand(s) are fetched from memory)
7. The processor performs the required action (see * below)
8. The result is stored in memory, if required
9. Interrupt processing takes place if an interrupt has occurred (see **)

Types of actions that can be performed by the proce ssor *
• Processor-memory (Data can be transferred from processor to memory or

vice versa)
• Processor-I/O (Data can be transferred to / from a peripheral de vice by

transferring between the processor and an I/O modul e)
• Data processing (The processor can perform arithmetic / logic oper ations

on data)
• Control (An instruction can specify a jump to another inst ruction)

Interrupts = mechanisms by which other modules (like I/O or m emory) may
interrupt the normal processing of the processor.

Common classes of interrupts:
• Program interrupts - occur as a result of the execution of some

instruction (like division by 0). Also known as tra ps.
• Timer interrupts - occur at regular intervals when the processor’s built-

in timer signals the OS to perform certain (regular) functions.
• I/O interrupts - caused by external hardware devices to inform the

processor that an I/O operation is complete or that an error occurred.
• Interrupts caused by hardware failure - A power failure or memory parity

error will cause a hardware interrupt.

Interrupts are provided mainly as a way to improve processing efficiency. Most
external devices are much slower than the processor , so, with no interrupts,
after each write operation the processor must pause and remain idle until the
(e.g.) printer catches up.
With interrupts, the processor can execute other in structions while an I/O
operation is in progress:

1. The program makes a WRITE call to an I/O program
2. A few instructions of the I/O program are execute d (preparation code…)
3. Then control returns to the processor while the e xternal device is busy
4. When the external device is ready to accept more da ta, it sends an

interrupt request signal to the processor
5. The processor stops operation of the current progra m and services the I/O

device, known as an interrupt handler
6. Afterwards the processor resumes the original exe cution

Interrupt cycle **
At the end of the instruction cycle, the processor checks to see if any
interrupts have occurred. If not, the processor pro ceeds to the fetch cycle,
otherwise:

• The processor suspends execution of the current pro gram and saves its
context (including the address of the next instruct ion to be executed)

• The program counter is set to the starting address of an interrupt
handler routine

There is extra overhead with the interrupt handling process (Extra instructions
must be executed to determine the nature of the int errupt and to decide on the
appropriate action), but it still wastes less time than waiting for an I/O
operation to finish.

5

 http://wikistudent.ws/Unisa

Multiple interrupts
Two approaches can be taken to dealing with multipl e interrupts:
1. Disable interrupts while an interrupt is being p rocessed
When an interrupt occurs, interrupts are disabled a nd the processor ignores
interrupt request signals. After the interrupt hand ler routine completes,
interrupts are enabled and the processor checks to see if additional interrupts
have occurred.
Advantage: Simple approach because interrupts are handled in sequential order.
Disadvantage: It doesn’t take into account relative priority or time-critical
needs.
2. Define priorities for interrupts
Interrupts of higher priority cause lower-priority interrupt handlers to be
interrupted.

I/O function
An I/O module (like a disk controller) can exchange data directly with the
processor. (The processor identifies a specific dev ice that is controlled by a
particular I/O module).
If necessary, the processor can grant an I/O module the authority to read
from / write to memory, so that the I/O-memory tran sfer can occur without tying
up the processor. (Direct memory access).

Interconnection structures

Interconnection structure = the collection of paths connecting the various
modules (processor, memory, I/O).

Data to be exchanged:
Memory
A memory module consists of N words of equal length , with unique addresses. A
word of data can be read from or written into the memory.
I/O module
I/O is functionally similar to memory (read & write operations). An I/O module
can control more than one external device, each of which has a unique address.
There are external data paths for the input & outpu t of data with an external
device. An I/O module may also be able to send interrupt signals to the
processor.
Processor
The processor reads in instructions and data, writes out data after processing,
and uses control signals to control the overall operation of the system. It
also receives interrupt signals.

The interconnection structure must support the foll owing types of transfers:
• Memory to processor
• Processor to memory
• I/O to processor
• Processor to I/O
• I/O to or from memory

Bus interconnection

Bus = a communication pathway connecting two or more d evices.
Key characteristic: it is a shared transmission medium, and only one device can
transmit signals at a time.
A bus consists of multiple communication pathways (lines), which can each
transmit signals representing binary 1 / 0.
A sequence of digits can be transmitted across a si ngle line.
Several lines can be used to transmit digits in par allel.
System bus = a bus that connects major computer components (p rocessor, memory,
I/O).

6

 http://wikistudent.ws/Unisa

Bus structure
A system bus consists of about 50 � hundreds of separate lines, which each
have a particular function.

Three functional groups of bus lines:
1. Data lines
Provide a path for moving data between system modul es.
Collectively called the data bus.
The data bus can consist of 32 � hundreds of separate lines.
Bus width = the number of lines, which determines h ow many bits can be
transferred at a time. (A key factor in determining system performance).
2. Address lines
Used to designate the source / destination of the d ata on the data bus.
The width of the address bus determines the max mem ory capacity.
3. Control lines
Used to control the access to and the use of the da ta and address lines.
(Data and address lines are shared by all component s, so their use must be
controlled).
Control signals transmit command and timing info be tween system modules:
* Command signals specify operations to be performed.
* Timing signals indicate the validity of data and address informat ion.

Bus operation:
A module that wants to send data must

1. Obtain the use of the bus
2. Transfer data via the bus

A module that wants to request data from another mo dule must
1. Obtain the use of the bus
2. Transfer a request to the module over the appropr iate control and address

lines
3. Wait for the other module to send the data

An on-chip bus may connect the processor and cache memory.
An on-board bus may connect the processor to main m emory and other components.

Multiple-bus hierarchies
Why connecting too many devices to the bus causes p erformance to suffer:

• The more devices attached, the greater the bus leng th, the greater the
transmission delay.

• The bus may become a bottleneck as the capacity of the bus is reached.

How multiple buses can be used in a hierarchy:

 Local bus

System bus

Expansion bus

This is the traditional bus architecture:

7

Processor Cache

Main
Memory

Expansion Bus
Interface

Modem Network

 http://wikistudent.ws/Unisa

Main memory is moved off the local bus onto a syste m bus, so I/O transfers to
and from memory don’t interfere with the processor’ s activity.
You may connect I/O controllers directly onto the s ystem bus, but it is more
efficient to use an expansion bus (see diagram), be cause this allows support
for a wide variety of I/O devices and insulates mem ory-to-processor traffic
from I/O traffic.

Mezzanine architecture (high-performance architecture):
With increasing performance in I/O devices, a high- speed bus is needed between
the expansion bus and system bus.
This bus supports connections to high-speed LANs, v ideo & graphics workstation
controllers, FireWire, etc.
Lower-speed devices are still supported off the exp ansion-bus, with an
interface buffering traffic between the expansion b us and the high-speed bus.
Advantage: The high-speed bus brings high-demand devices int o closer
integration with the processor and is also independ ent of the processor.
Changes in processor architecture don’t affect the high-speed bus, and vice
versa.

Elements of bus design

1. Bus types
* Dedicated

• Functional dedication:
E.g. Using separate dedicated address and data line s.
• Physical dedication:
E.g. Using an I/O bus to interconnect all I/O modul es.
Advantage: High throughput because there is less bu s contention.
Disadvantage: Increased size and cost of the system .

* Multiplexed
Using the same lines for multiple purposes.
Advantage: The use of fewer lines saves space and c ost.
Disadvantage: More complex circuitry is needed and there is a potential
reduction in performance.

2. Method of arbitration
Arbitration is needed because only one unit at a ti me can transmit over the bus
* Centralised
A single hardware device (a bus controller / arbite r) is responsible for
allocating time on the bus.
The device may be a separate module or part of the processor.
* Distributed
Each module contains access control logic and the m odules act together to share
the bus.

3. Timing
Timing refers to the way in which events are coordi nated on the bus.
* Synchronous
The occurrence of events on the bus is determined b y a clock. The bus has a
clock line upon which a clock transmits a regular s equence of alternating 1s
and 0s. A single 1-0 transmission is referred to as a clock cycle / bus cycle,
and defines a time slot. All other devices on the b us can read the clock line,
and all events start at the beginning of a clock cy cle. Most events occupy a
single clock cycle.
Advantage: Simpler to implement and test than async hronous timing.
Disadvantage: Less flexible than asynchronous timin g.
Disadvantage: Because all devices are tied to a fix ed clock rate, the system
can’t take advantage of advances in device performa nce.
* Asynchronous
The occurrence of one event on a bus follows and de pends on the occurrence of a
previous event.
Advantage: A mixture of slow and fast devices, usin g older and newer
technology, can share a bus.

8

 http://wikistudent.ws/Unisa

4. Bus width
* Address
The wider the address bus, the greater the range of locations referrenced.
* Data
The wider the data bus, the greater the number of b its transferred at one time.

5. Data transfer type
* Read
* Write
* Read-modify-write
* Read-after-write
* Block data transfer

PCI (Peripheral Component Interconnect)

PCI is a popular high-bandwidth processor-independe nt bus that can function as
a mezzanine or peripheral bus.
Intel worked on PCI for its Pentium-based systems a nd released the patents to
the public domain so that PCI would be widely adopt ed.

Advantages:
• Delivers better system performance for high-speed I /O subsystems
• Requires very few chips to implement
• Supports other buses attached to it

Characteristics:
• Supports a variety of microprocessor-based configur ations (including

single- and multiple-processor systems)
• Provides a general-purpose set of functions
• Makes use of synchronous timing and a centralised a rbitration scheme

Bus structure
PCI may be configured as a 32- or 64-bit bus.
The signal lines can be divided into the following functional groups:
Mandatory PCI signal lines

• System pins
• Address and data pins
• Interface control pins
• Arbitration pins
• Error reporting pins

Optional PCI signal lines
• Interrupt pins
• Cache support pins
• 64-bit bus extension pins
• JTAG/boundary scan pins

PCI commands
• Interrupt Acknowledge
• Special cycle
• I/O Read / Write
• Memory Read / Read Line / Read Multiple / Write / W rite and Invalidate
• Configuration Read / Write
• Dual Address Cycle

Chapter 4 - Cache memory

Characteristics of memory systems

The most important characteristics of memory are capacity and performance.
Location
Processor (local memory, in the form of registers)

9

 http://wikistudent.ws/Unisa

Internal (main. E.g. Cache)
External (secondary. E.g. Peripheral storage device s)
Capacity
Word size (common word lengths are 8, 16, and 32 bi ts)
Number of words
Unit of transfer (= The no of bits read out of / written into memor y at a time)
Word
Block (= a larger unit than a word; for external me mory transfers)
Access Method
Sequential (Access is made in a linear sequence. E.g. Tapes)
Direct (Access is made by direct access to reach a general vicinity first)
Random (Any location can be selected at random and directly accessed)
Associative (A word is retrieved based on a portion of its contents)
Performance
Access time

(For RAM: The time it takes to perform a read / wri te operation)
(For non-RAM: the time it takes to position the rea d-write mechanism)

Cycle time (Access time + additional time needed be fore a 2
nd

 access can begin)
Transfer rate (Rate at which data can be transferre d in / out of a memory unit)
Physical type
Semiconductor
Magnetic (used for disk and tape)
Optical
Magneto-optical
Physical Characteristics
Volatile / non-volatile
Erasable / non-erasable
Organisation
(Organisation = the physical arrangement of bits to form words)

The memory hierarchy

Fast access time , but high cost and low capacity

Slow access time, but low cost and high capacity

The designer can’t rely on a single memory componen t, but must employ a memory
hierarchy for the combination of high capacity, low cost, and fast access.

The hierarchy:
Inboard memory - Registers � cache � main memory
Outboard storage - Magnetic disk, CD-ROM, CD-RW, DV D-RW, DVD-RAM
Off-line storage - Magnetic tape, MO, WORM

As you go down the hierarchy, the frequency of access of the memory by the
processor decreases.

Locality of reference
During program execution, memory references by the processor tend to cluster.
Once a loop / subroutine is entered, there are repe ated references to a small
set of instructions. Over a long period of time, th e clusters in use change,
but over a short period of time, the processor is m ainly working with fixed
clusters of memory references.
You can organise data across the hierarchy so that the percentage of accesses
to the lower levels is less than the higher ones. E .g. you can temporarily
place low-level clusters in higher levels, and late r swap them back to make
room for new clusters coming in.

Cache memory principles

Cache memory (small & fast) contains a copy of port ions of main memory (slow &
large). When the processor wants to read a word fro m memory, it first checks
the cache. If it’s not there, a block of main memor y (consisting of some fixed

10

 http://wikistudent.ws/Unisa

number of words) is read into the cache and then th e word goes to the
processor. Locality of reference means that it’s li kely there will be future
references to other words in the same block.

Each line of cache contains a block of memory (with a fixed number of words).
The number of cache lines is considerably less than the number of main memory
blocks! At any time, some subset of the blocks of m emory resides in lines in
the cache. Because there are more blocks than lines , an individual line can’t
be uniquely and permanently dedicated to a particul ar block. So, each line
includes a tag that identifies which particular memory block is c urrently being
stored. (The tag is usually a portion of the main m emory address).

Typical cache organisation:
address
buffer

 address

 control control System bus

 data
 data
 buffer

Diagram explanation:
• The cache connects to the processor via data, contr ol, and address lines
• The data and address lines also attach to buffers, which attach to the

system bus from which main memory is reached
• Cache hit: The data and address buffers are disable d and communication is

only between processor and cache, with no system bu s traffic
• Cache miss: The address is loaded onto the system b us and the data are

returned through the data buffer to both the cache and the processor (In
some organisations, the word is first read into the cache and then
transferred from cache to processor)

Elements of cache design

Mapping function

Direct mapping
Each block of memory is mapped onto only one possib le cache line. Only the
address is used to determine the corresponding cach e line. A tag is necessary
to distinguish the data block from other data block s that can fit into the
relevant line
Advantage: Simple and inexpensive to implement.
Disadvantage: There is a fixed cache location for any given blo ck.
Associative mapping
Each main memory block can be loaded into any line of cache. The cache control
logic interprets each main memory address as a tag and a word field, where the
tag field uniquely identifies a block of main memor y. All lines have to be
examined to determine whether a particular memory b lock is in the cache.
Advantage: Flexible
Disadvantage: Requires complex circuitry in order to examine al l the tags of
the cache in parallel.
Set-associative mapping
A compromise between direct and associative mapping . The cache is divided into
sets, each of which consists of a number of lines. A block can be mapped into
any of the lines of a particular set. The tag is on ly compared to the tags
within a single set.

11

Processor Cache

 http://wikistudent.ws/Unisa

Advantages of both direct and associative methods, while their disadvantages
are reduced.

Number of caches

Single and two level caches
The on-chip cache reduces the processor’s external bus activity and therefore
speeds up execution times and increases overall sys tem performance. (The bus is
then also free to support other transfers).
Two-level cache organisation : Internal on-chip cache (L1) and external cache
(L2), which is the organisation found in most conte mporary designs.
Without L2 cache, if the processor makes an access request for a memory
location not in L1 cache, it would have to access D RAM or ROM memory across the
bus, which results in poor performance because of s low bus speed.
Design features for multilevel caches:

• For an off-chip L2 cache, many designs don’t use th e system bus as the
transfer path between L2 and processor, but use a s eparate data path to
reduce the burden on the system bus.

• With the continued shrinkage of processor component s, many processors now
incorporate the L2 cache on the processor chip, improving performance.

Advantage of multilevel caches: Improved performance
Disadvantage of multilevel caches: Complicated design

Unified and split caches
It has become common to split the cache into two: O ne dedicated to instructions
and one dedicated to data.
Advantages of a unified cache:

• Higher hit rate than split caches because it balances the load bet ween
instruction and data fetches automatically. (E.g. I f there are many more
instruction fetches than data fetches, the cache fi lls up with
instructions rather than data)

• Only one cache needs to be designed and implemented.
Advantage of split caches:

• Eliminates contention for the cache between the instruction fetch/decode
unit (which accesses instructions) and the executio n unit (which accesses
data). Parallel access is allowed.

Pentium 4 cache organisation

Two on-chip L1 caches, one for data and one for ins tructions.
The L1 data cache is 8K, using a line size of 64 by tes and a four-way set
associative organisation.
An L2 cache feeds both of the L1 caches.
The L2 cache is 256K, using a line size of 128 byte s and an eight-way set
associative organisation.

The processor core consists of four major component s:
• Fetch / decode unit

Fetches program instructions from L2 cache, decodes them, and stores the
results in the L1 instruction cache

• Out-of-order execution logic
Schedules execution of the micro-operations subject to data dependencies
and resource availability (I.e. micro-operations ma y be scheduled for
execution in a different order than they were fetch ed)

• Execution units
Execute micro-operations, fetching the required dat a from the L1 data
cache and temporarily storing results in registers

• Memory subsystem
Includes the L2 cache and the system bus
Accesses main memory when the L1 and L2 caches have a cache miss
Also accesses the system I/O resources

12

 http://wikistudent.ws/Unisa

Instruction cache
Unlike the organisation used in all previous Pentiu m models (and in most other
processors), the Pentium 4 instruction cache sits b etween the instruction fetch
/ decode unit and the (out-of-order) execution core .
The reason:
Machine instructions are decoded into simple RISC-l ike instructions called
micro-operations. (Using these simple micro-ops enh ances performance). However,
the Pentium machine instructions are cumbersome to decode, so performance is
enhanced if this decoding is done independently of the scheduling and
pipelining logic.

Data cache
The data cache employs a write-back policy: Data are written to main memory
only when they are removed from the cache and there has been an update. (The
write-back technique minimises memory writes becaus e updates are only made in
the cache).
The Pentium 4 processor can be dynamically configur ed to support write-through
caching (A simple technique where all write operati ons are made to main memory
as well as to cache, ensuring that main memory is a lways valid)
Two bits in control registers that control the data cache:

• CD (cache disable)
• NWT (not write-through)

Two instructions that control the data cache:
• INVD - invalidates / flushes the internal cache mem ory and signals the

external cache (if any) to invalidate
• WBINVD - writes back and invalidates internal, then external cache

Chapter 5 - Internal memory

Semiconductor main memory

Semiconductor chips are universally used for main m emory.
Memory cell = the basic element of a semiconductor memory.
All semiconductor memory cells share these properti es:

• Two stable states, representing binary 1 and 0
• Capable of being written into (at least once), to s et the state
• Capable of being read to sense that state

Operation of a memory cell:
The cell has 3 function terminals capable of carryi ng an electrical signal:

• Select terminal - selects a memory cell for a read or a write operation
• Control terminal - indicates read or write
• Third terminal -

* For writing (the terminal provides an electrical signal that sets
the cell’s state to 1 or 0)
* For reading (the terminal is used for output of t he cell’s state)

Control Control

 Select Data in Select Sense

 WRITE READ

RAM
Characteristics:

• You can read & write to memory easily & rapidly
• Reading and writing are accomplished by using elect rical signals
• Volatile (There must be a constant power supply)

13

Cell Cell

 http://wikistudent.ws/Unisa

Two traditional forms of RAM used in computers:
1. DRAM (dynamic)
The cells store data as charges, on capacitors. The presence or absence of a
charge on a capacitor is interpreted as binary 1 or 0. DRAMs require periodic
charge refreshing to maintain data storage, because capacitors have a natural
tendency to discharge. ‘Dynamic’ refers to this ten dency of the stored charge
to leak away, even with power continuously applied.
Operation of DRAM:
Write operation

1. A voltage signal is applied to the bit line (high = 1, low = 0)
2. A signal is then applied to the address line, all owing a charge to be

transferred to the capacitor
Read operation

1. The address line is selected
2. The transistor turns on and the charge stored on the capacitor is fed out

onto a bit line and to a sense amplifier
3. The sense amplifier compares the capacitor voltag e to a reference value

and determines if the cell contains 1 or 0
4. The read out from the cell discharges the capacit or, which must be then

restored to complete the operation
Although the DRAM cell is used to store a single bi t (0 or 1), it is
essentially an analogue device. The capacitor can s tore any charge value within
a range, but it is interpreted as 1 or 0.
2. SRAM (static)
Binary values are stored using traditional flip-flo p logic-gate configurations.
A static RAM will hold its data as long as power is supplied to it. No refresh
is needed to retain data.
Operation of SRAM:
The address line (which controls transistors) is us ed to open or close a
switch. When a signal is applied to the address lin e, the transistors are
switched on, allowing a read / write operation.

DRAM SRAM
Volatile (power must be continuously supplied to th e memory to preserve the bit
values)
Analogue Digital
Smaller and simpler memory cell Larger and more comp lex memory cell
More dense and less expensive Less dense and more ex pensive
Requires supporting refresh circuitry
Favoured for large memory requirements
Slower Faster
Used for main memory Used for cache memory (on & off chip)

Types of ROM
ROM contains a permanent pattern of data that can’t be changed.
A ROM is non-volatile: no power is needed to mainta in the bit values in memory.
You can’t write to a ROM

PROM
The writing process (‘programming’) is performed el ectrically, with special
equipment.
Advantages:

• A less expensive alternative when only a small numb er of ROMs with a
particular memory content is needed

• Provide flexibility and convenience
• Good for high-volume production runs

Read-mostly memory:
(For when read operations are far more frequent tha n write operations)

EPROM Flash memory EEPROM
Erasure
required
before a write

Yes Yes No

14

 http://wikistudent.ws/Unisa

operation
Method of
erasure

Exposure to UV
radiation

Electrical
erasure

Electrical
erasure

Erasure level Chip level Block level Byte level
Density High High Lower
Advantages Can be updated

multiple times
An entire flash
memory can be
erased in a few
seconds

Flexible: can be
updated in place

Cost and
functionality

Lowest Moderate Highest

Error correction

Hard failure = a permanent physical defect so that the memory c ell(s) affected
can’t reliably store data, but become stuck at 0 or 1 or switch erratically
between 0 and 1.
Possible causes : harsh environmental abuse, manufacturing defects, and wear.

Soft error = a random, non-destructive event that alters the contents of one or
more memory cells, without damaging the memory.
Possible causes : power supply problems or alpha particles resultin g from
radioactive decay.

The error-detection process:
1. Before data are read into memory, a calculation p roduces a code
2. Both the code and the data are stored
3. When the stored data word is read out, the code i s used to detect errors

• No errors: The fetched data bits are sent out
• Error detected that can be corrected: The data bits + error

correction bits are fed into a corrector
• Error detected that can’t be corrected: The conditi on is reported

Error-correcting codes = codes that operate as in point 3 above. A code i s
characterised by the number of bit errors in a word that it can detect and
correct.
Hamming code = the simplest of the error-correcting codes. Pari ty bits can be
checked. If there is an error, the appropriate bit is changed.

Advanced DRAM organisation

SDRAM
Exchanges data with the processor synchronised to a n external clock signal.

1. The DRAM moves data in & out under control of the system clock
2. The processor (master) issues the instruction and address information,

which is latched by the DRAM
3. The DRAM then responds after a number of clock cy cles
4. Meanwhile, the master can do other tasks while th e SDRAM is processing

the request
An SDRAM’s mode register specifies the burst length (= no of separate units of
data synchronously fed onto the bus). It also allow s the programmer to adjust
the latency between receipt of a read request and t he beginning of data
transfer.
SDRAM performs best when it is transferring large b locks of data serially, like
spreadsheet and multimedia applications.

DRAM SDRAM
Asynchronous Synchronous (external clock signal)
The processor must wait during the
access-time delay, slowing down
system performance.

The processor can do other tasks
while the SDRAM is processing
requests, improving system
performance.

15

 http://wikistudent.ws/Unisa

- Mode register and associated control
logic, for customisation.

- Multiple-bank internal architecture
that improves opportunities for on-
chip parallelism.

Chapter 6 - External memory

Magnetic disk

A disk is a circular platter constructed of nonmagn etic material, called the
substrate, coated with magnetisable material. Tradi tionally, the substrate was
made from aluminium, but these days glass is used.
Advantages of using a glass substrate:

• Improves the uniformity of the magnetic film surfac e to increase disk
reliability

• Reduces overall surface defects, which reduces read -write errors
• Supports lower fly heights
• Better stiffness reduces disk dynamics
• Greater ability to withstand shock and damage

Magnetic read & write mechanisms
Head = a conducting coil that is used to record and ret rieve data. Some systems
have two heads (one read and one write). During a r ead / write operation, the
head is stationary while the platter rotates beneat h it.
Write mechanism:
Electricity flowing through a coil produces a magne tic field. Pulses are sent
to the write head and magnetic patterns are recorde d on the surface below.
Read mechanism:
When the surface of the disk passes under the head, a magnetic field moving
relative to a coil produces an electrical current i n the coil.

Data organisation and formatting
Tracks = concentric rings on the platter, with the same w idth as the head.
There are thousands of tracks per surface.
Gaps = separators between adjacent tracks, to minimise errors due to
misalignment of the head or interference of magneti c fields.
Sectors = fixed- or variable-length divisions on a track, separated by inter-
sector gaps. There are hundreds of sectors per trac k.

Bits near the centre of a rotating disk travel slow er than bits on the outside,
so it is necessary to compensate for the variation in speed so that the head
can read all the bits at the same rate.

Two disk layout methods:
a) Constant Angular Velocity (CAV)
CAV = the fixed speed at which information can be s canned at the same rate.
Layout: The disk is divided into pie-shaped sectors and t racks, with increased
spacing between the outer bits.
Advantage: Individual blocks of data can be directly address ed by track and
sector. (It takes a short movement of the head to a specific track, and a short
wait for the proper sector to spin under the head).
Disadvantage: The amount of data that can be stored on the oute r tracks is the
same as what can be stored on the short inner track s.

b) Multiple zoned recording
Layout: The surface is divided into zones. Within a zone, the number of bits
per track is constant. Zones further from the centr e contain more bits (more
sectors) than zones closer to the centre.
Advantage: Greater overall storage capacity.
Disadvantage: More complex circuitry.

16

 http://wikistudent.ws/Unisa

Disks have control data recorded on them to indicat e the starting point on the
track and start & end of each sector.

Physical characteristics
Head motion

• Fixed head disk
One read-write head per track.
All of the heads are mounted on a rigid arm that ex tends across all
tracks (rare).

• Movable head disk
Only one read-write head.
The head is mounted on an arm, which can extend and retract for the head
to be positioned above any track.

Disk portability
• Non-removable disk

Permanently mounted in the disk drive (E.g. the har d disk)
• Removable disk

Can be removed and replaced with another disk, so u nlimited amounts of
data are available (E.g. floppy disks and ZIP cartr idge disks)

Sides
• Single sided
• Double sided

Platters
• Single platter
• Multiple platters

Multiple arms are provided. All of the heads are me chanically fixed so
that they all are at the same distance from the cen tre of the disk (i.e.
same track number) and move together. Cylinder = th e set of all the
tracks in the same relative position on the platter .

Head mechanism
• Contact (floppy)

The head mechanism comes into physical contact with the medium
• Fixed gap

The read-write head is positioned a fixed distance above the platter,
allowing an air gap

• Aerodynamic gap (Winchester)
A head must generate / sense an electromagnetic fie ld of sufficient
magnitude to write / read properly. The narrower th e head, the closer it
must be to the platter. (Narrower heads � narrower tracks � greater data
density). However, the closer the head is to the di sk, the greater the
risk of error from impurities / imperfections.
Winchester heads are used in sealed drive assemblie s that are almost free
of contaminants. They are designed to operate close r to the disk’s
surface, allowing greater data density. The head is an aerodynamic foil
that rests lightly on the platter’s surface when th e disk is motionless.
When the disk spins, the air pressure generated is enough to make the
foil rise above the surface.

Disk performance parameters
Seek time = the time it takes to position the head at the tr ack. (Consists of
an initial start-up time, and the time taken to tra verse the necessary tracks).
Rotational delay = the time it takes for the beginning of the secto r to reach
the head. (Floppy disks typically rotate between 30 0 & 600 rpm).
Access time = seek time + rotational delay = the time it takes to get into
position to read / write.
Transfer time = the time required for the data transfer (read / write).

Other delays associated with a disk I/O operation:
• When a process issues an I/O request, it must first wait in a queue for

the device to be available.
• If the device shares a single I/O channel, there ma y be an additional

wait for the channel to be available.

17

 http://wikistudent.ws/Unisa

Wait for device � Wait for channel � Seek � Rotational delay � Data transfer

RAID

RAID is a standardised scheme for multiple-disk dat abase design.
The RAID strategy replaces large-capacity disk driv es with multiple smaller-
capacity drives and distributes data in such a way as to enable simultaneous
access to data from multiple drives, thereby improv ing I/O performance and
allowing easier incremental increases in capacity.
Allowing multiple heads to operate simultaneously a chieves higher I/O and
transfer rates, but increases the probability of fa ilure. To compensate for
this decreased reliability, RAID makes use of store d parity information that
enables the recovery of data lost due to a disk fai lure.

RAID levels 0 � 6 share three common characteristics:
• RAID is a set of physical disk drives viewed by the OS as a single

logical drive
• Data are distributed across the physical drives of an array
• Redundant disk capacity is used to store parity inf ormation, which

guarantees data recoverability in case of a disk fa ilure (not RAID 0)

RAID level 0
Not true RAID because it doesn’t include redundancy to improve performance.
Category: Striping
Striping = distributing data over multiple drives i n round robin fashion.
Advantage of striping: If a single I/O request cons ists of multiple logically
contiguous strips, then up to n (n = no of disks) s trips for that request can
be handled in parallel, greatly reducing the I/O tr ansfer time.
Performance is excellent and the implementation is straightforward.
Disadvantage: Works worst with OS that mainly ask for data one sector at a time
Disadvantage: Reliability is potentially worse than having a si ngle large disk.
Applications: Supercomputers, where performance and capacity ar e the main
concern and low cost is more important than improve d reliability.
RAID 0 for High Data Transfer Capacity:
Two requirements must be met for RAID 0 to achieve a high data transfer rate:
* A high transfer capacity must exist along the ent ire path between host memory
and the individual disk drives. (Includes buses, I/ O adapters, etc.)
* The application must make I/O requests that drive the disk array efficiently.
(E.g. if large amounts of logically contiguous data are requested).
RAID 0 for High I/O Request Rate:
For an individual I/O request for a small amount of data, the I/O time is
dominated by the motion of the disk heads (seek tim e) and the movement of the
disk (rotational latency). A disk array can provide high I/O execution rates by
balancing the I/O load across multiple disks. The l arger the strip size, the
more requests that can be handled in parallel.
(RAID 0 works best with large requests).

strip 0 strip 1 strip 2 strip 3
strip 4 strip 5 strip 6 strip 7
strip 8 strip 9 strip 10 strip 11

RAID level 1
Category: Mirroring
Differs from RAID levels 2 � 6 in the way in which redundancy is achieved. In
these other RAID schemes, some form of parity calcu lation is used to introduce
redundancy, but in RAID 1, redundancy is achieved b y duplicating all the data.
Data striping (as in RAID 0) is used, but each logi cal strip is mapped to two
separate physical disks so that every disk in the a rray has a mirror disk with
the same data.
Advantages:

• A read request can be serviced by either of the two disks that contains
the requested data

18

 http://wikistudent.ws/Unisa

• A write request requires that both corresponding st rips be updated, but
this can be done in parallel. (There are no parity bits to update as
well)

• Recovery from a failure is simple. When a drive fai ls, the data may still
be accessed from the second drive (Excellent fault tolerance)

Disadvantage:
• Cost. Requires twice the disk space of the logical disk that it supports

RAID 1 can achieve high I/O request rates if the bu lk of the requests are reads
(doubling the performance of RAID 0).
Applications: System drives, critical files

strip 0 strip 1 strip 2 strip 3 strip 0 strip 1 strip 2 st rip 3
strip 4 strip 5 strip 6 strip 7 strip 4 strip 5 strip 6 st rip 7
strip 8 strip 9 strip 10 strip 11 strip 8 strip 9 strip 1 0 strip 11

RAID level 2
Category: Parallel access
RAID levels 2 & 3 make use of a parallel access tec hnique. In a parallel access
array, all member disks participate in the executio n of every I/O request. The
spindles of the individual drives are synchronised so that each disk head is in
the same position on each disk at any given time.
Data striping is used (In RAID 2 & 3 the strips are as small as a byte or a
word). An error-correcting code is calculated acros s corresponding bits in each
data disk, and the bits of the code are stored in t he corresponding bit
positions on multiple parity disks. Typically, a Hamming code is used, w hich is
able to correct single-bit errors and detect double -bit errors.
E.g. You could split bytes into two pairs of 4 bits , each one with three parity
bits, forming 7-bit words.
Although RAID2 requires fewer disks than RAID1, it is still costly.
On a single read, all disks are simultaneously acce ssed. The requested data and
the associated error-correcting code are delivered to the array controller. If
there is a single-bit error, the controller can rec ognise and correct it
instantly, so that the read access time is not slow ed.
On a single write, all data disks and parity disks must be accessed for the
write operation.
Disadvantage: all drives must be rotationally synchronised, and this only makes
sense with a substantial number of drives.
Applications: none (environments in which many disk errors occu r)

bit 0 bit 1 bit 2 bit 3 f(b) g(b) h(b)

RAID level 3
Category: Parallel access
The difference between RAID3 and RAID2 is that RAID 3 requires only a single
redundant disk, no matter how large the disk array.
RAID3 employs parallel access, with data distribute d in small strips. Instead
of an error-correcting code, a simple parity bit is computed for the set of
individual bits in the same position on all of the data disks.
Redundancy:
In the event of a drive failure, the parity drive i s accessed and data is
reconstructed from the remaining devices. Once the failed drive is replaced,
the missing data can be restored on the new drive a nd operation resumed.
In the event of a disk failure, all of the data are still available in what is
referred to as reduced mode.
Reduced mode reads: The missing data are regenerate d on the fly using an
exclusive OR calculation.
Reduced mode writes: Consistency of the parity must be maintained for later
regeneration.
Return to full operation requires that the failed d isk be replaced and the
entire contents of the failed disk be regenerated o n the new disk.
Performance:

19

 http://wikistudent.ws/Unisa

Because data are striped in very small strips, RAID 3 can achieve very high data
transfer rates. Any I/O request will involve the pa rallel transfer of data from
all of the disks. For large transfers, the performa nce improvement is very
noticeable. However, only one I/O request can be ex ecuted at a time, so in a
transaction-oriented environment performance suffer s.
Applications: Large I/O request size applications, like imaging and CAD

bit 0 bit 1 bit 2 bit 3 parity

RAID level 4
Category: Independent access
In an independent access array, each member disk op erates independently, so
that separate I/O requests can be satisfied in para llel.
Independent access arrays are better suited for hig h I/O request rates than
high data transfer rates.
RAID 4 � 6: Striping is used (large strips)
RAID 4 has strip-for-strip parity written onto an e xtra device.
Disadvantage: If one sector is changed, it is necessary to read all the drives
to recalculate the parity.
Applications: None

block 0 block 1 block 2 block 3 p(0-3)

block 4 block 5 block 6 block 7 p(4-7)
block 8 block 9 block 10 block 11 p(8-11)

RAID level 5
Category: Independent access
Eliminates the bottleneck of RAID 4 by distributing the parity bits uniformly
over all the drives.
Disadvantage: in the event of a drive crash, recons tructing the contents of the
failed drive is a complex process.
Applications: High request rate, read intensive, data lookup

block 0 block 1 block 2 block 3 p(0-3)
block 4 block 5 block 6 p(4-7) block 7
block 8 block 9 p(8-11) block 10 block 11

RAID level 6
Category: Independent access
Two different parity calculations are carried out a nd stored in separate blocks
on different disks, making it possible to regenerat e data even if two disks
fail.
Advantage: Extremely high data availability.
Disadvantage: Substantial write penalty, because each write aff ects two parity
blocks.
Applications: Those requiring extremely high availability

block 0 block 1 block 2 block 3 P(0-3) Q(0-3)
block 4 block 5 block 6 P(4-7) Q(4-7) block 7
block 8 block 9 P(8-11) Q(8-11) block 10 block 11

Optical memory

CD-ROM
The audio CD and CD-ROM share a similar technology (both are made the same
way). The main difference is that CD-ROM players ar e more rugged and have error
correction devices to ensure that data are properly transferred from disk to
computer. CDs can hold 60 minutes of music, and CD- ROMS can hold 650 Mbytes.
Appearance:

20

 http://wikistudent.ws/Unisa

The disk is formed from a resin (like polycarbonate). Digital information is
imprinted as a series of microscopic pits on the su rface of the polycarbonate.
(This is done firstly with a laser to create a mast er disk, which is used to
make a die to stamp out copies onto the polycarbona te). The pitted surface is
then coated with a highly reflective surface (alumi nium / gold), which is
covered with clear acrylic to protect it against du st and scratches. Finally, a
label can be silk-screened onto the acrylic.
Polycarbonate � aluminium � acrylic � label.
Data retrieval:
Information is retrieved from a CD or CD-ROM by a l aser in the player / drive
unit. The laser shines through the clear polycarbon ate while the disk spins.
The intensity of the reflected light of the laser c hanges as it encounters pits
and lands: Pits � a low intensity is reflected back to the source; l ands � a
higher intensity is reflected back. The change betw een pits and lands is
detected by a photosensor and converted into a digi tal signal. (Beginning / end
of a pit = 1, no change in elevation = 0).
Data organisation:
Information is organised on a single spiral track, spiralling outwards (Greater
capacity than concentric tracks!) Sectors near the outside are the same length
as those near the inside, so information is packed evenly. The information is
scanned at the same rate by rotating the disk at va riable speed (Slower for
accesses near the outer edge and faster for the cen tre). The pits are read by
the laser at a constant linear velocity (CLV).
Data are organised as a sequence of blocks, with th e following fields:

• Sync
Identifies the beginning of a block
Consists of a byte of all 0s, 10 bytes of all 1s, a nd a byte of all 0s

• Header
Contains the block address and the mode byte
Mode 0 = blank data field
Mode 1 = use of an error-correcting code and 2048 b ytes of data
Mode 2 = no error-correcting code and 2236 bytes of data

• Data
User data

• Auxiliary
Additional user data in mode 2
Error-correcting code in mode 3

With the use of CLV, random access becomes more dif ficult. The head moves to
the general area, and then tries to find and access the specific sector.
Applications:
CD-ROM is appropriate for the distribution of large amounts of data to a large
number of users.
Not appropriate for individualised applications, be cause of the expense of the
initial writing process.
Advantages:

• The optical disk and info on it can be mass replica ted inexpensively
(unlike a magnetic disk).

• The optical disk is removable, allowing the disk it self to be used for
archival storage. (Most magnetic disks are not remo vable).

Disadvantages:
• Read-only, so can’t be updated
• Access time is much longer than that of a magnetic disk drive

CD Recordable
The disk can be written to once with a moderately i ntensive laser beam.
Instead of pitting the surface to change reflectivi ty, there is a dye layer
which does the same thing, after being activated by a laser.
The disk can be read on a CD-R / CD-ROM drive.
The CD-R optical disk is good for archival storage of documents and files,
providing a permanent record of large volumes of da ta.

21

 http://wikistudent.ws/Unisa

CD Rewritable
Phase change: A disk uses a material that has two different ref lectivities in
two different phase states.
Amorphous state: The molecules exhibit a random orientation; refle cts light
poorly
Crystalline state: Smooth surface that reflects light well.
A beam of laser light can change the material from one phase to another.
Disadvantage of phase change optical disks: The material eventually loses its
properties, so you can have only up to 1 000 000 er ase cycles.
Advantage over CD-ROM & CD-R: Can be rewritten and used as true secondary
storage.

DVD
Can store 7 times the amount of data as CD-ROMs.
Come in writeable (DVD-R, DVD-RW: one-sided) as wel l as read-only (DVD-ROM:
one- or two-sided) versions.
Three differences from CDs:

• Bits are packed more closely on a DVD, and a laser with shorter
wavelength is used, increasing the capacity to 4.7 GB

• The DVD has a second layer of pits and lands on top of the first layer,
doubling the capacity to about 8.5 GB. (By adjustin g focus, the lasers in
DVD drives can read each layer separately)

• The DVD-ROM can be two sided, bringing total capaci ty up to 17 GB

Magnetic tape

Tape systems use the same reading and recording tec hniques as disk systems. A
flexible polyester tape is coated with magnetisable material and is housed in a
cartridge.
Parallel recording:
Data are structured as a number of parallel tracks running lengthwise. Tapes
used to have 9 tracks (to store one byte at a time + a parity bit), but now use
18 (word) or 36 (double word) tracks.
Serial recording:
Data are laid out as a sequence of bits along each track, as is done with
magnetic disks. Most modern systems use this method .
As with the disk, data are read and written in cont iguous blocks, called
physical records, on a tape. Blocks on the tape are separated by ga ps called
inter-record gaps. As with the disk, the tape is formatted to assist in
locating physical records.
Serpentine recording (for serial tapes):
When data are being recorded, the first set of bits is recorded along the whole
length of the tape. When the end of the tape is rea ched, the heads are
repositioned to record a new track, and the tape is again recorded on its whole
length, this time in the other direction. The proce ss continues until the tape
is full. To increase speed, the read-write head is capable of reading and
writing a number of adjacent tracks simultaneously. Although data are recorded
serially along individual tracks, blocks in sequence are st ored on adjacent
tracks.

A tape drive is a sequential-access (as opposed to direct-access) device.
Unlike the disk, the tape is in motion only during a read / write operation.
Magnetic tape was the first kind of secondary memor y and is still widely used
as the lowest-cost, slowest-speed member of the mem ory hierarchy.

Chapter 7 - Input / Output

Reasons why peripherals are not connected directly to the system bus:
• There are a wide variety of peripherals with variou s methods of

operation. It would be impractical to incorporate t he necessary logic
within the processor to control a range of devices

22

 http://wikistudent.ws/Unisa

• The data transfer rate of some peripherals is much slower than that of
memory or processor. It is impractical to use the h igh-speed system bus
to communicate directly with the peripheral

• The data transfer rate of some peripherals is faste r than that of the
memory or processor

• Peripherals often use different data formats and wo rd lengths than the
computer to which they are attached

Functions of an I/O module:
• Interface to the processor and memory via the syste m bus / central switch
• Interface to one or more peripheral devices by tail ored data links

External devices

An external device attaches to the computer by a li nk to an I/O module. This
link is used to exchange control, status, and data between the I/O module and
the external device.
Three categories of external devices:

• Human readable (for communicating with the user. E. g. printers)
• Machine readable (for communicating with equipment. E.g. tape systems)
• Communication (for communicating with remote device s E.g. another PC)

An external device has an interface to the I/O modu le with:
• Control signals (that determine the function the de vice will perform)
• Data (in the form of a set of bits to be sent/recei ved from the module)
• Status signals (to indicate the state of the device)

Control logic controls the device’s operation in response to the I/O module.
The transducer converts data from electrical to other forms of ene rgy.
A buffer, associated with the transducer, temporarily holds data for transfer

Keyboard / monitor
Each character is associated with a code (7 or 8 bi ts). IRA (International
Reference Alphabet) is the most commonly used text code, with 128 different
characters.
Printable characters : alphabetic, numeric, and special characters
Control characters : can have to do with controlling printing / displa ying (E.g.
carriage return) or with communications procedures
Keyboard input:

1. When you press a key, an electronic signal is gen erated
2. The signal is interpreted by the transducer in th e keyboard and

translated into the bit pattern of the correspondin g IRA code
3. This bit pattern is then transmitted to the I/O m odule

Output:
1. IRA code characters are transmitted to an externa l device from the I/O

module
2. The transducer at the device interprets this code and sends the required

electronic signals to the output device (for e.g. d isplay)

Disk drive
A disk drive contains electronics for exchanging da ta, control, and status
signals with an I/O module plus the electronics for controlling the disk
read/write mechanism.
Fixed-head disk:
The transducer can convert between the magnetic pat terns on the moving disk
surface and bits in the device’s buffer.
Moving-head disk:
Must additionally be able to cause the disk arm to move radially in and out
across the disk’s surface.

I/O modules

Module function
The major functions for an I/O module fall into the se categories:

23

 http://wikistudent.ws/Unisa

1. Control and timing
Co-ordinates the flow of traffic between internal r esources and external
devices.
Steps for transferring data from an external device to the processor:

1. The processor interrogates the I/O module to chec k the status of the
attached device

2. The I/O module returns the device status
3. If the device is ready, the processor requests th e transfer of data
4. The I/O module obtains a unit of data from the ex ternal device
5. The data are transferred from the I/O module to t he processor

2. Processor communication
Involves the following:

• Command decoding
The I/O module accepts commands from the processor, sent as signals on the
control bus.
• Data
Data are exchanged between processor and I/O module over the data bus.
• Status reporting
Because peripherals are so slow, it is important to know the status of the
I/O module, which can be reported with a status sig nal.
• Address recognition
An I/O module must recognise one unique address for each peripheral it
controls.

3. Device communication
This communication involves commands, status inform ation, and data.
4. Data buffering
Data travelling from main memory to the I/O module:
Data coming from main memory are sent to an I/O mod ule in a rapid burst,
because of the high transfer rate. The data are buf fered in the I/O module and
then sent to the peripheral device at its data rate .
Data travelling from the device to the I/O module:
Data must be buffered so as not to tie up the memor y in a slow transfer
operation.
The I/O module must be able to operate at both devi ce and memory speeds.
5. Error detection
Classes of errors:

• Mechanical and electrical malfunctions reported by the device (e.g. paper
jam)

• Unintentional changes to the bit pattern as it is t ransmitted from device
to I/O module

Some form of error-detecting code is often used to detect transmission errors,
e.g. the use of a parity bit on each character of d ata.

Module structure
Data registers buffer data transferred to and from the module.
A status register provides current status info, and may also functio n as a
control register, to accept detailed control inform ation from the processor.
Control lines are used by the processor to issue commands to the module.
Address lines are for generating the module’s unique address.
The module contains I/O logic specific to the interface with each device that
it controls.

Diagram of an I/O module

Data
Data lines

Status

Data lines Control

Address lines

24

Data registers

Status/control registers I/O
logic

External
device

interface
logic

 http://wikistudent.ws/Unisa

Control lines

Interface to Interface to
system bus external device

I/O channel / I/O processor = an I/O module that takes on most of the
processing burden, presenting a high-level interfac e to the processor.
(Commonly seen on mainframes).
I/O controller / device controller = a primitive I/O module that requires
detailed control. (Commonly seen on microcomputers) .

1. Programmed I/O

1. When the processor encounters a program instructi on relating to I/O, it
issues a command to the appropriate I/O module

2. The I/O module performs the requested action and sets the appropriate
bits in the I/O status register

3. (The I/O module takes no further action to alert the processor)
4. The processor periodically checks the status of t he I/O module until it

finds that the operation is complete
Disadvantage: Programmed I/O is a time-consuming process that k eeps the
processor busy needlessly. As a result, the level o f the performance of the
entire system is severely degraded.

I/O commands (issued by the processor)
There are four types of I/O commands that an I/O mo dule may receive:

• Control
Used to activate a peripheral and tell it what to d o (like rewind)
• Test
Used to test various status conditions (like if the peripheral is available)
• Read
Causes the I/O module to obtain an item of data fro m the peripheral and
place it in the internal buffer. The processor can then obtain the data item
by requesting that the I/O module place it on the d ata bus.
• Write
Causes the I/O module to take an item of data from the data bus and transmit
it to the peripheral.

I/O instructions (executed by the processor)
There is a close correspondence between I/O instruc tions that the processor
fetches from memory and the I/O commands that the p rocessor issues to an I/O
module to execute the instructions.
Each device is given a unique address. When the pro cessor issues an I/O
command, the I/O module must interpret the address lines to determine if the
command is for itself.
When the processor, main memory, and I/O share a co mmon bus, two modes of
addressing are possible:
a) Memory-mapped I/O
There is a single address space for memory locations and I/O devices.
The processor treats the status and data registers of I/O modules as memory
locations and uses the same machine instructions to access both memory and I/O
devices.
A single read line and a single write line are need ed on the bus.
Advantage: Larger repertoire of instructions allows more eff icient programming.
Disadvantage: Valuable memory address space is used up.
b) Isolated I/O
The address space for I/O is isolated from that for memory.
The bus has memory read & write plus input & output command lines. The command
line specifies whether the address refers to a memo ry location or an I/O
device.

25

 http://wikistudent.ws/Unisa

2. Interrupt-driven I/O

1. The processor issues an I/O command to a module a nd then goes on to do
some other useful work

2. The I/O module will interrupt the processor to re quest service when it is
ready to exchange data with the processor

3. The processor then executes the data transfer, an d resumes its former
processing

Advantage: More efficient than programmed I/O because it eli minates needless
waiting.
Disadvantage: Still consumes a lot of processor time, because e very word of
data that moves between memory and I/O module must pass through the processor.

Interrupt processing
When an I/O device completes an I/O operation, the following sequence of events
occur:

1. The device issues an interrupt signal to the proc essor
2. The processor finishes execution of the current i nstruction
3. The processor tests for an interrupt, and sends a n acknowledgement signal

to the device that issued the interrupt
4. The processor prepares transferring control to th e interrupt routine by

saving information needed to resume the current pro gram at the point of
the interrupt. (The PSW and PC are pushed onto the control stack)

5. The processor now loads the new PC value based on the interrupt
6. The rest of the ‘state’ information of the interr upted program must be

saved (like the contents of the processor registers) on the stack
7. The interrupt handler then processes the interrup t
8. When interrupt processing is complete, the saved register values are

retrieved from the stack and restored to the regist ers
9. Finally the PSW and PC values from the stack are restored, so the next

instruction to be executed will be from the previou sly interrupted
program

Design issues
Device identification

• Multiple interrupt lines
It is impractical to dedicate more than a few bus l ines to interrupt lines,
so even if multiple lines are used, it is likely th at each line will have
multiple I/O modules attached to it, so one of the other techniques must be
used on each line.
• Software poll

1. When the processor detects an interrupt, it branc hes to an interrupt-
service routine which polls each I/O module to dete rmine which module
caused the interrupt

2. Once the correct module is identified, the proces sor branches to a
device-service routine specific to that device.

Disadvantage: time-consuming.
• Daisy chain (hardware poll, vectored interrupt)
All I/O modules share a common interrupt request li ne. The interrupt
acknowledge line is daisy chained through the modul es.

1. When the processor senses an interrupt, it sends out an interrupt
acknowledge

2. This signal passes through a series of I/O module s until it gets to
a requesting module

3. The requesting module responds by placing a word on the data lines
4. (The word (vector) is a unique id, like the I/O m odule’s address)
5. The processor uses the vector as a pointer to the appropriate

device-service routine
Advantages: more efficient than software polls, and avoids th e need to execute
a general interrupt-service routine first.

• Bus arbitration (vectored)

26

 http://wikistudent.ws/Unisa

An I/O module must first gain control of the bus be fore it can raise the
interrupt request line. Thus, only one module can r aise the line at a time.

1. When the processor detects the interrupt, it resp onds on the interrupt
acknowledge line

2. The requesting module then places its vector on t he data lines

Order of processing
The above techniques also provide a way of assignin g priorities when more than
one device is requesting interrupt service.
With multiple lines, the processor just picks the i nterrupt line with the
highest priority.
With software polling, the order in which the modul es are polled determines
their priority.
Bus arbitration can also employ a priority scheme.

3. Direct memory access

Drawbacks of programmed and interrupt-driven I/O:
1. The I/O transfer rate is limited by the speed with which the processor

can test and service a device
2. The processor is tied up in managing an I/O transfer (a number of

instructions must be executed for each I/O transfer)
When large volumes of data need to be moved, DMA is more efficient.

DMA function
A DMA module is added to the system bus, which is c apable of mimicking the
processor and taking over control of the system for the processor. It needs to
do this to transfer data to and from memory over th e system bus. The DMA module
must either use the bus only when the processor doe sn’t need it, or force the
processor to suspend operation temporarily (= cycle stealing).

1. When the processor wants to read / write a block of data, it issues a
command to the DMA module, with the following info:

• Whether a read or write is requested
• The address of the I/O device involved
• The starting location in memory to read from / writ e to
• The number of words to be read / written
2. (The processor can then continue with other work because it has delegated

this I/O operation to the DMA module)
3. The DMA module transfers the entire block of data , one word at a time,

directly to or from memory, without going through t he processor.
4. When the transfer is complete, the DMA module sen ds an interrupt signal

to the processor
The processor is involved only at the beginning and end of the transfer.

I/O channels and processors

Evolution of the I/O function
1. The CPU directly controls a peripheral device
2. A controller or I/O module is added (no interrupt s yet)
3. Same as step 2, but with interrupts now
4. The I/O module is given direct access to memory v ia DMA
5. The I/O module is enhanced to become a processor in its own right
6. The I/O module has a local memory and is now a co mputer in its own right

As you go down the evolutionary path, more and more of the I/O function is
performed without CPU involvement, improving perfor mance.

Characteristics of I/O channels
I/O channel = an I/O module as in steps 5 and 6 abo ve.
I/O channels can execute I/O instructions and have complete control over I/O
operations. The CPU just instructs the I/O channel to execute a program in
memory, giving it the device, area of memory, prior ity, etc.
Two types of I/O channels:

27

 http://wikistudent.ws/Unisa

1. Selector channel
Controls multiple high-speed devices and, at any on e time, is dedicated to the
transfer of data with one of those devices. Thus, the I/O channel selects on e
device and effects the data transfer. Each device i s handled by a controller
(I/O module). Thus, the I/O channel serves in place of the CPU in controlling
these I/O modules (controllers).
2. Multiplexor channel
Can handle I/O with multiple devices at the same time. For low-speed devices, a
byte multiplexor accepts / transmits characters as fast as possible to multiple
devices. For high-speed devices, a block multiplexor interleaves blocks of data
from several devices.

The external interface: FireWire and InfiniBand

Types of interfaces
The interface to a peripheral from an I/O module mu st be tailored to the nature
and operation of the peripheral.
Parallel interface:
There are multiple lines connecting the I/O module and the peripheral, and
multiple bits are transferred simultaneously.
Traditionally used for higher-speed peripherals (li ke tape and disk).
Serial interface:
There is only one line used to transmit data, and b its must be transmitted one
at a time.
Traditionally used for printers and terminals.

Dialogue between an I/O module and peripheral, for a write operation:
1. The I/O module sends a control signal requesting permission to send data
2. The peripheral acknowledges the request
3. The I/O module transfers data (one word or block, depending on the

peripheral)
4. The peripheral acknowledges receipt of the data

An I/O module has a buffer that can store data bein g passed between the
peripheral and the rest of the system. The buffer a llows the I/O module to
compensate for the differences in speed between the system bus and its external
lines.

Point-to-point and multipoint configurations
Point-to-point:
A point-to-point interface provides a dedicated lin e between the I/O module and
the external device.
On small systems, typical point-to-point links incl ude those to the keyboard,
printer, and external modem.
Multipoint:
Multipoint external interfaces support external mas s storage devices (disk and
tape drives) and multimedia devices (CD-ROMs, video , audio).
These multipoint interfaces are in effect external buses.
E.g. FireWire and InfiniBand.

FireWire serial bus
The high-speed I/O channel technologies developed f or mainframe and
supercomputer systems are too expensive and bulky f or use on smaller systems.
FireWire (a high-performance serial bus) was develo ped as a high-speed
alternative to SCSI and other small-system I/O inte rfaces.

Advantages of FireWire over older I/O interfaces:
• Very high speed
• Low cost
• Easy to implement

FireWire is finding favour not only for computer sy stems, but also in digital
cameras, VCRs etc. where it is used to transport im ages.

28

 http://wikistudent.ws/Unisa

One of FireWire’s strengths is that it uses serial transmission rather than
parallel. (Parallel interfaces, like SCSI, require more wires so it’s more
expensive and synchronisation between wires can be a problem).

Computers are getting physically smaller. Handheld computers have little room
for connectors, yet need high data rates to handle images and video.

The intent of FireWire is to provide a single I/O interface with a simple
connector that can handle numerous devices through a single port, so that the
mouse, laser printer, external disk drive, LAN hook ups, etc. can be replaced
with this single connector.

FireWire configurations
FireWire uses a daisy-chain configuration, with up to 63 devices connected off
a single port. Up to 1022 FireWire buses can be int erconnected using bridges,
enabling a system to support as many peripherals as required.
FireWire provides for hot plugging (You can connect peripherals without
switching the computer off).
FireWire provides for automatic configuration (You don’t need to manually set
device IDs).

The FireWire standard specifies a set of 3 layers o f protocols to standardise
the way in which the host system interacts with the peripheral devices over the
serial bus:
1. Physical layer
Defines the transmission media that are permissible under FireWire and the
electrical & signalling characteristics of each.
2. Link layer
Describes the transmission of data in the form of p ackets.
3. Transaction layer
Defines a request-response protocol that hides the lower-layer details of
FireWire from applications.

InfiniBand
InfiniBand is a recent I/O specification aimed at t he high-end server market.
The main purpose of InfiniBand is to improve data flow between processors and
intelligent I/O devices.
InfiniBand is intended to:

• Replace the PCI bus in servers
• Provide greater capacity
• Provide increased expandability
• Provide enhanced flexibility in server design

In essence, InfiniBand eables servers, remote stora ge, and other network
devices to be attached in a central fabric of switc hes and links. The switch-
based architecture can connect up to 64 000 servers , storage systems, and
networking devices.

Infiniband architecture
PCI is a limited architecture compared to InfiniBan d. With InfiniBand, you
don’t have to have the basic I/O interface hardware inside the server chassis -
remote storage, networking, and connections between servers are accomplished by
attaching all devices to a central fabric of switch es and links. Removing I/O
from the server chassis allows greater server densi ty and allows for a more
flexible and scalable data centre, as independent n odes may be added as needed.

Infiniband operation
Each physical link between a switch and an attached interface can support up to
16 logical channels, called virtual lanes. One lane is reserved for fabric
management and the other lanes for data transport. Data are sent in the form of
a stream of packets, with each packet containing a portion of the total data to
be transferred, plus addressing and control informa tion. A set of
communications protocols is used to manage the tran sfer of data. A virtual lane
is temporarily dedicated to the transfer of data fr om one end node to another

29

 http://wikistudent.ws/Unisa

over the InfiniBand fabric. The InfiniBand switch m aps traffic from an incoming
lane to an outgoing lane to route the data between the desired end points.

Chapter 9 - Computer arithmetic

ALU inputs:
The control unit provides signals that control the operation of the ALU and the
movement of the data into and out of the ALU.
The registers present data to the ALU.
ALU outputs:
The results of an operation are stored in registers .
The ALU may set flags as the result of an operation.

Integer representation
Sign-Magnitude representation
The left-most bit represents the sign (1 = -, 0 = +).
Disadvantages:

• Addition and subtraction require a consideration of both the signs of the
numbers and their relative magnitudes

• There are two representations of 0
When changing a number to a greater bit length, jus t move the sign-bit to the
new leftmost position and fill in with zeros.
E.g. 1010 � 10000010

Twos complement representation
The left-most bit is a sign-bit (1 = -, 0 = +), but it is part of the number,
which makes arithmetic easy. There is also only one representation of 0.
When changing a number to a greater bit length, mov e the sign bit to the new
leftmost position and fill in with copies of the si gn bit.
E.g. 1010 � 11111010

Fixed-point representation
The radix point (period) is fixed and assumed to be to the right of the
rightmost digit. You can use the same number repres entation for binary
fractions by scaling the numbers so that the binary point is implicitly
positioned at another location.

Integer arithmetic
Negation
For sign-magnitude representation, just invert the sign bit.

For twos complement representation, do the followin g:
1. Invert all the bits (i.e. take the Boolean comple ment)
2. Add 1

3 011
2 010
1 001 Same, except for the sign!
0 000
-1 111
-2 110 Same, except for the sign!
-3 101
-4 100

The reason why you have to add 1 when you negate a number is because the
numbers aren’t centred around zero.

Note that the numbers range from -2 1−n to 2 1−n -1, where n is the number of bits

in use (3 in the above example). In total, there ar e 2 n different numbers.

Addition
In twos complement representation, just add the two numbers and ignore the
carry bit (if any).

30

Note the
mirror image
of bits around
the centre!

 http://wikistudent.ws/Unisa

Overflow = when the result is larger than can be held in th e word size. You
know there is an overflow if you add two numbers wi th the same sign and the
result has the opposite sign.

Subtraction
In two’s complement representation, just take the t wos complement of the
subtrahend, and add both numbers together.

Floating-point representation

Floating-point numbers are expressed as a significa nd (fractional number)
multiplied by the base B (i.e. 2) to the power E. T his B E is what moves the

decimal point right (if E is positive) or left (if E is negative).

General format:

Sign of significand (0/1) Biased exponent (e) Signifi cand (S) or Mantissa

Note: the exponent E is given in a biased representation: a fixed value, called
the bias, is subtracted from the field (e) to get t he true exponent value.
The bias is worked out from the number of bits allo cated to the biased exponent
(this varies with the different standards).
Advantage of biased representation: Nonnegative flo ating-point numbers can be
treated as integers for comparison purposes.

Floating-point numbers must be normalised, which just means putting the number
in a different format. This is done by shifting the radix point and adjusting
the exponent accordingly. (This varies with the dif ferent standards).

Note: The more bits allocated to the exponent, the larger the range of
expressible numbers (but the number of different va lues isn’t increased!). The
more bits allocated to the significand, the greater the precision.

Examples:

Give the representation of -6.6875 in floating-poin t format

Step 1. Convert the number into binary.
The integer part can be worked out as follows:
Repeatedly divide the number by 2, keeping track of the remainder (i gnore the
sign for the moment).
6 / 2 = 3 remainder 0
3 / 2 = 1 remainder 1
1 / 0 = 0 remainder 1
The number (from left to right) is the concatenatio n of the remainders (from
bottom to top), i.e. 110.

The fractional part can be worked out as follows:
Repeatedly multiply the fraction by 2 (until you get nothing to the ri ght of
the decimal point), keeping track of the number tha t is found to the left of
the decimal point, and subtracting it with each mul tiplication.
0.6875 * 2 = 1.375
0.375 * 2 = 0.75
0.75 * 2 = 1.5
0.5 * 2 = 1 .0
The number (from left to right) is the concatenatio n of the digits to the left
of the decimal point (from top to bottom), i.e. 101 1.

So, 6.6875 in binary is 110.1011

Step 2. Normalise the number.
IEEE format:
Shift the radix point until there is a 1 to the left of it.

31

 http://wikistudent.ws/Unisa

110.1011 = 1.101011 * 2 2 (The decimal point was shifted left 2 places)

Remember to exclude the bit to the left of the decimal when working ou t f!

IBM 360/370 format:
Similar to the IEEE format, but you have to shift t he binary point by 4 places
at a time because base 16 is used (0000 � 1111 = 0 � 15)

110.1011 = 0.01101011 * 16 1

DEC PDP 11/VAX format:
Similar to the IEEE format, but shift the radix poi nt until there is a 1 to the
right of it.

110.1011 = 0.1101011 * 2 3

Remember to exclude the bit to the right of the decimal when working o ut f!

Step 3. Get the value of e.
e (the biased exponent) is a large number, from whi ch you have to subtract the
bias to get the true exponent. To work out e, just add the exponent from step 2
to the bias!

IEEE format:

sign bit s e (8 bits) fraction f(23 bits)

The bias = 2 1−k - 1, where k is the number of bits in the binary ex ponent.

Because the standard reserves 8 bits for the expone nt, the bias = 127 .

The exponent from step 2 was 2, so e = 127 + 2 = 12 9.
i.e. the number equals 1.101011 * 2 127129−

IBM 360/370 format:

sign bit s e (7 bits) fraction f(24 bits)

The bias = 2 1−k , where k is the number of bits in the binary expon ent.

Because the standard reserves 7 bits for the expone nt, the bias = 64 .

The exponent from step 2 was 1, so e = 64 + 1 = 65.
i.e. the number equals 0.01101011 * 16 6465−

DEC PDP 11/VAX format:

sign bit s e (7 bits) fraction f(24 bits)

The bias = 2 1−k , where k is the number of bits in the binary expon ent.

Because the standard reserves 8 bits for the expone nt, the bias = 128 .

The exponent from step 2 was 3, so e = 128 + 3 = 13 1
i.e. the number equals 0.1101011 * 2 128131−

Step 4. convert e to binary.
IEEE format:
129 = 10000001

IBM 360/370 format:
65 = 1000001

DEC PDP 11/VAX format:
131 = 10000011

Step 5. Use the sign, exponent, and fraction to represent the number.
IEEE format:

32

 http://wikistudent.ws/Unisa

1 10000001 10101100000000000000000

IBM 360/370 format:
1 1000001 011010110000000000000000

DEC PDP 11/VAX format:
1 10000011 10101100000000000000000

Chapter 10 - Instruction sets

Machine instruction characteristics

Instruction set = the collection of different instr uctions that can be
executed.
Elements of a machine instruction

• Operation code (opcode)
Specifies the operation to be performed. E.g. ADD

• Source operand reference
The input operand for the operation

• Result operand reference
The operation may produce a result

• Next instruction reference
This tells the CPU where to fetch the next instruct ion

Usually, if there is no explicit reference to the n ext instruction, the
following one is fetched.
Three areas for the source and result operands:

• Main / virtual memory
• CPU register
• I/O device

Instruction representation
Each instruction is represented by a sequence of bi ts, and is divided into
fields, e.g:
Opcode 4 bits * MOV Operand reference 6 bits * BX Operand reference 6 bits * AX

The instruction is read into an instruction registe r (IR) in the CPU. The CPU
extracts the data from the various instruction fiel ds to perform the required
operation.

Instruction types
• Data processing (Arithmetic and logic instructions)
• Data storage (Memory instructions)
• Data movement (I/O instructions)
• Control (Test and branch instructions)

Number of addresses
Most instructions have one or two operand addresses , with the address of the
next instruction being implicit (obtained from the program counter).
With one-address instructions, the second address i s implicit (the
accumulator). Zero-address instructions reference t he stack.

Fewer operand addresses � more primitive instructions � less complex CPU �

shorter instruction length � more total instructions � longer execution times
� longer, more complex programs

With one-address instructions, you only have one ge neral-purpose register (the
accumulator), but with multiple-address instruction s, you have multiple
general-purpose registers. This allows some operati ons to be performed solely
on registers. Because register references are faster than memory references,
this speeds up execution.

33

 http://wikistudent.ws/Unisa

Instruction set design
Fundamental design issues:

• Operation repertoire (How many and which operations to provide)
• Data types (Different types of data upon which oper ations are performed)
• Instruction format (Length, number of addresses, si ze of fields, etc.)
• Registers (Number of CPU registers that can be refe renced)
• Addressing (The mode(s) by which the address of an operand is specified)

Types of operands

Machine instructions operate on data. The most impo rtant general categories of
data are:

1. Addresses
Addresses can be considered as unsigned integers, a nd can be used in
calculations E.g. to determine the main memory addr ess.

2. Numbers
Three types of numerical data are common:

• Integer / fixed point
• Floating point
• Decimal

Human users deal with decimal numbers, so there is a need to convert from
decimal to binary & vice versa. If there is a lot o f I/O, and not much
computation, it is preferable to store and operate on the numbers in decimal
form. Packed decimal representation stores each dig it as a 4-bit binary number,
and the 4-bit codes are strung together (1111 on th e left = negative).

3. Characters
The most commonly-used character code is ASCII, whi ch represents 128 different
characters, in 7 bits each.
EBCDIC is used in IBM S/390 machines, and is an 8-b it code.

4. Logical data
It can be useful to see data as a string of bits, w ith the values 0 and 1.
Advantages of the bit-oriented view:

• You can store an array of Boolean data items (true & false)
• You can manipulate the bits of a data item (like sh ift the bits)

Note: The same data can be treated as sometimes log ical and other times as
numerical or text. The ‘type’ of a unit of data is determined by the operation
being performed on it.

Data types

The Pentium can deal with data types of 8 (byte), 1 6 (word), 32 (doubleword),
and 64 (quadword) bits in length. To allow maximum flexibility in data
structures and efficient memory utilisation, words need not be aligned at even-
numbered adddresses.
The Pentium uses the little-endian style: the least significant type is stored
in the lowest address.

Types of operations

The same general types of operations are found on a ll machines:

1. Data transfer
• The location of the source and destination operands must be spe cified.

Each location could be memory, a register, or the t op of the stack.
• The length of data to be transferred must also be indicated.
• The mode of addressing for each operand must also be specified

34

 http://wikistudent.ws/Unisa

If both source and destination are registers, then the CPU simply causes data
to be transferred from one register to another; thi s is an operation internal
to the CPU.
If one or both operands are in memory, then the CPU must perform some or all of
the following actions:

1. Calculate the memory address, based on the addres s mode
2. If the address refers to virtual memory, translat e from virtual to actual

memory address
3. Determine whether the addressed item is in cache
4. If not, issue a command to the memory module

2. Arithmetic
Most machines provide the basic arithmetic operatio ns of add, subtract,
multiply, and divide. Other possible operations inc lude: Absolute, negate,
increment, and decrement. The ALU portion of the CP U performs the desired
operation.

3. Logical
NOT, AND, OR, and XOR are the most common logical f unctions.
Bit shifting:

• With a logical shift , the bits of a word are shifted left or right. On
one end, the bit shifted out is lost.

• With an arithmetic shift , the data is treated as a signed integer so the
sign bit isn’t shifted. On a right shift, the sign bit is replicated, and
on a left shift, the shift is performed on all bits but the sign bit.

• With a rotate , all the bits being operated on are preserved beca use the
shift is cyclic.

4. Conversion
Conversion instructions are those that change the f ormat or operate on the
format of data. (E.g. converting from decimal to bi nary or converting one 8-bit
code to another).

5. I/O
Variety of approaches: isolated programmed I/O, mem ory-mapped programmed I/O,
DMA, and the use of an I/O processor.

6. System control
These instructions can be executed only while the p rocessor is in a certain
privileged state or is executing a program in a spe cial privileged area of
memory. Typically, these instructions are reserved for the use of the OS. (E.g.
a system control instruction may read / alter a con trol register).

7. Transfer of control
These instructions change the sequence of instructi on execution. The CPU must
update the program counter to contain the address o f some instruction in
memory.
Some reasons why transfer-of-control instructions a re required:

• Some instructions need to be executed multiple time s
• Virtually all programs involve some decision making
• Programming is made simpler if you can break up a t ask into procedures

The most common transfer-of control operations:
Branch instructions
Conditional or unconditional branches (jne / jmp) c an be used to create a
repeating loop of instructions.
Skip instructions
The skip instruction includes an implied address (T ypically the next address is
skipped).
Procedure call instructions
The two main reasons for using procedures are econo my and modularity.
Two basic instructions are involved: a call instruc tion that branches from the
present location to the procedure, and a return ins truction that returns from
the procedure to the place from which it was called .

35

 http://wikistudent.ws/Unisa

There are three common places for storing the retur n address:
• Register
• Start of called procedure
• Top of stack

Parameters can be passed in registers, or be stored in memory just after the
CALL instruction. The best way to pass parameters i s by using the stack.

Operation types

Call/return instructions
The Pentium provides four instructions to support p rocedure call/return:
CALL, ENTER, LEAVE, RETURN.

Memory management
A set of specialised instructions deals with memory segmentation. These are
privileged instructions that can only be executed f rom the OS.

Condition codes
Condition codes are bits in special registers that may be set by certain
operations and used in conditional branch instructi ons. These conditions are
set by arithmetic and compare operations.

Assembly language

Programs written in assembly language are translate d into machine language by
an assembler.
‘db’ and ‘dw’ are assembler directives that don’t form part of the program code
that will be executed, but just tell the assembler where and how to reserve
memory and how it should be initialised.

Stacks

Stack pointer : Contains the address of the top of the stack
Stack base : Contains the address of the bottom of the stack
Stack limit : Contains the address of the end of the reserved b lock

The stack grows from higher addresses to lower addresses.
To speed up stack operations, the top two stack ele ments are often stored in
registers, and the stack pointer contains the addre ss of the third element.

Expression evaluation
Postfix / reverse Polish notation:
a + b = ab+
(a + b) * c = ab + c *
a + (b * c) = abc * +
How it works: When reading a postfix expression from left to ri ght, as soon as
you have two variables, followed by an operator, do the calculation and replace
those three items with the result, then proceed.
(You can do the same with the stack by pushing vari ables and popping the top
two when you get an operator and then pushing the r esult back on).

Little- big- and bi-endian

Byte ordering
Big endian: Bytes are stored from left to right.
Little endian: Bytes are stored from right to left.

E.g. 12345678
Address 100 101 102 103
Big-endian value 12 34 56 78
Little-endian value 78 56 34 12

36

 http://wikistudent.ws/Unisa

Advantages of the big-endian style:
• A big-endian processor is faster in comparing chara cter strings
• Values can be printed left to right without causing confusion
• Big-endian processors store their integers and char acter strings in the

same order (most significant byte comes first).

Advantages of the little-endian style:
• A big-endian processor has to perform addition when converting a 32-bit

integer address to a 16-bit integer address, to use the least significant
bytes

• It is easier to perform higher-precision arithmetic with the little-
endian style because you don’t have to find the lea st-significant byte
and move backwards

The bi-endian architecture enables software develop ers to choose either mode
when migrating operating systems and applications f rom other machines.

Chapter 11 - Addressing modes and instruction forma ts

Addressing

Immediate addressing
The operand (a value)is present in the instruction.
E.g. mov ax,1
This mode can be used to define and use constants o r set initial values of
variables.
Advantage: No memory reference other than the instruction fe tch is required to
obtain the operand, saving one memory cycle.
Disadvantage: The size of the number is restricted to the size of the address
field, (which is small compared with word length).

Direct addressing
The address field contains the effective address of the operand.
E.g. mov ax,[102h], or mov [110h],bx
Not common on contemporary architectures.
Advantage: Requires only one memory reference and no special calculation.
Disadvantage: Provides only a limited address space.

Indirect addressing
The address field refers to the address of a word i n memory, which contains a
full-length address of the operand.

Advantage: For a word length of N, an address space of 2 N is now available.

Disadvantage: Instruction execution requires two memory referen ces to fetch the
operand: one to get its address and a second to get its value.

Register addressing
Similar to direct addressing, but the address field refers to a register rather
than a main memory address.
E.g. mov ax,bx
Advantage: Only a small address field is needed in the instr uction.
Advantage: No memory references are required.
Disadvantage: The address space is very limited.

Register indirect addressing
Similar to indirect addressing, but the address fie ld refers to a register
rather than a memory location.
E.g. mov dl,[bx]
Same advantages and disadvantages as for indirect a ddressing.
On the Pentium, register indirect addressing is onl y possible with SI, DI, BP,
and BX.
Two forms of register indirect addressing:

37

 http://wikistudent.ws/Unisa

Indexed addressing
You can use SI to index array elements.
E.g. mov si,array

add si,3 ; now si indexes the fourth element
mov al,[si] ; (extract the contents pointed to by si)

Base-indexed addressing
This can also be used to index array elements, but here BP or BX are used as
base registers. The base register is normally set t o the start of the array and
the index is used as an offset into the array.
E.g. add al,[bx+si] or mov dx,[m_addr+si]

Displacement addressing
Combines the capabilities of direct addressing and register indirect
addressing. The instruction must have two address f ields, at least one of which
is explicit. The value contained in one address field is used directly. The
other address field refers to a register whose contents are added to the value
to produce the effective address.
Three common uses of displacement addressing:
Relative addressing
The implicitly referenced register is the program counter (PC). I.e. The
current instruction address is added to the address field to produce the
effective address.
Base-register addressing
The referenced register contains a memory address, and the address field
contains a displacement from that address. (The reg ister reference may be
explicit or implicit).
Indexing
The address field references a main memory address, and the referenced register
contains a positive displacement from that address. (This is the opposite of
base-register addressing).

Stack addressing
A pointer is associated with the stack whose value is the address of the top of
the stack. If the top two elements of the stack are in CPU registers, the stack
pointer references the third element. The stack poi nter is maintained in a
register, so references to stack locations in memor y are in fact register
indirect addresses. The stack mode of addressing is a form of implied
addressing. The machine instructions need not inclu de a memory reference but
implicitly operate on the top of the stack.
E.g. pop ax
Note: The stack ‘grows backwards’ in memory, so aft er a push, SP is
decremented, and after a pop, SP is incremented. (E .g. if SP = FFFC, after PUSH
AX, SP = FFFA)

Pentium addressing modes

The Pentium has a variety of addressing modes to al low efficient execution of
high-level languages.
The segment register (there are 6 of them, including: DS - data, ES - e xtra, SS
- stack, and CS - code) determines the segment that is the subject of the
reference.
The base register (BX) and index register (SI / DI) may be used in constructing
an address.

Immediate mode
The operand (byte, word, or doubleword of data) is included in the instruction.

Register operand mode
The operand is located in a register (16-bit genera l registers, like AX, BX...
or 8-bit registers, like ah, al...).

The following addressing modes reference locations in memory:

38

 http://wikistudent.ws/Unisa

Displacement mode
The operand’s offset is contained as part of the in struction. With
segmentation, all addresses in instructions refer m erely to an offset in a
segment.

The remaining addressing modes are indirect:
Base mode
Specifies that one of the registers contain the eff ective address (Equivalent
to register indirect addressing).

Base with displacement mode
The instruction includes a displacement to be added to a base register, which
may be any of the general-purpose registers.

Scaled index with displacement mode
The instruction includes a displacement to be added to an index register.

Base with index and displacement mode
Sums the contents of the base register, the index r egister, and a displacement
to form the effective address.

Based scaled index with displacement mode
Sums the contents of the index register multiplied by a scaling factor, the
contents of the base register, and the displacement .

Relative addressing
A displacement is added to the value of the program counter, which points to
the next instruction. The displacement is treated a s a signed byte, word, or
doubleword value, and that value either increases o r decreases the address in
the program counter.

Instruction formats

An instruction format must include an opcode and, i mplicitly or explicitly,
zero or more operands. The format must, implicitly or explicitly, indicate the
addressing mode for each operand.

Instruction length
1. There is a trade-off between the desire for a po werful instruction
repertoire and a need to save space:
The more opcodes, operands, addressing modes, and g reater address range, the
easier it is for the programmer because shorter pro grams can be written with
more flexibility. However, all these things lead to longer instruction lengths,
which can be wasteful.
2. The instruction length should be equal to the me mory-transfer length (bus
length) or one should be a multiple of the other.
3. The instruction length should be a multiple of t he character length, which
is usually 8 bits, and the length of fixed-point nu mbers.

Allocation of bits
There is a trade-off between the number of opcodes and the power of the
addressing capability:
The more opcodes, the more bits in the opcode field .
For an instruction format of a given length, this r educes the number of bits
available for addressing. Using variable-length opc odes means there is a
minimum opcode length, but for some opcodes, additi onal operations may be
specified by using additional bits in the instructi on. (For a fixed-length
instruction, this leaves fewer bits for addressing) .

Factors that go into determining the use of the add ressing bits:
• Number of addressing modes

Explicit addressing modes require more bits than im plicit modes.
• Number of operands

Each operand in the instruction might require its o wn mode indicator.

39

 http://wikistudent.ws/Unisa

• Register versus memory
With a single user-visible register (the accumulato r), one operand
address is implicit and consumes no instruction bit s.
Even with multiple registers, only a few bits are n eeded to specify the
register. (The more that registers can be used for operand references,
the fewer bits that are needed).

• Number of register sets
Most machines have one set of general-purpose regis ters, with 32 / more
registers in the set. The Pentium has several speci alised sets.
Advantage: For certain registers, a functional spli t requires fewer bits
to be used in the instruction.

• Address range
For addresses that reference memory, the range of a ddresses that can be
referenced is related to the number of address bits . Because this imposes
a severe limitation, direct addressing is rarely us ed.

• Address granularity
For addresses that reference memory rather than reg isters, another factor
is the granularity of addressing. An address can re ference a word or a
byte (with byte-addressing requiring more address b its).

Variable-length instructions
If the designer provides a variety of instruction f ormats of different lengths,
it makes it easier to provide a large repertoire of opcodes, with different
opcode lengths. Addressing can also be made more fl exible, with various
combinations of register and memory references plus addressing modes.
Disadvantage: Increased CPU complexity.
Because the CPU doesn’t know the length of the next instruction to be fetched,
it fetches a number of bytes / words equal to at le ast the longest possible
instruction. This means that sometimes multiple ins tructions are fetched.

Chapter 12 - CPU structure and function

Processor organisation

The CPU must: Fetch instructions from memory, interpret them, fetch data from
memory or an I/O module, process the data, and then write data to memory or an
I/O module.
The ALU does the actual computation / processing of data.
The control unit controls the movement of data and instructions int o and out of
the CPU and controls the operation of the ALU.
The registers serve as a minimal internal memory.
Within the CPU, an internal CPU bus transfers data between the registers and
the ALU.

Register organisation

User-visible registers
Some design issues:

• Should you use completely general-purpose registers , or specialise their
use?
Advantage: Specialised registers can have implicit opcodes, saving bits.
Disadvantage: Specialisation limits the programmer’ s flexibility.

• How many registers (general purpose or data + addre ss) should be
provided?
Disadvantage: Fewer registers results in more memor y references.
Disadvantage: More registers require more operand s pecifier bits.

• How long should the registers be?
Registers that hold addresses must be long enough t o hold the largest
address.
Registers that hold data must be able to hold value s of most data types.

These are registers that may be referenced by means of machine language.

40

 http://wikistudent.ws/Unisa

General purpose registers
These can be assigned to a variety of functions by the programmer.
AX Primary accumulator

Mainly used for operations involving data movement, I/O and arithmetic
MUL assumes that AX contains the multiplicand
DIV assumes that AX contains the dividend

BX Base register
This is the only general-purpose register that can be used as a pointer
Also used for arithmetic

CX Count register
Used to control the number of times loops are to be executed or the number
of shifts to perform
Also used for arithmetic

DX Data register
Some I/O operations like In and OUT use the DX regi ster
Multiply & divide operations involving 16-bit regis ters use DX:AX

Data registers
These may be used only to hold data and can’t be em ployed in the calculation of
an operand address.
Address registers
These may be general-purpose, or may be devoted to a particular addressing
mode, e.g:
* Segment pointers
A segment register holds the address of the base of the segment.
Each segment in memory is 64K bytes long. A segment begins on a paragraph
boundary that is a multiple of 16 (i.e. 10h). Since the start address of a
segment always ends with 0 in hex, it is unnecessar y to store the last digit.
(E.g. The address of a segment starting at 18A30h i s stored as 18A3h and can be
written as 18A3[0]h).
A program running under DOS is divided into three p rimary segments:

• Code segment (CS)
Contains the machine instructions of the program.
All references to memory locations that contain ins tructions are relative
to the start of a segment specified by the CS regis ter.
segment:offset references a byte of memory (offset = 0 �FFFF / 64K-1).
The IP register contains the offset (relative to th e start of the
segment) of the next instruction to be executed, so CS:IP forms the
actual 20-bit address of the next instruction (= ef fective address).
E.g. BCEF:0123 (CS contains BCEFh and IP contains 1 23h)
Add the segment address BCEF 0 and the offset 0123 to get the actual
(effective) address BD013.
The IP register can’t be referenced directly by a p rogrammer, but it can
be changed indirectly with JMP instructions.

• Data segment (DS)
Contains the variables, constants and work areas of a program.
With ‘MOV AL,[120h]’, the instruction at location 1 20h relative to the
contents of the DS register is fetched.
To work out the actual address from where the byte of data will be moved,
do the same calculation as above (i.e. append 0 to the data segment
address and add it to the given address).

• Stack segment (SS)
Contains the program stack, which is used to save d ata and addresses that
need to be temporarily stored.

* Index registers
These are used for indexed addressing and may be au toindexed.
Index registers contain the offset, relative to the start of the segment, for
variables.
SI (source index) usually contains an offset value from the DS register, but it
can address any variable.
DI (destination index) usually contains an offset f rom the ES register but can
address any variable.

41

 http://wikistudent.ws/Unisa

SI and DI registers are available for extended addr essing and for use in
addition and subtraction. They are required for som e string operations.
* Stack pointer
If there is user-visible stack addressing, then the stack is in memory and
there is a dedicated register that points to the to p of the stack. This allows
implicit addressing (i.e. push and pop don’t need t o contain an explicit stack
operand).
The stack is located in the stack segment (SS) and the stack pointer (SP)
register holds the address of the last element that was pushed on. (SP contains
the offset from the beginning of the stack to the top of the stack).
SS:SP contains the address of the top-of-the-stack.
The BP (base pointer) register contains an offset f rom the SS register, and
facilitates the referencing of parameters (data & a ddresses passed via the
stack). Normally the only word in the stack that is accessed is the one on top.
However, the BP register can also keep an offset in the SS and be used in
procedure calls, especially when parameters are pas sed to subroutines. SS:BP
contains the address of the current word being proc essed in the stack.
Condition codes (flags)
Condition codes are bits set by the CPU as a result of operations.
The code may be tested as part of a conditional bra nch operation, but cannot be
altered by the programmer.
Flag Debug representation Description
CF: Carry Flag CY = CarrY

NC = No Carry
Contains ‘carries’ from the high-
order bit following arithmetic
operations and some shift & rotate
operations.

PF: Parity Flag PE = Parity Even
PO = Parity Odd

Checks the low-order eight bits of
data operations. Odd = 0, Even = 1

AF: Auxiliary
Flag

AC = Auxilliary Carry
NA = No Auxilliary

Set to 1 if arithmetic causes a
carry.

ZF: Zero Flag NZ = Not Zero
ZR = ZeRo

Set as a result of arithmetic /
compare operations. 0 = no, 1 =
yes (= zero result). JE and JZ
test this flag.

SF: Sign Flag PL = PLus
NG = NeGative

Set according to the sign after an
arithmetic operation (0=+, 1=-).
JG and JL test this flag.

TF: Trap Flag (Not shown in Debug) Debug sets the tra p flag to 1 so
that you can step through
execution one instruction at a
time. (Use the ‘t’ command).

IF: Interrupt
Flag

EI = Enable Interrupts
DI = Disable Interrupt

Indicates if interrupts are
disabled. 0 = disabled, 1 =
enabled.

DF: Direction
Flag

UP = UP (right)
DN = DowN (left)

Used by string operations to
determine the direction of data
transfer.
0: left-to-right data transfer
1: right-to-left data transfer

OF: Overflow Flag NV = No Overflow
OV = OVerflow

Indicates a carry into and out of
the high-order sign bit following
a signed arithmetic operation.

Control and status registers
Some design issues:

• Certain types of control information are of specifi c utility to the OS,
so the designer must understand the OS and tailor t he register
organisation to it

• The allocation of control information between regis ters and memory: It is
common to dedicate the first (lowest) few hundred w ords of memory for
control purposes. The designer must decide how much control info should
be in registers and how much in memory

42

 http://wikistudent.ws/Unisa

Program counter (PC) - contains the address of an instruction to be fet ched
Instruction register (IR) - contains the instruction most recently fetched
Memory address register (MAR) - contains the address of a location in memory
Memory buffer register (MBR) - contains a word of data to be written to memory
or the word most recently read
The CPU updates the PC after each instruction fetch so the PC always points to
the next instruction to be executed. The fetched in struction is loaded into an
IR, where the opcode and operand specifiers are ana lysed. Data are exchanged
with memory using the MAR and MBR. The MAR connects directly to the address
bus, and the MBR connects directly to the data bus. User-visible registers
exchange data with the MBR.
Within the CPU, data must be presented to the ALU f or processing. (The ALU may
have direct access to the MBR and user-visible regi sters, or there may be
additional buffering registers at the boundary to t he ALU).

Program status word (PSW) = a set of registers that contain status informati on
Common flags include the ones mentioned in the tabl e above.

Example microprocessor register organisation

Intel 8086 Motororola MC6800
General registers Pointer & index
AX - accumulator SP -stack pointer
BX - base BP - base pointer
CX - count SI - source index
DX - data DI - dest index
Segment Program status
CS - code Instr Ptr
DS - data Flags
SS - stack
ES - extra

8 data registers
9 address registers
Program status registers (PC & status)

Every register is special-purpose, but
some can be used for general purposes

Regular instruction set, with no
special-purpose registers

Instruction cycle

The main subcycles of the instruction cycle are: Fe tch, Execute, Interrupt.

The indirect cycle
This is a subcycle for when indirect addressing is used.
The revised instruction cycle:

1. The address of the next instruction to be execute d is determined
2. The processor fetches the instruction from memory
3. The fetched instruction is loaded into the IR
4. The control unit interprets the instruction
5. The address(es) of the operand(s) are determined
6. The operand(s) are fetched from memory USING INDIRECT ADDRESSING
7. The processor performs the required operation
8. The result is stored in memory, if required, USING INDIRECT ADDRESSING
9. Interrupt processing takes place if an interrupt has occurred

Data flow
Fetch cycle:

1. The PC contains the address of the next instructi on to be fetched
2. This address is moved to the MAR and placed on th e address bus
3. The control unit requests a memory read and the r esult is placed on the

data bus and copied into the MBR and then moved to the IR
4. The PC is incremented by 1, preparing for the nex t fetch

Indirect cycle:
1. The control unit examines the contents of the IR to determine if it

contains an operand specifier using indirect addres sing
2. If it does, the right-most n bits of the MBR (whi ch contain the address

reference) are transferred to the MAR

43

 http://wikistudent.ws/Unisa

3. The control unit requests a memory read, to get t he desired address of
the operand into the MBR

Execute cycle:
• This cycle takes many forms, depending on which ins truction is in the IR

Interrupt cycle:
1. The current contents of the PC must be saved (tra nsferred to the MBR) so

that the CPU can resume normal activity after the i nterrupt
2. The PC is loaded with the address of the interrup t routine so the next

instruction cycle will begin by fetching the approp riate instruction

Instruction pipelining

Instruction prefetch / fetch overlap
A two-stage pipeline:

1. The first stage fetches an instruction and buffer s it
2. When the second stage is free, the first stage pa sses it the buffered

instruction
3. While the second stage is executing the instructi on, the first stage

fetches and buffers the next instruction
Some problems:

• The execution time will generally be longer than th e fetch time, so the
fetch stage may have to wait before it can empty it s buffer

• A conditional branch instruction makes the address of the next
instruction to be fetched unknown (but the next ins truction can be
fetched anyway, just in case)

A multi-stage pipeline:
Instruction processing can be decomposed into these stages:
Fetch Instruction FI DI CO FO EI WO
Decode Instruction FI DI CO FO EI WO
Calculate Operands FI DI CO FO EI WO
Fetch Operands FI DI CO FO EI WO
Execute Instruction FI DI CO FO EI WO
Write Operand
With this decomposition, the various stages will be of more or less equal
duration. However, not all instructions will go thr ough all stages.

Some problems (as for 2-stage pipelines):
• If the stages are not of equal duration, there will be some waiting

involved
• The conditional branch instruction can invalidate s everal instruction

fetches
Additional problems (not in 2-stage pipelines):

• Register and memory conflicts: E.g. the CO stage ma y depend on the
contents of a register that could be altered by a p revious instruction
that is still in the pipeline (so you need control logic)

It may seem that the greater the number of stages i n the pipeline, the faster
the execution rate, but there are factors that slow things down:

• At each stage of the pipeline, there is some overhe ad involved in moving
data from buffer to buffer

• The amount of control logic required to handle memo ry and register
dependencies and to optimise the use of the pipelin e increases enormously
with the number of pipeline stages

The Pentium processor

44

 http://wikistudent.ws/Unisa

Register type Number Purpose
Integer unit:

General 8 General-purpose user registers, like AX, BX
Segment 6 Contain segment selectors, like CS, SS
Flags 1 Status and control bits, like CF (Carry Flag)
Instruction pointer 1 Instruction pointer, IP

Floating-point unit:
Numeric 8 Hold floating-point numbers
Control 1 Control bits
Status 1 Status bits
Tag word 1 Specifies contents of numeric registers
Instruction pointer 1 Points to instruction interrupt ed by execution
Data pointer 1 Points to operand interrupted by excep tion

Interrupt processing

Interrupts and exceptions

Interrupts Exceptions
Generated by a signal from hardware Generated from software
May occur at random times during the
execution of a program, e.g. if you
press a key on the keyboard

Provoked by the execution of an
instruction, e.g. INT 21h

1. Maskable interrupts:
The processor doesn’t recognise a
maksable interrupt unless the
interrupt enable flag is set

1. Processor-detected exceptions:
Result when the processor encounters
an error while attempting to execute
an instruction

2. Non-maskable interrupts:
Recognition of such interrupts can’t
be prevented

2. Programmed exceptions:
Instructions that generate an
exception

Interrupt vector table
Every type of interrupt is assigned a number, which is used to index into the
Pentium’s interrupt vector table.
Interrupt number Address Contents of address

10 Code segment address
2 8 Offset address

6 Code segment address
1 4 Offset address

2 Code segment address
0 0 Offset address

For interrupt type n, the instruction offset is sto red in the word at address
4*n and the code segment address in the word at add ress (4*n)+2.
Each code segment and offset points to its own inte rrupt handler (interrupt
service routine), which is a block of code that exe cutes if that particular
interrupt occurs.
If more than one exception or interrupt is pending, the processor services them
in a predictable order.
(Priority is not determined by the location of vect or numbers within the table)

Interrupt handling
A transfer to an interrupt-handling routine uses th e system stack to store the
processor state. When an interrupt occurs, the foll owing sequence of events
takes place:

1. The stack segment register and extended stack poi nter register are pushed
onto the stack (if the transfer involves a change o f privilege level)

2. The current value of the EFLAGS register is pushe d onto the stack
3. The interrupt and trap flags are cleared
4. The current code segment pointer (CS) and IP are pushed onto the stack
5. If the interrupt is accompanied by an error code, the error code is

pushed onto the stack

45

 http://wikistudent.ws/Unisa

6. The interrupt vector contents are fetched and loa ded into the CS and IP
registers. Execution continues from the interrupt s ervice routine

To return from an interrupt, all the saved values a re restored and execution
resumes from the point of the interrupt.

Reverse byte order in memory
The CPU expects numeric data in memory (not registe rs) to be stored in reverse
byte order. E.g. 0015h is stored as: 15h 00
The CPU reverses the bytes again when loading the d ata from memory into
registers.

Chapter 13 - Reduced Instruction Set Computers

The key elements of most RISC designs:
• A large number of general-purpose registers
• A limited and simple instruction set
• An emphasis on optimising the instruction pipeline

Instruction set characteristics

Because of the amount of bugs in programs, high-lev el programming languages
(HLLs) have been developed to allow the programmer to express algorithms more
concisely. However, there is a big semantic gap bet ween HLL operations and
those provided in computer architecture.
Studies have been conducted to determine the charac teristics of machine
instructions generated from HLL programs, so now re searchers are trying to make
the architecture that supports the HLL simpler, rat her than more complex.
The studies show that conditional statements (if, l oop), references to scalars
and operands, and procedure calls and returns are a ll frequent or time-
consuming operations that are good candidates for p erformance optimisation.
In RISC designs,

• The large number of registers optimises operand referencing
• The high proportion of conditional branching and procedure call

instructions makes a straightforward instruction pi peline inefficient
• A simplified instruction set is indicated

The use of a large register file

The large proportion of assignment statements and o perand accesses indicate
heavy reliance on register storage. Register storag e is the fastest storage
device (faster than both main memory and cache), so you should let the most
frequently accessed operands be kept in registers a nd minimise register-memory
operations.
The software approach:
Rely on the compiler to maximise register usage.
This approach requires the use of sophisticated pro gram-analysis algorithms.
The hardware approach:
Simply use more registers so that more variables ca n be held in registers for
longer periods of time.

Register windows
The problem with procedure calls is that local vari ables change with each call
and return, and parameters must be passed too.
Studies show that procedures employ only a few pass ed parameters and local
variables. To exploit this, multiple small sets of registers are used, each
assigned to a different procedure. A procedure call automatically switches the
processor to use a different fixed-size window of r egisters, rather than saving
registers in memory. Windows for adjacent procedure s are overlapped to allow
parameter passing.
At any one time, only one window of registers is vi sible and is addressable as
if it were the only set of registers. The window is divided into three fixed-
sized areas:

46

 http://wikistudent.ws/Unisa

• Parameter registers - hold parameters for procedure calls
• Local registers - used for local variables, as assigned by the com piler
• Temporary registers - used to exchange parameters and results with the

next lower level (procedure called by current proce dure). They are
physically the same as the parameter registers at t he next lower level.
This overlap permits parameters to be passed withou t the actual movement
of data.

The actual organisation of the register file is as a circular buffer of
overlapping windows. (The register windows hold the most recent procedure
activations, while older activations are saved in m emory, to be restored
later).

Global variables
The window scheme provides an efficient organisatio n for storing local scalar
variables in registers, but doesn’t address the nee d to store global variables
(i.e. those accessed by more than one procedure).
There are two alternatives:

1. Variables declared as global in an HLL can be assig ned memory locations
by the compiler, and all machine instructions that reference these
variables will use memory-reference operands. (This is straightforward,
but inefficient for frequently accessed global vari ables).

2. Incorporate a set of global registers in the processor. These registers
would be fixed in number and available to all proce dures. (Disadvantages:
hardware burden to accommodate the split in registe r addressing, and the
compiler must decide which global variables should be assigned to
registers).

Large register file versus cache
The register file, organised into windows, acts as a small, fast buffer for
holding a subset of all variables that are likely t o be used the most heavily,
acting like a faster cache memory.

Large register file Cache
Holds all the local scalar variables
of the most recent N-1 procedure
activations

Holds a selection of recently used
scalar variables

Efficient use of time, because all
local scalar variables are retained

Efficient use of space, because it is
reacting to the situation dynamically

Disadvantage: Inefficient use of
space, because not all procedures will
need the full window space allotted to
them

Disadvantage: Data are read into the
cache in blocks, so some of the data
will not be used

Can hold some global scalars, but it
is difficult for a compiler to
determine which ones will be heavily
used

Can handle global as well as local
variables

Infrequent use of memory Set associative memories wi th a small
size, so data might overwrite
frequently used variables

To reference a local scalar, a
‘virtual’ register number and a window
number are used. These can pass
through a simple decoder to select one
of the physical registers

A full-width memory address must be
generated. The access time is much
longer

From the point of view of performance, the window-b ased register file is
superior to cache for local scalars.

Compiler-based register optimisation

You could have a small number of registers and let the compiler optimise their
usage. Graph colouring is the most commonly used te chnique.

47

 http://wikistudent.ws/Unisa

In general, there is a trade-off between the use of a large set of registers
and compiler-based optimisation. (The larger the nu mber of registers, the
smaller the benefit of register optimisation).

Reduced instruction set architecture

CISC
There is a trend to richer instruction sets, which include a larger number of
instructions and more complex instructions. This is because architects
attempted to design machines that provided better s upport for HLLs.

Reasons for CISC:
• Compiler simplification - If there are machine instructions that resemble

HLL statements, compiler writing is simplified
Problem: Complex machine instructions are hard to exploit because the
compiler must find those cases that exactly fit the construct

• Smaller programs - Programs take up less memory and have fewer
instructions, so fewer instruction bytes need to be fetched
Problem: The program may be shorter, but the number of bit s of memory
occupied may not be smaller

• Faster programs - Complex HLL operations execute more quickly as a single
machine instruction rather than as a series of more primitive
instructions
Problem: The entire control unit must be made more complex or the
microprogram control store must be made larger, to accommodate a richer
instruction set. Either factor increases the execut ion time of the
instructions

Characteristics of reduced instruction set architec tures

1. One machine instruction per machine cycle
Machine cycle = the time it takes to fetch two operands from reg isters, perform
an ALU operation, and store the result in a registe r.
With simple, one-cycle instructions, there is littl e or no need for microcode;
the machine instructions can be hardwired. Such ins tructions should execute
faster because it isn’t necessary to access a micro program control store during
instruction execution.
2. Register-to-register operations
With only simple LOAD and STORE operations accessin g memory, you simplify the
instruction set and therefore the control unit. Suc h an architecture encourages
the optimisation of register use, so that frequentl y accessed operands remain
in high-speed storage.
3. Simple addressing modes
Almost all instructions use simple register address ing. Several additional
modes, like displacement and PC-relative, may be in cluded. Other, more complex
modes may be synthesised in software from the simpl e ones. This design feature
simplifies the instruction set and the control unit .
4. Simple instruction formats
Instruction length is fixed and aligned on word bou ndaries.
Field locations, especially the opcode, are fixed.
Advantages:

• With fixed fields, opcode decoding and register ope rand accessing can
occur simultaneously

• Simplified formats simplify the control unit
• Instruction fetching is optimised because word-leng th units are fetched
• Alignment on a word boundary also means that a sing le instruction doesn’t

cross page boundaries

Benefits of the RISC approach
Performance benefits

• More effective optimising compilers can be developed (With more primitive
instructions there are more opportunities for code efficiency)

48

 http://wikistudent.ws/Unisa

• Most instructions generated by a compiler are relat ively simple anyway
(so a control unit built specifically for those ins tructions could
execute them faster than a comparable CISC)

• Instruction pipelining can be applied much more effectively with a
reduced instruction set

• RISC processors are more responsive to interrupts because interrupts are
checked between rather elementary operations

VLSI implementation benefits
With the advent of VLSI, it is possible to put an e ntire processor on a single
chip. For a single-chip processor, there are two mo tivations for following a
RISC strategy:

• Performance issue (On-chip delays are of much shorter duration than
inter-chip delays)

• Design-and-implementation time (A RISC processor is far easier to develop
than a VLSI processor)

CISC versus RISC characteristics
RISC designs may benefit from the inclusion of some CISC features and vice
versa.
The PowerPC uses a RISC design and the Pentium II u ses a CISC design, but
neither is pure.

49

