Boolean Algebra

Circuit analysis summary

- After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does.
- You can easily convert between expressions and truth tables.

Find the circuit's inputs and outputs

Find a Boolean expression for the circuit

Boolean Functions summary

- We can interpret high or low voltage as representing true or false.
- A variable whose value can be either 1 or 0 is called a Boolean variable.
- AND, OR, and NOT are the basic Boolean operations.
- We can express Boolean functions with either an expression or a truth table.
- Every Boolean expression can be converted to a circuit.
- Now, we'll look at how Boolean algebra can help simplify expressions, which in turn will lead to simpler circuits.

Boolean Algebra

- Last time we talked about Boolean functions, Boolean expressions, and truth tables.
- Today we'll learn how to how use Boolean algebra to simplify Booleans expressions.
- Last time, we saw this expression and converted it to a circuit:

Expression simplification

- Normal mathematical expressions can be simplified using the laws of algebra
- For binary systems, we can use Boolean algebra, which is superficially similar to regular algebra
- There are many differences, due to
- having only two values (0 and 1) to work with
- having a complement operation
- the OR operation is not the same as addition

Formal definition of Boolean algebra

- A Boolean algebra requires
- A set of elements B, which needs at least two elements (0 and 1)
- Two binary (two-argument) operations OR and AND
- A unary (one-argument) operation NOT
- The axioms below must always be true (textbook, p. 42)
- The magenta axioms deal with the complement operation
- Blue axioms (especially 15) are different from regular algebra

1. $x+0=x$	2. $x \bullet 1=x$	
3. $x+1=1$	4. $x \bullet 0=0$	
5. $x+x=x$	6. $x \bullet x=x$	
7. $x+x^{\prime}=1$	8. $x \bullet x^{\prime}=0$	
9. $\left(x^{\prime}\right)^{\prime}=x$	11. $x y=y x$	Commutative
10. $x+y=y+x$	13. $x(y z)=(x y) z$	Associative
12. $x+(y+z)=(x+y)+z$	15. $x+y z=(x+y)(x+z)$	Distributive
14. $x(y+z)=x y+x z$	17. $(x y)^{\prime}=x^{\prime}+y^{\prime}$	DeMorgan's

Comments on the axioms

- The associative laws show that there is no ambiguity about a term such as $x+y+z$ or $x y z$, so we can introduce multiple-input primitive gates:

- The left and right columns of axioms are duals
- exchange all ANDs with ORs, and Os with 1s
- The dual of any equation is always true

1. $x+0=x$	2. $x \bullet 1=x$	
3. $x+1=1$	4. $x \bullet 0=0$	
5. $x+x=x$	6. $x \bullet x=x$	
7. $x+x^{\prime}=1$	8. $x \bullet x^{\prime}=0$	
9. $\left(x^{\prime}\right)^{\prime}=x$		
10. $x+y=y+x$	11. $x y=y x$	Commutative
12. $x+(y+z)=(x+y)+z$	13. $x(y z)=(x y) z$	Associative
14. $x(y+z)=x y+x z$	15. $x+y z=(x+y)(x+z)$	Distributive
16. $(x+y)^{\prime}=x^{\prime} y^{\prime}$	17. $(x y)^{\prime}=x^{\prime}+y^{\prime}$	DeMorgan's

Are these axioms for real?

- We can show that these axioms are valid, given the definitions of AND, OR and NOT

x	y	$x y$
0	0	0
0	1	0
1	0	0
1	1	1

x	y	$x+y$
0	0	0
0	1	1
1	0	1
1	1	1

x	x^{\prime}
0	1
1	0

- The first 11 axioms are easy to see from these truth tables alone. For example, $x+x^{\prime}=1$ because of the middle two lines below (where $y=x^{\prime}$)

x	y	$x+y$
0	0	0
0	1	1
1	0	1
1	1	1

Proving the rest of the axioms

- We can make up truth tables to prove (both parts of) DeMorgan's law
- For $(x+y)^{\prime}=x^{\prime} y^{\prime}$, we can make truth tables for $(x+y)^{\prime}$ and for $x^{\prime} y^{\prime}$

x	y	$x+y$	$(x+y)^{\prime}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x	y	x^{\prime}	y^{\prime}	$x^{\prime} y^{\prime}$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

- In each table, the columns on the left (x and y) are the inputs. The columns on the right are outputs.
- In this case, we only care about the columns in blue. The other "outputs" are just to help us find the blue columns.
- Since both of the columns in blue are the same, this shows that $(x+y)^{\prime}$ and $x^{\prime} y$ ' are equivalent

Simplification with axioms

- We can now start doing some simplifications

$$
\begin{aligned}
x^{\prime} y^{\prime} & +x y z+x^{\prime} y & & \\
& =x^{\prime}\left(y^{\prime}+y\right)+x y z & & {\left[\text { Distributive; } x^{\prime} y^{\prime}+x^{\prime} y=x^{\prime}\left(y^{\prime}+y\right)\right] } \\
& =x^{\prime} 1+x y z & & {[\text { Axiom 7; } 1 \text { y }+y=1] } \\
& =x^{\prime}+x y z & & {\left[\text { Axiom 2; } x^{\prime} \cdot 1=x^{\prime}\right] } \\
& =\left(x^{\prime}+x\right)\left(x^{\prime}+y z\right) & & \text { [Distributive] } \\
& =1 \bullet\left(x^{\prime}+y z\right) & & \text { [Axiom 7; } \left.x^{\prime}+x=1\right] \\
& =x^{\prime}+y z & & \text { Axiom 2] }
\end{aligned}
$$

1. $x+0=x$	2. $x \bullet 1=x$	
3. $x+1=1$	4. $x \bullet 0=0$	
5. $x+x=x$	6. $x \bullet x=x$	
7. $x+x^{\prime}=1$	8. $x \bullet x^{\prime}=0$	
9. $\left(x^{\prime}\right)^{\prime}=x$		
10. $x+y=y+x$	11. $x y=y x$	Commutative
12. $x+(y+z)=(x+y)+z$	13. $x(y z)=(x y) z$	Associative
14. $x(y+z)=x y+x z$	15. $x+y z=(x+y)(x+z)$	Distributive
16. $(x+y)^{\prime}=x^{\prime} y^{\prime}$	17. $(x y)^{\prime}=x^{\prime}+y^{\prime}$	DeMorgan's

Let's compare the resulting circuits

- Here are two different but equivalent circuits.
- In general the one with fewer gates is "better":
- It costs less to build
- It requires less power
- But we had to do some work to find the second form

Some more laws

- Here are some more useful laws. Notice the duals again!

| 1. $\quad x+x y=x$ | 4. $\quad x(x+y)=x$ |
| :--- | :--- | :--- |
| 2. $\quad x y+x y^{\prime}=x$ | 5. $\quad(x+y)\left(x+y^{\prime}\right)=x$ |
| 3. $\quad x+x^{\prime} y=x+y$ | 6. $\quad x\left(x^{\prime}+y\right)=x y$ |
| $x y+x^{\prime} z+y z=x y+x^{\prime} z$ | $(x+y)\left(x^{\prime}+z\right)(y+z)=(x+y)\left(x^{\prime}+z\right)$ |

- We can prove these laws by either
- Making truth tables:

x	y	x	$x^{\prime} y$	$x+x^{\prime} y$					
0	0								
0	1								
1	0								
1	1				$	$	x	y	$x+y$
:---:	:---:	:---:							
0	0	0							
0	1	1							
1	0	1							
1	1	1							

- Using the axioms:

$$
\begin{aligned}
x+x^{\prime} y & =\left(x+x^{\prime}\right)(x+y) & & {[\text { Distributive }] } \\
& =1 \bullet(x+y) & & {\left[x+x^{\prime}=1\right] } \\
& =x+y & & {[\text { Axiom 2 }] }
\end{aligned}
$$

The complement of a function

- The complement of a function always outputs 0 where the original function outputted 1, and 1 where the original produced 0.
- In a truth table, we can just exchange $0 s$ and $1 s$ in the output column(s)

$$
f(x, y, z)=x\left(y^{\prime} z^{\prime}+y z\right)
$$

x	y	z	$f(x, y, z)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

x	y	z	$f^{\prime}(x, y, z)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Complementing a function algebraically

- You can use DeMorgan's law to keep "pushing" the complements inwards

$$
\begin{aligned}
f(x, y, z) & =x\left(y^{\prime} z^{\prime}+y z\right) & & \\
f^{\prime}(x, y, z) & =\left(x\left(y^{\prime} z^{\prime}+y z\right)\right)^{\prime} & & {[\text { complement both sides }] } \\
& =x^{\prime}+\left(y^{\prime} z^{\prime}+y z\right)^{\prime} & & {\left[\text { because }(x y)^{\prime}=x^{\prime}+y^{\prime}\right] } \\
& =x^{\prime}+\left(y^{\prime} z^{\prime}\right)^{\prime}(y z)^{\prime} & & {\left[\text { because }(x+y)^{\prime}=x^{\prime} y^{\prime}\right] } \\
& =x^{\prime}+(y+z)\left(y^{\prime}+z^{\prime}\right) & & {\left[\text { because }(x y)^{\prime}=x^{\prime}+y^{\prime}, \text { twice }\right] }
\end{aligned}
$$

- You can also take the dual of the function, and then complement each literal
- If $f(x, y, z)=x\left(y^{\prime} z^{\prime}+y z\right)$...
- ...the dual of f is $x+\left(y^{\prime}+z^{\prime}\right)(y+z)$...
- ...then complementing each literal gives $x^{\prime}+(y+z)\left(y^{\prime}+z^{\prime}\right)$...
- ...so $f^{\prime}(x, y, z)=x^{\prime}+(y+z)\left(y^{\prime}+z^{\prime}\right)$

Summary so far

- So far:
- A bunch of Boolean algebra trickery for simplifying expressions and circuits
- The algebra guarantees us that the simplified circuit is equivalent to the original one
- Next:
- Introducing some standard forms and terminology
- An alternative simplification method
- We'll start using all this stuff to build and analyze bigger, more useful, circuits

Simplify the expression

is clicker.

- $\left(x+y^{\prime}\right)(x+y)+x^{\prime} y z$
$-A: x+x y+y^{\prime} x+x^{\prime} y z$
- B: 0
- $C: x+y z$
- D: $x+x^{\prime} y z$

| 1. $\quad x+x y=x$ | 4. $\quad x(x+y)=x$ |
| :--- | :--- | :--- |
| 2. $x y+x y^{\prime}=x$ | 5. $\quad(x+y)\left(x+y^{\prime}\right)=x$ |
| 3. $x+x^{\prime} y=x+y$ | 6. $x\left(x^{\prime}+y\right)=x y$ |
| $x y+x^{\prime} z+y z=x y+x^{\prime} z$ | $(x+y)\left(x^{\prime}+z\right)(y+z)=(x+y)\left(x^{\prime}+z\right)$ |

islicker.

- $a b^{\prime} c+a^{\prime} b c^{\prime}+b\left(a^{\prime} c^{\prime}+a^{\prime}\left(a+c^{\prime}\right)\right)^{\prime}$

A: $b+a c$
B: $b+b a+c a$
C: $c a+c b+b a+b c^{\prime}$
D: $a b c$

| 1. $\quad x+x y=x$ | 4. $\quad x(x+y)=x$ |
| :--- | :--- | :--- |
| 2. $\quad x y+x y^{\prime}=x$ | 5. $\quad(x+y)\left(x+y^{\prime}\right)=x$ |
| 3. $\quad x+x^{\prime} y=x+y$ | 6. $\quad x\left(x^{\prime}+y\right)=x y$ |
| $x y+x^{\prime} z+y z=x y+x^{\prime} z$ | $(x+y)\left(x^{\prime}+z\right)(y+z)=(x+y)\left(x^{\prime}+z\right)$ |

