
 http://wikistudent.ws/Unisa

How to display output on the screen:

1. This program prints the character ‘a’:

 org 0x100
 bits 16
 jmp main
message: db 'a' ; message is the ad dress of char 'a'
main: mov bx, message ; move message (i.e . an address) to bx
 mov dl,[bx] ; move contents of address pointed to
 ; by bx to dl. Thi s is an example
 ; of register INDIR ECT addressing
 mov ah,02
 int 21h
 int 20h

Notes:
• mov ah,02 is used for displaying ONE character (in dl) only. If message

was ‘abc’, just ‘a’ would be displayed.
• To avoid indirect addressing, if you knew that the offset of message was

3, you could type mov dl,[103h] instead. It would b e even simpler to type
mov dl,’a’ if you don’t need to give the character a label.

• Of AX, BX, CX, and DX, only BX can be used for indi rect addressing.

2.This program prints a sentence:

 org 0x100
 bits 16
 jmp main
message: db 'long string with no dollar/appo strophe characters!','$'
main: mov dx,message ; move the start ad dress of message

 mov ah,09
 int 21h
 int 20h

Notes:
• The string MUST end with ‘$’ - otherwise garbage fo llows in the output.

An optional 0ah, 0dh provide a line feed and carria ge return.
• mov dx,message could be replaced with mov dx,103h b ecause the offset of

message is 3.

Remember:
Character output - When ah contains 2, a character must be in dl.
String output - When ah contains 9, an address must be in dx.

3. This program uses INC to increment a character:

 org 0x100
 bits 16

 mov dl,'q'
 inc dl ; increment a VALUE

 mov ah,02
 int 21h ; displays 'r'
 int 20h

4. This program uses INC to advance a start address by one:

 org 0x100
 bits 16

1

 http://wikistudent.ws/Unisa

 mov dx,message
 inc dx ; increment an ADDRESS

 mov ah,09
 int 21h ; displays 'werty'
 int 20h

message: db 'q','w','e','r','t','y','$' ; s ame as 'qwerty$'

Notes:
• message may appear after the program!

Accepting input from the keyboard and displaying it :

 org 0x100
 bits 16
 jmp main

input: db 20 ; length of the buf fer
 db 0 ; no of bytes read (written here later)
 resb 21 ; bytes reserved fo r input characters
prompt1: db 'Enter a word', 0ah, 0dh, '$'
prompt2: db 13,10,'Enter a character', 0ah, 0dh, '$'

main: mov dx,prompt1
 mov ah,09
 int 21h

 mov dx,input
 mov ah,0ah
 int 21h ; a string has been read into dx;

 mov dl,13 ; carriage return
 mov ah,2
 int 21h

 mov dl,10 ; line feed
 mov ah,2
 int 21h

 mov dx,input
 inc dx ; skip over the len gth of the buffer
 inc dx ; skip over the no of bytes read
 mov bx,dx ; bx points to star t of input characters
 mov al,[input+1]; the length of the string
 mov ah,0 ; (this fills up ax)
 add bx,ax ; bx points one cha r past last char entered
 mov al,'$'
 mov [bx],al ; put a $ sign afte r the last character
 mov ah,09
 int 21h ; the string in dx is displayed on the screen

 mov dx,prompt2
 mov ah,09
 int 21h

 mov ah,01
 int 21h ; a character has b een read into al

 mov dl,al ; the character is moved to dl for display
 mov ah,02
 int 21h

2

 http://wikistudent.ws/Unisa

 int 20h

Notes:
• When displaying the string that was read, you have to leave out the info

stored in the first two bytes, and add a $ sign to the end, with the help
of bx.

Simplifying the above program by using procedures:

 org 0x100
 bits 16
 jmp main

input: db 20
 db 0
 resb 21

prompt1: db 'Enter a word', 0ah, 0dh, '$'
prompt2: db 13, 10, 'Enter a character', 0ah , 0dh, '$'

get_string: mov ah,0ah
 int 21h
 ret

display_string: mov ah,09
 int 21h
 ret

get_char: mov ah,01
 int 21h;
 ret

display_char: mov ah,02
 int 21h
 ret

main: mov dx,prompt1
 call display_string ; prompt fo r a string

 mov dx,input
 call get_string ; read in t he string

 mov dl,13
 call display_char

 mov dl,10
 call display_char

 mov dx,input
 inc dx
 inc dx
 mov bx,dx
 mov al,[input+1]
 mov ah,0
 add bx,ax
 mov al,'$'
 mov [bx],al
 call display_string ; display t he string

 mov dx,prompt2
 call display_string ; prompt fo r a character

 call get_char ; read in t he character

 mov dl,al

3

 http://wikistudent.ws/Unisa

 call display_char ; display t he character

 int 20h

Notes:
• When you want to display a character, you can use e ither single quotes

around the character, as in mov al,’2’, or a number which is the ASCII
equivalent, as in mov al,50 (which is also the char acter ‘2’). This won’t
work if you want to display a string that is in dx.

Useful table to memorise:
Input Output

char mov ah, 01 (char is now
pointed to by al)

mov ah, 02 (char must first
be pointed to by dl)

string mov ah, 10 (string is now
pointed to by dx)

mov ah, 09 (string must first
be pointed to by dx)

Converting numbers to strings:

These programs display numbers as strings on the sc reen. They need to be
converted to ASCII values because if you try printi ng a number (using mov
ah,02) you get the ASCII equivalent, not the actual number. Number characters
in ASCII start at position 48 (or 30h), so that’s t he amount you need to add to
each digit. One digit is converted at a time, start ing with the right-most one
and using modulo 10 to extract it. With each loop i teration the last digit is
added to the next-last position in the buffer. The buffer pointer must be
decremented each time for this to happen.

This version of the program uses a 16-bit divisor (pointed to by bx):
 bits 16
 org 0x100
 jmp main

buffer: db ' ', '$' ; 5 spaces for max number of 65535 (FFFF)

main: mov di,buffer ; (di can be used f or string operations)
 add di,4 ; di now points to the last buffer position
 mov bx,10 ; the numbers are going to be divided by 10
 mov ax,65535 ; FFFF is the large st number you can use in ax

loop1: xor dx,dx ; clear dx (because idiv uses dx:ax here)
 ; not clearing dx gives a division overflow

 idiv bx ; divide dx:ax by bx
 ; result in ax, rem ainder in dx
 add dx,30h ; convert remainder to ASCII
 mov [di], dl ; move the ASCII digit to the next last pos
 cmp ax,0 ; test if there are more digits left
 je finis
 dec di ; point to a previo us position
 jmp loop1

finis: mov dx,buffer ; dx points to the beginning of the buffer
 mov ah,09
 int 21h

 int 20h

This version of the program uses an 8-bit divisor (pointed to by bl):
 bits 16
 org 0x100
 jmp main

buffer: db ' ', '$' ; 3 spaces for max number of 255 (FF)

4

 http://wikistudent.ws/Unisa

main: mov di,buffer
 add di,2
 mov bl,10
 mov al,255 ; FF is the largest number you can use in al

loop1: xor ah,ah ; clear ah (because idiv uses the entire ax)
 ; not clearing ah gives a division overflow

 idiv bl ; divide ax by bl
 ; result in al, rem ainder in ah
 add ah,30h
 mov [di], ah
 cmp al,0
 je finis
 dec di
 jmp loop1

finis: mov dx,buffer
 mov ah,09
 int 21h

 int 20h

Reading in a number as a string, converting it to a numeric value,
adding 5, and then converting it to a string for di splay:

 org 0x100
 bits 16
 jmp main

inputbuffer: db 6;
 db 0;
 resb 6;

outputbuffer: db ' ','$' ; length of 5 chars

prompt: db 'Enter a number: ','$'

str_to_num: xor ax,ax ; ax will p oint to the number
 xor bh,bh ; clear bh because bx is used later
 mov cx,10
 mov si,dx ; si points to the start address

next_char: mov bl,[si] ; move the first character to bl
 cmp bl,'$' ; check if it is the last char
 je finis
 cmp bl,39h ; character '9'
 jg error
 cmp bl,30h ; character '0'
 jl error
 sub bl,30h ; convert t o ASCII numeric value
 imul cx ; dx:ax = a x * 10 (shift digits left)
 add ax,bx ; add the c haracter to ax
 inc si ; point to the next character
 jmp next_char

error: mov al,'E'

finis: ret

main: mov dx,prompt ; display p rompt
 mov ah,09
 int 21h

 mov dx,inputbuffer ; read in t he number string

5

 http://wikistudent.ws/Unisa

 mov ah,10
 int 21h

 mov dl,13 ; carriage return
 mov ah,2
 int 21h

 mov dl,10 ; line feed
 mov ah,2
 int 21h

 mov dx,inputbuffer
 inc dx
 inc dx
 mov bx,dx
 mov al,[inputbuffer + 1]
 mov ah,0
 add bx,ax
 mov al,'$'
 mov [bx],al ; now the s tring with '$' is in dx

 call str_to_num ; afterward s, the number is in ax
 cmp al,69 ; test for error character 'E'
 je display_error
 add ax,5 ; add 5 bef ore making it a string

 mov di,outputbuffer
 add di,4
 xor bx,bx
 mov bx,10

num_to_str: xor dx,dx
 idiv bx ; divide dx :ax by bx
 add dx,30h ; convert t he remainder to ASCII
 mov [di],dl
 cmp ax,0
 je display_str
 dec di
 jmp num_to_str

display_str: mov dx,outputbuffer
 mov ah,09
 int 21h

 int 20h

display_error: mov dl,al
 mov ah,02
 int 21h

 int 20h

Notes:
• You can’t read in or print numbers using their actu al values - they are

always treated as ASCII strings.
• The largest number that can be displayed is 65535. Because 5 is added to

the input value, the largest number you can enter i s 65530.

Using the sieve of Eratosthenes to find the first 1 000 primes:

Algorithm: Initialise 1000 bytes to ‘1’ and use nes ted loops to replace bytes
in non-prime positions with ‘0’. The outer loop (i) runs from 2 to 32 (you only
need to iterate till the square root of 1000!) and the inner loop (j) goes from

6

 http://wikistudent.ws/Unisa

i to 1000, in increments of i, replacing these mult iples of i with ‘0’ (because
multiples of anything cannot be prime!).
The program prints the list of ‘1’s and ‘0’s. A ‘1’ indicates that the number
in that position (starting from position 1, not 0) is prime. If it is ‘0’, the
number in that position is not prime.

 org 0x100
 bits 16
 jmp main

buffer: times 1000 db '1'
 db '$'

start: mov ax,1 ; the outer-loop counter
 mov cl,30h ; char '0' to wipe out non-primes

outer_loop: inc ax ; for loop from 2 to 32
 cmp ax,32
 jge print_primes ; quit after 31 iterations

 mov bx,ax ; star t from current outer index
inner_loop: add bx,ax ; chec k every jth number above j
 cmp bx,1000 ; see if you've reached the end
 jg outer_loop
 mov [bx+buffer-1],cl ; turn multiples of j into '0'
 jmp inner_loop

print_primes: mov dx,buffer
 mov ah,09
 int 21h

 int 20h

main: jmp start

Finding the factorial of a number and displaying it :

 bits 16
 org 0x100
 jmp main

buffer db ' $' ; 5 spaces reserved for output (FFFF = 65535)

number: dw 8 ; the largest numbe r you can use (8! = 40320)
 ; equivalent to db 8,0 (little endian!)

main: mov di,buffer ; this will store t he output string later
 add di,4 ; point to the last space
 mov ax,[number] ; the number, and p roduct so far = in dx:ax
 mov cx,ax ; used to multiply, with each loop iteration
 dec cx ; because you start multiplying by n - 1

repeat: imul cx ; multiply ax by cx - product in dx:ax
 loop repeat ; decrement cx and loop till cx = 0

 mov bx,10 ; you're goint to e xtract 1 digit at a time
loop1: xor dx,dx ; clear dx to preve nt a divide overflow error
 div bx ; divide dx:ax by 1 0
 ; quotient in ax, r emainder in dx
 add dx,30h ; convert to string for display
 mov [di],dl ; move the digit to the right-most space
 dec di ; point to the next right-most space
 cmp ax,0 ; more digits to di vide?
 je display
 jmp loop1 ; else loop

7

 http://wikistudent.ws/Unisa

display: mov dx,buffer ; modified buffer, thanks to di operations
 mov ah,09
 int 21h

 int 20h

Setting the time on your computer clock:

 bits 16
 org 0x100
 jmp main

main: mov ch,20 ; hours
 mov cl,58 ; minutes
 mov dh,1 ; seconds
 mov dl,9 ; hundredths of a second

 mov ah,2dh
 int 21h
 int 20h

Notes:
• You can shorten the program with mov cx,nn and mov dx,nn instead
• Remember: mov ch,10h and mov cl,23h is the same as mov cx,1023h!

Using the stack to reverse user input:

 bits 16
 org 0x100
 jmp main

input_buffer: db 21
buffer_len: db 00
string: resb 21

array: times 20 db ' ' ; 20 spaces = max output length

cr_lf: db 13, 10, '$'

main: mov dx,input_buffer
 mov ah,0ah
 int 21h ; read in a string

 mov dx,cr_lf
 mov ah,9
 int 21h ; move to t he next line

 mov si,string ; (the user input)
 mov cl,[buffer_len]
 xor ch,ch ; cx will b e the loop counter
 xor ah,ah ; ax will b e pushed on the stack

loop1: mov al,[si] ; work with one char at a time
 push ax
 inc si ; point to the next char
 loop loop1

unpack: mov di,array ; point to the start of the array
 mov dx,di ; for displ ay, later on
 mov cl,[buffer_len] ; set the l oop counter
 xor ch,ch

loop2: pop ax

8

 http://wikistudent.ws/Unisa

 mov [di],al ; move one char at a time
 inc di ; point to the next space
 loop loop2

 add di,[buffer_len] ; point to the end of the string
 mov bx,'$'
 mov di,bx ; place a $ at the end
 mov ah,09
 int 21h ; display the string in reverse

 int 20h

Note : The stack is implicitly used when a procedure is called (with ‘call’).
The address of the instruction following the call i s pushed onto the stack and
when the ‘ret’ instruction is executed in the subro utine, it’s popped off.
Remember: when you’re in a subroutine, the return a ddress is always on top of
the stack!

Something to remember : Bytes are stored in reverse order in memory!

Comparing LEA with MOV:

 org 0x100
 bits 16
 jmp main
buffer1: db 'Hello', 13, 10,'$'
buffer2: db 'Goodbye','$'

main: mov dx,buffer1
 mov ah,09
 int 21h

 lea dx,[buffer2] ; loads the effecti ve address of buffer2
 mov ah,09
 int 21h

 int 20h

• mov dx,buffer and lea dx,[buffer] have the same eff ect, but these
different instructions may occupy a different numbe r of bytes. You can
always insert ‘nop’ to fill in the gap.

Parameter passing:

There are three ways of passing parameters:
1. Store the parameters in a parameter block in memory
2. Store the parameters in registers before calling the subroutine
3. Push the parameters onto the stack

1. Using a parameter block in memory (calling by na me):
The address of the block is stored in a register be fore the subroutine is
called.

In this program, the procedure that accepts a strin g from the keyboard makes
use of the ‘input_buffer’, by storing the length of the string entered, etc.
This buffer is passed as a parameter by the stateme nt ‘mov dx,input_buffer’,
just before the procedure call.

 org 0x100
 bits 16
 jmp main

; parameter block:
input_buffer: db 5 ; max 5 chars

9

 http://wikistudent.ws/Unisa

 db 0 ; length of string entered
 resb 5 ; 5 bytes reserved as input buffer

; procedure: ; uses the paramete r block in dx
accept_string: mov ah,0ah
 int 21h
 ret

main: mov dx,input_buffer ; mov param eter block in dx first!
 call accept_string
 int 20h

2. Passing parameters in registers (calling by valu e):
The calling program must simply store the parameter s in the relevant registers
before calling the subroutine. On entering the subr outine, nothing needs to be
done in the prolog because the parameters are already in the required
registers. This mechanism is fast but can only be u sed when we have to pass a
few values that will fit into registers.

3. Passing parameters on the stack (calling by valu e):
The return address is pushed onto the top of the st ack when the subroutine is
called, and popped off when the subroutine returns.

 org 0x100
 bits 16
 jmp main

output_buffer: db ' $'

number_3: dw 3 ; dw, not db (becau se AX etc. = 2 bytes!)
number_7: dw 7
number_1: dw 1

return_second: ; the procedure ret urns the second parameter
prolog: pop ax ; store the RETURN ADDRESS temporarily
 pop bx ; pop the three par ameters
 pop cx ; into bx, cx and d x
 pop dx ; for local use

body: ; this is where you could have additiona l program statements

epilog: push cx ; cx points to the second parameter
 push ax ; restore the RETUR N ADDRESS
 ret ; the 2nd parameter is returned on the stack

main: mov ax,[number_3] ; store three dif ferent numbers
 mov bx,[number_7] ; which will be s ent as parameters
 mov cx,[number_1] ; on the stack to the procedure

start_up: push ax ; push the 3 numbers onto th e stack
 push bx ; the procedure wil l access them
 push cx ; by popping them o ff

 call return_second ; the retur n address is IMPLICITLY
 ; pushed on the stack!! so when
 ; you enter the procedure it is
 ; popped of f FIRST

 ; the return address was implicitly popped off, so now:
clean_up: pop dx ; pop the return value off t he stack into dx
 add dl,30h ; convert to ascii string
 mov di,output_buffer
 mov [di],dl ; move the digit in to the buffer
 mov dx,output_buffer
 mov ah,09h

10

 http://wikistudent.ws/Unisa

 int 21h ; prints 7
 int 20h

11

