Boolean Algebra

Circuit analysis summary

* After finding the circuit inputs and outputs, you can come up with
either an expression or a truth table to describe what the circuit does.

* You can easily convert between expressions and truth tables.

Find the circuit's
inputs and outputs

. d F .’l |

CS231 Boolean Algebra

Boolean Functions summary

We can interpret high or low voltage as representing true or
false.

A variable whose value can be either 1 or O is called a Boolean
variable.

AND, OR, and NOT are the basic Boolean operations.

We can express Boolean functions with either an expression or a
truth table.

Every Boolean expression can be converted to a circuit.

Now, we'll look at how Boolean algebra can help simplify
expressions, which in turn will lead to simpler circuits.

CS231 Boolean Algebra 3

Boolean Algebra

Last time we talked about Boolean functions, Boolean expressions, and
truth tables.

Today we'll learn how to how use Boolean algebra to simplify Booleans
expressions.

Last time, we saw this expression and converted it o a circuit:

(x +y)z+ X

Can we make this circuit “better”?

*Cheaper: fewer gates
v Faster: fewer delays from inputs to
outputs

X— X+y' ;
N (Y2
. z—] / D(}{ +y)z + X'

x| o

June 11, 2002 ©2000-2002 Howard Huang

Expression simplification

Normal mathematical expressions can be simplified using the laws of
algebra

For binary systems, we can use Boolean algebra, which is superficially
similar to regular algebra

There are many differences, due to
= having only two values (O and 1) o work with
= having a complement operation
- the OR operation is not the same as addition

CS231 Boolean Algebra

Formal definition of Boolean algebra

* A Boolean algebra requires

- A set of elements B, which needs at /east two elements (0 and 1)
- Two binary (fwo-argument) operations OR and AND

= A unary (one-argument) operation NOT
- The axioms below must always be true (textbook, p. 42)

* The magenta axioms deal with the complement operation
* Blue axioms (especially 15) are different from reqgular algebra

1. x+0=x 2. xel=x

3. x+1=1 4. xe0=0

5. Xx+x=x 6. X ex=x

7. x+x =1 8. xex'=0

9. (x') =x
10 x+y=y+x 11. xy =yx Commutative
12. x+(y+2z)=(x+y)+z 13. x(yz) = (xy)z Associative
14, x(y + z) = xy + Xz 15. x+yz=(x+y)(x+z) Distributive
16. (x +y) = XY 17. (xy) =x' +Yy' DeMorgan's

CS231 Boolean Algebra

Comments on the axioms

* The associative laws show that there is no ambiguity about a term such
as X +y + z or Xyz, so we can intfroduce multiple-input primitive gates:

X— X
¥y — —xy2 y— —X+y+2
z— z

* The left and right columns of axioms are duals
- exchange all ANDs with ORs, and Os with 1s
* The dual of anyequation is always true

1. x+0:=x 2. xel=x

3. x+1=1 4. xe0=0

5, x+x=x 6. x®x=x

7. x+x' =1 8. xex'=0

9. (x') =x
10 x+y=y+x 11. xy =yx Commutative
12. x+(y+2z)=(x+y)+z 13. x(yz) = (xy)z Associative
14, x(y + z) = xy + xz 15. x+yz=(x+y)(x+z) Distributive
16. (x +y) = XY 17. (xy) =x'+Y DeMorgan's

CS231 Boolean Algebra

Are these axioms for real?

* We can show that these axioms are valid, given the definitions of AND,
OR and NOT

X y|xy X y|x+y x | x
O 0]0 O 0| O 0] 1
O 110 O 1] 1 110
1 010 1 Of 1
1 111 1 11 1

* The first 11 axioms are easy to see from these truth tables alone. For
example, x + X' = 1 because of the middle two lines below (where y = x')

X y|x+y
O 0] O
O 1] 1
1 0] 1
1 1] 1

CS231 Boolean Algebra 8

Proving the rest of the axioms

* We can make up truth tables to prove (both parts of) DeMorgan's law
* For (x +y) = x'¥', we can make truth tables for (x +y) and for x'y'

X ylx+y (x+y) X y[x y Xy
0 ol o 1 0o ol1 1 1
0 1| 1 0 0 1|1 0 O
1 o 1 0 1 0lo 1 O
1 1| 1 0 1 1/0 0 O

* Ineach table, the columns on the left (x and y) are the inputs. The
columns on the right are outputs.

* Inthis case, we only care about the columns in blue. The other
“outputs” are just to help us find the blue columns.

* Since both of the columns in blue are the same, this shows that (x +y)
and x'y' are equivalent

CS231 Boolean Algebra

Simplification with axioms

* We can now start doing some simplifications
X'y' + xyz + X'y
=X'(y' +y) + xyz [Distributive; Xy' + X'y = X'(y' +vy)]
= x'e1 + xyz [Axiom 7:y' +y =1]
= X'+ Xyz [Axiom 2; x'e1= X']
= (X' + x)(x' +yz) [Distributive]
=1e(x' +yz) [Axiom 7, x' + x=1]

=X +yz [Axiom 2]
1. x+0:=x 2. xel=x
3. x+1=1 4. xe0=0
5, x+x=x 6. Xex=X
7. x+x' =1 8. xex'=0
9. (x') =x
10. x+y=y+x 11. xy =yx Commutative
12. x+(y+2z)=(x+y)+z 13. x(yz) = (xy)z Associative
14, x(y + z) = xy + xz 15. x+yz=(x+y)(x+z) Distributive
16. (x +y) = XY 17. (xy) =x'+Y DeMorgan's

CS231 Boolean Algebra 10

Let's compare the resulting circuits

* Here are two
different but
eguivalent circuits.

* Ingeneral the one
with fewer gates is
"better”:

- It costs less to
build

= It requires less
power

= But we had to
do some work
to find the
second form

Y ———

. D—WZ— Y +xyz + X'y
2

Y y
dEms

X > X' +yz

CS231 Boolean Algebra 11

Some more laws

Here are some more useful laws. Notice the duals again!

1. x+xy=x
2. Xy+Xxy =X
3. X+Xy=X+y

4. x(x+y)=x
5. (x+y)x+y)=x
6. x(x' +y)=xy

Xy +XZ+yZ=Xy+XZ

(X +Y)X +2)(y +Z) = (X + Y)(X + Z)

We can prove these laws by either

= Making truth tables:

- Using the axioms:

X y|lx xy x+Xy X y|x+y
O O O 0| O
o 1 0O 1 1
1 O 1 O 1
1 1 1 1 1
X+ Xy =(x+x)x+y) [Distributive]
=le(x+y) [x+x' =1]
=X +Y [Axiom 2]
12

CS231 Boolean Algebra

The complement of a function

* The complement of a function always outputs O where the original
function outputted 1, and 1 where the original produced O.

* Inatruth table, we can just exchange Os and 1s in the output column(s)

f(x.y.z) = x(y'z' +yz)

x y z|f(xy.z) x y z|f(xy.z)
O 0 O 1 O 0 O 0
O 0 1 1 O 0 1 0
O 1 O 1 O 1 O 0
O 1 1 1 » O 1 1 0
1 0 O 0 1 0 O 1
1 0 1 0 1 0 1 1
1 1 O 1 1 1 O 0
1 1 1 0 1 1 1 1

CS231 Boolean Algebra 13

Complementing a function algebraically

* You can use DeMorgan's law to keep "pushing” the complements inwards

f(x.y,z) = x(y'z' +yz)

f'(xy,z) =(x(yz +yz)) [complement both sides]
=X +(y'z +yz) [because (xy) = x' +y']
=x'+(yZ) (yz) [because (x +y)=x"y']
=x'+(y+z)(y +Z) [because (xy) =x +Yy', twice]

* You can also take the dual of the function, and then complement each
literal

- If f(xy,z) = x(y'z +yz)..

= ..the dual of fis x+ (y' + Z')(y + 2)..

- ..then complementing each literal gives x' + (y + z)(y' + Z)...
- .sof(xyz)=x+(y+z)y +Z2)

CS231 Boolean Algebra 14

Summary so far

* So far:

= A bunch of Boolean algebra trickery for simplifying expressions and
circuits

- The algebra guarantees us that the simplified circuit is eqguivalent
to the original one

* Next:
= Introducing some standard forms and terminology
= An alternative simplification method

- We'll start using all this stuff to build and analyze bigger, more
useful, circuits

CS231 Boolean Algebra 15

Simplify the expression

bclicker.

* (x+y)(x+y) + X'yz

- A X + Xy +y X + X'yz

-B:0

-Cix+yz

-D: x + Xyz

1. x+xy=x 4. x(x+y)=x

2. Xy+Xy =X 5. (x+y)x+y)=x
3. X+Xyz=X+y 6. x(x' +y)=xy

Xy +XZ+Yyz=Xy+Xz (X +y)(X +z)(y+z)=(x+y)x +z)

16

SIMPLIFY THE EXPRESSION

iclicker.
* ab'c + a'bc'+ b(a'c'+a'(a+c"))’
A: b+ac
B: b+ba+ca
C: ca+cb+ba+bc’
D: abc
1. x+xy=x 4. x(x+y)=x
2. Xy+Xy =X 5. (x+y)x+y)=x
3. X+Xyz=X+y 6. x(x' +y)=xy
Xy +XZ+Yyz=Xy+Xz (X +y)(X +z)(y+z)= (x+y)x +z)

CS231 Boolean Algebra 17

