
Boolean AlgebraBoolean Algebra

Circuit analysis summary

• After finding the circuit inputs and outputs, you can come up with
either an expression or a truth table to describe what the circuit does.

• You can easily convert between expressions and truth tables.

Find the circuit’s
inputs and outputs

CS231 Boolean Algebra 2

Find a Boolean
expression

for the circuit

Find a truth table
for the circuit

Boolean Functions summary

• We can interpret high or low voltage as representing true or

false.

• A variable whose value can be either 1 or 0 is called a Boolean

variable.

• AND, OR, and NOT are the basic Boolean operations.

• We can express Boolean functions with either an expression or a

CS231 Boolean Algebra 3

•
truth table.

• Every Boolean expression can be converted to a circuit.

• Now, we’ll look at how Boolean algebra can help simplify

expressions, which in turn will lead to simpler circuits.

Boolean Algebra

• Last time we talked about Boolean functions, Boolean expressions, and
truth tables.

• Today we’ll learn how to how use Boolean algebra to simplify Booleans
expressions.

• Last time, we saw this expression and converted it to a circuit:

(x + y’)z + x’

Can we make this circuit “better”?
Cheaper: fewer gates

June 11, 2002 ©2000-2002 Howard Huang4

Can we make this circuit “better”?
•Cheaper: fewer gates
•Faster: fewer delays from inputs to
outputs

Expression simplification

• Normal mathematical expressions can be simplified using the laws of
algebra

• For binary systems, we can use Boolean algebra, which is superficially
similar to regular algebra

• There are many differences, due to

– having only two values (0 and 1) to work with

– having a complement operation

– the OR operation is not the same as addition

CS231 Boolean Algebra 5

Formal definition of Boolean algebra

• A Boolean algebra requires

– A set of elements B, which needs at least two elements (0 and 1)
– Two binary (two-argument) operations OR and AND

– A unary (one-argument) operation NOT

– The axioms below must always be true (textbook, p. 42)

• The magenta axioms deal with the complement operation
• Blue axioms (especially 15) are different from regular algebra

CS231 Boolean Algebra 6

1. x + 0 = x 2. x • 1 = x

3. x + 1 = 1 4. x • 0 = 0

5. x + x = x 6. x • x = x

7. x + x’ = 1 8. x • x’ = 0

9. (x’)’ = x

10. x + y = y + x 11. xy = yx Commutative

12. x + (y + z) = (x + y) + z 13. x(yz) = (xy)z Associative

14. x(y + z) = xy + xz 15. x + yz = (x + y)(x + z) Distributive

16. (x + y)’ = x’y’ 17. (xy)’ = x’ + y’ DeMorgan’s

Comments on the axioms

• The associative laws show that there is no ambiguity about a term such
as x + y + z or xyz, so we can introduce multiple-input primitive gates:

• The left and right columns of axioms are duals

– exchange all ANDs with ORs, and 0s with 1s

• The dual of any equation is always true

CS231 Boolean Algebra 7

1. x + 0 = x 2. x • 1 = x

3. x + 1 = 1 4. x • 0 = 0

5. x + x = x 6. x • x = x

7. x + x’ = 1 8. x • x’ = 0

9. (x’)’ = x

10. x + y = y + x 11. xy = yx Commutative

12. x + (y + z) = (x + y) + z 13. x(yz) = (xy)z Associative

14. x(y + z) = xy + xz 15. x + yz = (x + y)(x + z) Distributive

16. (x + y)’ = x’y’ 17. (xy)’ = x’ + y’ DeMorgan’s

Are these axioms for real?

• We can show that these axioms are valid, given the definitions of AND,
OR and NOT

•

x y xy

0 0 0

0 1 0

1 0 0

1 1 1

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

x x’

0 1

1 0

CS231 Boolean Algebra 8

• The first 11 axioms are easy to see from these truth tables alone. For
example, x + x’ = 1 because of the middle two lines below (where y = x’)

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

Proving the rest of the axioms

• We can make up truth tables to prove (both parts of) DeMorgan’s law

• For (x + y)’ = x’y’, we can make truth tables for (x + y)’ and for x’y’

x y x + y (x + y)’ x y x’ y’ x’y’

0 0 0 1 0 0 1 1 1

0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 0 1 0

1 1 1 0 1 1 0 0 0

CS231 Boolean Algebra 9

• In each table, the columns on the left (x and y) are the inputs. The
columns on the right are outputs.

• In this case, we only care about the columns in blue. The other
“outputs” are just to help us find the blue columns.

• Since both of the columns in blue are the same, this shows that (x + y)’
and x’y’ are equivalent

Simplification with axioms

• We can now start doing some simplifications

x’y’ + xyz + x’y
= x’(y’ + y) + xyz [Distributive; x’y’ + x’y = x’(y’ + y)]
= x’•1 + xyz [Axiom 7; y’ + y = 1]
= x’ + xyz [Axiom 2; x’•1 = x’]
= (x’ + x)(x’ + yz) [Distributive]
= 1 • (x’ + yz) [Axiom 7; x’ + x = 1]
= x’ + yz [Axiom 2]

CS231 Boolean Algebra 10

1. x + 0 = x 2. x • 1 = x

3. x + 1 = 1 4. x • 0 = 0

5. x + x = x 6. x • x = x

7. x + x’ = 1 8. x • x’ = 0

9. (x’)’ = x

10. x + y = y + x 11. xy = yx Commutative

12. x + (y + z) = (x + y) + z 13. x(yz) = (xy)z Associative

14. x(y + z) = xy + xz 15. x + yz = (x + y)(x + z) Distributive

16. (x + y)’ = x’y’ 17. (xy)’ = x’ + y’ DeMorgan’s

Let’s compare the resulting circuits

• Here are two
different but
equivalent circuits.

• In general the one
with fewer gates is
“better”:

– It costs less to
build

– It requires less

CS231 Boolean Algebra 11

– It requires less
power

– But we had to
do some work
to find the
second form

Some more laws

• Here are some more useful laws. Notice the duals again!

• We can prove these laws by either

– Making truth tables:

1. x + xy = x 4. x(x + y) = x

2. xy + xy’ = x 5. (x + y)(x + y’) = x

3. x + x’y = x + y 6. x(x’ + y) = xy

xy + x’z + yz = xy + x’z (x + y)(x’ + z)(y + z) = (x + y)(x’ + z)

CS231 Boolean Algebra 12

– Making truth tables:

– Using the axioms: x + x’y = (x + x’)(x + y) [Distributive]
= 1 • (x + y) [x + x’ = 1]
= x + y [Axiom 2]

The complement of a function

• The complement of a function always outputs 0 where the original
function outputted 1, and 1 where the original produced 0.

• In a truth table, we can just exchange 0s and 1s in the output column(s)

f(x,y,z) = x(y’z’ + yz)

x y z f(x,y,z)

0 0 0 1

x y z f’(x,y,z)

0 0 0 0

CS231 Boolean Algebra 13

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

Complementing a function algebraically

• You can use DeMorgan’s law to keep “pushing” the complements inwards

• You can also take the dual of the function, and then complement each
literal

f(x,y,z) = x(y’z’ + yz)

f’(x,y,z) = (x(y’z’ + yz))’ [complement both sides]
= x’ + (y’z’ + yz)’ [because (xy)’ = x’ + y’]
= x’ + (y’z’)’ (yz)’ [because (x + y)’ = x’ y’]
= x’ + (y + z)(y’ + z’) [because (xy)’ = x’ + y’, twice]

CS231 Boolean Algebra 14

literal

– If f(x,y,z) = x(y’z’ + yz)…

– …the dual of f is x + (y’ + z’)(y + z)…

– …then complementing each literal gives x’ + (y + z)(y’ + z’)…

– …so f’(x,y,z) = x’ + (y + z)(y’ + z’)

Summary so far

• So far:

– A bunch of Boolean algebra trickery for simplifying expressions and
circuits

– The algebra guarantees us that the simplified circuit is equivalent
to the original one

• Next:

– Introducing some standard forms and terminology

– An alternative simplification method

CS231 Boolean Algebra 15

– An alternative simplification method

– We’ll start using all this stuff to build and analyze bigger, more
useful, circuits

Simplify the expression

• (x+y’)(x+y) + x’yz
– A: x + xy +y’x + x’yz
– B: 0
– C: x + yz– C: x + yz
– D: x + x’yz

16

1. x + xy = x 4. x(x + y) = x

2. xy + xy’ = x 5. (x + y)(x + y’) = x

3. x + x’y = x + y 6. x(x’ + y) = xy

xy + x’z + yz = xy + x’z (x + y)(x’ + z)(y + z) = (x + y)(x’ + z)

• ab’c + a’bc’+ b(a’c’+a’(a+c’))’
A: b+ac
B: b+ba+ca
C: ca+cb+ba+bc’

SIMPLIFY THE EXPRESSION

CS231 Boolean Algebra 17

C: ca+cb+ba+bc’
D: abc

1. x + xy = x 4. x(x + y) = x

2. xy + xy’ = x 5. (x + y)(x + y’) = x

3. x + x’y = x + y 6. x(x’ + y) = xy

xy + x’z + yz = xy + x’z (x + y)(x’ + z)(y + z) = (x + y)(x’ + z)

