Boolean Algebra

Circuit analysis summary

- After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does.
- You can easily convert between expressions and truth tables.

Boolean Functions summary

- We can interpret high or low voltage as representing true or false.
- A variable whose value can be either 1 or 0 is called a Boolean variable.
- AND, OR, and NOT are the basic Boolean operations.
- We can express Boolean functions with either an expression or a truth table.
- Every Boolean expression can be converted to a circuit.
- Now, we'll look at how Boolean algebra can help simplify expressions, which in turn will lead to simpler circuits.

Boolean Algebra

- Last time we talked about Boolean functions, Boolean expressions, and truth tables.
- Today we'll learn how to how use Boolean algebra to simplify Booleans expressions.
- Last time, we saw this expression and converted it to a circuit:

(x + y')z + x'

Can we make this circuit "better"? •Cheaper: fewer gates •Faster: fewer delays from inputs to outputs

Expression simplification

- Normal mathematical expressions can be simplified using the laws of algebra
- For binary systems, we can use Boolean algebra, which is superficially similar to regular algebra
- There are many differences, due to
 - having only two values (0 and 1) to work with
 - having a complement operation
 - the OR operation is not the same as addition

Formal definition of Boolean algebra

- A Boolean algebra requires
 - A set of elements **B**, which needs at least two elements (0 and 1)
 - Two binary (two-argument) operations OR and AND
 - A unary (one-argument) operation NOT
 - The axioms below must always be true (textbook, p. 42)
 - The magenta axioms deal with the complement operation
 - Blue axioms (especially 15) are different from regular algebra

1. x + 0 = x	2. x • 1 = x	
3. x + 1 = 1	4. × • 0 = 0	
5. x + x = x	6. x • x = x	
7. x + x' = 1	8. × • ×′ = 0	
9. (x')' = x		
10. $x + y = y + x$	11. xy = yx	Commutative
12. $x + (y + z) = (x + y) + z$	13. x(yz) = (xy)z	Associative
14. $x(y + z) = xy + xz$	15. $x + yz = (x + y)(x + z)$	Distributive
16. (x + y)' = x'y'	17. (xy)' = x' + y'	DeMorgan's

Comments on the axioms

• The associative laws show that there is no ambiguity about a term such as x + y + z or xyz, so we can introduce multiple-input primitive gates:

- The left and right columns of axioms are duals
 - exchange all ANDs with ORs, and Os with 1s
- The dual of *any* equation is always true

1. x + 0 = x	2. x • 1 = x	
3. x + 1 = 1	4. × • 0 = 0	
5. x + x = x	6. x • x = x	
7. x + x' = 1	8. × • ×' = 0	
9. (x')' = x		
10. $x + y = y + x$	11. xy = yx	Commutative
12. $x + (y + z) = (x + y) + z$	13. x(yz) = (xy)z	Associative
14. $x(y + z) = xy + xz$	15. $x + yz = (x + y)(x + z)$	Distributive
16. (x + y)' = x'y'	17. (xy)' = x' + y'	DeMorgan's

Are these axioms for real?

• We can show that these axioms are valid, given the definitions of AND, OR and NOT

×	У	x+y
0	0	0
0	1	1
1	0	1
1	1	1

• The first 11 axioms are easy to see from these truth tables alone. For example, x + x' = 1 because of the middle two lines below (where y = x')

×	У	x+y
0	0	0
0	1	1
1	0	1
1	1	1

Proving the rest of the axioms

- We can make up truth tables to prove (both parts of) DeMorgan's law
- For (x + y)' = x'y', we can make truth tables for (x + y)' and for x'y'

×	У	x + y	(x + y)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

×	У	X'	y'	x'y'
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

- In each table, the columns on the left (x and y) are the inputs. The columns on the right are outputs.
- In this case, we only care about the columns in blue. The other "outputs" are just to help us find the blue columns.
- Since both of the columns in blue are the same, this shows that (x + y)' and x'y' are equivalent

• We can now start doing some simplifications

$$\begin{array}{ll} x'y' + xyz + x'y \\ &= x'(y' + y) + xyz & [Distributive; x'y' + x'y = x'(y' + y)] \\ &= x' \cdot 1 + xyz & [Axiom 7; y' + y = 1] \\ &= x' + xyz & [Axiom 2; x' \cdot 1 = x'] \\ &= (x' + x)(x' + yz) & [Distributive] \\ &= 1 \cdot (x' + yz) & [Axiom 7; x' + x = 1] \\ &= x' + yz & [Axiom 2] \end{array}$$

1. x + 0 = x	2. x • 1 = x	
3. x + 1 = 1	4. × • 0 = 0	
5. x + x = x	6. x • x = x	
7. x + x' = 1	8. x • x' = 0	
9. (x')' = x		
10. $x + y = y + x$	11. xy = yx	Commutative
12. $x + (y + z) = (x + y) + z$	13. x(yz) = (xy)z	Associative
14. $x(y + z) = xy + xz$	15. $x + yz = (x + y)(x + z)$	Distributive
16. $(x + y)' = x'y'$	17. (xy)' = x' + y'	DeMorgan's

CS231 Boolean Algebra

Let's compare the resulting circuits

- Here are two different but *equivalent* circuits.
- In general the one with fewer gates is "better":
 - It costs less to build
 - It requires less power
 - But we had to do some work to find the second form

Some more laws

• Here are some more useful laws. Notice the duals again!

1. x + xy = x	4. $x(x + y) = x$
2. xy + xy' = x	5. $(x + y)(x + y') = x$
3. $x + x'y = x + y$	6. $x(x' + y) = xy$
xy + x'z + yz = xy + x'z	(x + y)(x' + z)(y + z) = (x + y)(x' + z)

- We can prove these laws by either
 - Making truth tables:

CS231 Boolean Algebra

The complement of a function

- The complement of a function always outputs 0 where the original function outputted 1, and 1 where the original produced 0.
- In a truth table, we can just exchange Os and 1s in the output column(s)

f(x,y,z) = x(y'z' + yz)

Complementing a function algebraically

• You can use DeMorgan's law to keep "pushing" the complements inwards

$$\begin{aligned} f(x,y,z) &= x(y'z' + yz) \\ f'(x,y,z) &= (x(y'z' + yz))' & [complement both sides] \\ &= x' + (y'z' + yz)' & [because (xy)' = x' + y'] \\ &= x' + (y'z')' (yz)' & [because (x + y)' = x' y'] \\ &= x' + (y + z)(y' + z') & [because (xy)' = x' + y', twice] \end{aligned}$$

- You can also take the dual of the function, and then complement each literal
 - If f(x,y,z) = x(y'z' + yz)...
 - ... the dual of f is x + (y' + z')(y + z)...
 - ...then complementing each literal gives x' + (y + z)(y' + z')...
 - ...so f'(x,y,z) = x' + (y + z)(y' + z')

- So far:
 - A bunch of Boolean algebra trickery for simplifying expressions and circuits
 - The algebra guarantees us that the simplified circuit is *equivalent* to the original one
- Next:
 - Introducing some standard forms and terminology
 - An alternative simplification method
 - We'll start using all this stuff to build and analyze bigger, more useful, circuits

iclicker.

•
$$(x+y')(x+y) + x'yz$$

- A: x + xy +y'x + x'yz

1. x + xy = x	4. $x(x + y) = x$
2. xy + xy' = x	5. $(x + y)(x + y') = x$
3. $x + x'y = x + y$	6. $x(x' + y) = xy$
xy + x'z + yz = xy + x'z	(x + y)(x' + z)(y + z) = (x + y)(x' + z)

17

iclicker.

- ab'c + a'bc'+ b(a'c'+a'(a+c'))'
 - A: b+ac B: b+ba+ca C: ca+cb+ba+bc' D: abc

1. x + xy = x	4. $x(x + y) = x$
2. xy + xy' = x	5. $(x + y)(x + y') = x$
3. $x + x'y = x + y$	6. $x(x' + y) = xy$
xy + x'z + yz = xy + x'z	(x + y)(x' + z)(y + z) = (x + y)(x' + z)
	CS231 Boolean Algebra