October / November 2012

Question 2(a) (5)

To improve performance, designers have turned to a fundamentally new approach to chip organization and architecture, called *multicore* organization. Explain what this means and list four of the advantages of using this approach.

Multicore - Multiple processors on the same chip - with a large shared cache.

- increases performance without increasing the clock rate;
- · justifies much larger caches;
- results in lower power consumption and less heat generation;
- uses multiple simpler processors, rather than more complex one.

Question 2(b) (5)

List and describe the most common classes of interrupt.

- **Program interrupts** occur as the result of the execution of an instruction, such as division by 0, arithmetic overflow etc.
- **Timer interrupts** generated by a timer within the processor. Allows the operating system to perform certain functions on a regular basis.
- I/O interrupts generated by an I/O controller, to signal the normal completion of an operation, or an error condition.
- Hardware failure generated by a power failure, or memory parity error.

Question 2(c) (4)

Use a table to make a comparison between at least four characteristics of a Large-Register-File (such as those used in a RISC-type architecture) and those of a typical Cache Organization.

Large Register File	Cache
All local scalars	Recently-used local scalars
Individual variables	Blocks of memory
Compiler-assigned global variables	Recently-used global variables
Save / Restore based on procedure nesting depth	Save / Restore based on cache replacement algorithm
Register adressing	Memory addressing

COS2621 - Solutions to Past Papers

Question 2(d) (6)

Briefly describe the cache organization of the Pentium 4.

There are 3 caches, 2 of which are on-chip -

- L1 instruction cache (on-chip). 12Kb in size and holds micro operations. Between the instructon decode logic and execution core.
- L1 data cache (on-chip). 8Kb, 4-way set associative organization. Uses a write-block policy.
- L2 cache of 256Kb. Feeds both L1 data and instruction caches. The organization of L2 is 8-way set-associative.

May / June 2012

Question 2(a) (6)

One of the distinctions among memory types is the *method of accessing* of the data. Briefly discuss three different methods of accessing data.

- **Sequential access** Access must be made in a specific linear sequence. Time to access an arbitrary record is highly variable. Eg: Tape units.
- **Direct access** Individual blocks or records have a unique address based on location. Access is accomplished by direct access to reach a general vicinity plus sequential searching, counting, or waiting to reach the final location. Access time is variable. Eg: Disk units.
- Random access Each addressable location in memory has a unique, physically wired-in addressing mechanism. The time to access a given location is constant. Any location can be selected at random, and directly addressed and accessed. Eg: Main memory and some cache systems.
- **Associative** A random access type of memory that enables one to make a comparison of desired bit locations within a word for a specified match, and do this for all words simultaneously. A word is retrieved based on a portion of its contents rather than its address. Retrieval time is constant. Eg: Cache memories may use associative access.

Question 2(b) (5)

Discuss the advantages and disadvantages of using DMA over programmed and interrupt-driven I/O.

Advantages -

- More efficient when large volumes of data have to be moved.
- Does not cause the processor to wait for long periods of time.
- Does not use processor time to transfer data.

Disadvantages -

Cycle stealing - DMA forces the processor to suspend operation while it uses the bus.

Question 2(c) (4)

Use a table to make a comparison between at least four characteristics of a Large-Register-File (such as those used in a RISC-type architecture) and those of a typical Cache Organization.

Large Register File	Cache
All local scalars	Recently-used local scalars
Individual variables	Blocks of memory
Compiler-assigned global variables	Recently-used global variables
Save / Restore based on procedure nesting depth	Save / Restore based on cache replacement algorithm
Register adressing	Memory addressing

COS2621 - Solutions to Past Papers

Question 2(d) (5)

Briefly describe flash memory with special reference to the

- (i) density compared to EPROM, and
- (II) erasing technology.
- (i) Similar density to EPROM one transistor per bit. (Higher density than EEPROM).
- (ii) Electrical erasing technology;An entire flash memory can be erased in one, or a few, seconds (in a flash).It is possible to erase blocks of memory, but byte level erasure is not provided for.

October / November 2011

Question 2(a) (5)

List five of the key elements shared by most designs of RISC architectures.

- One instruction per cycle;
- · Register-to-register operations;
- Simple addressing modes;
- Simple instruction formats;
- A single instruction size.

Question 2(b) (5)

To improve performance, designers have turned to a fundamentally new approach to chip organization and architecture, called *multicore* organization. Explain what this means and list four of the advantages of using this approach.

Multicore - Multiple processors on the same chip - with a large shared cache.

- · increases performance without increasing the clock rate;
- · justifies much larger caches;
- · results in lower power consumption and less heat generation;
- uses multiple simpler processors, rather than more complex one.

Question 2(c) (5)

There are several steps involved in the execution of an instruction. List at least five of the steps of the general instruction cycle.

- · Fetch instruction
- · Decode instruction
- · Calculate operands
- Fetch operands
- · Execute instruction
- Write operands

Question 2(d) (5)

What is meant by the term programmed I/O. What is the main disadvantage of using this technique?

Programmed I/O - data are exchanged between the processor and the I/O module. The processor executes a program that gives it direct control of the I/O operation, including sensing device status, sending a read or write command, and transferring the data. When the processor issues a command to the I/O module, it must wait until the I/O operation is complete. If the processor is faster than the I/O module, this is wasteful of processor time.

Disadvantage - The processor has to wait a long time for the I/O module to be ready for either reception or transmission of data. Processor has to repeatedly check the status of the I/O module. This degrades the performance of the entire system.

May / June 2011

Question 2(a) (5)

List the key elements shared by most of RISC architectures.

- One instruction per cycle;
- Register-to-register operations;
- Simple addressing modes;
- Simple instruction formats;
- A single instruction size.

Question 2(b) (5)

Discuss the advantages and disadvantages of using DMA over programmed and interrupt-driven I/O.

Advantages -

- More efficient when large volumes of data have to be moved.
- Does not cause the processor to wait for long periods of time.
- Does not use processor time to transfer data.

Disadvantages -

Cycle stealing - DMA forces the processor to suspend operation while it uses the bus.

Question 2(c) (4)

What are the primary differences between SRAM and DRAM?

SRAM is used for cache memory, DRAM is used for main memory;

SRAM is more expensive and larger than DRAM;

SRAM has faster access times than DRAM;

SRAM is a digital device, DRAM is an analogue device.

Question 2(d) (6)

Explain the difference between a compiler, a translator, and an assembler.

Compiler - A program that converts another program from some source language (or programming language) to machine language (object code).

Translator - Converts assembly language instruction into binary machine code.

Assembler - A program that translates assembly language into machine code.