Digital Design

3. NOT (complement)

Binary logic consists of binary variables and logical operations.

2. OR

3 Basic Logical Operations

1. AND

x AND
$$y = z$$
 $x \cdot y = z$ $xy = z$ that is, $z = 1$ if and only if (iff) $x = 1$ and $y = 1$ $x \cdot OR y = z$ $x + y = z$

that is,
$$z = 1$$
 if $x = 1$ or if $y = 1$ or if both $x = 1$ and $y = 1$ (i.e. $z = 0$ iff $x = 0$ and $y = 0$)

NOT
$$x = z$$

that is, z is what x is not

Truth Table:

		x AND y	x OR y		NOT x
X	y	$\mathbf{x} \cdot \mathbf{y}$	x + y	X	х,
0	0	0	0	0	1
0	1	0	1	1	0
1	0	0	1		
1	1	1	1		

Other Logical Operators:

Functions	Symbol	Name	Remarks
F0 = 0		null	
F1= xy	x • y	and	
F2 = xy	x/y	inhibition	x but not y
F3 = x		transfer	
F4 = x'y	y/x	inhibition	y but not x
F5 = y		transfer	
F6 = xy' + x'y	$x \oplus y$	xor	x or y but not both
F7 = x + y	x + y	or	
F8 = (x + y)'	$x \downarrow y$	nor	
F9 = xy + x'y'	x 🕲 y	equivalence*	x equals y
F10 = y	y'	complement	
F11 = x + y'	$x \subset y$	implication	if y then x
F12 = x	x'	complement	
F13 = x' + y	$x\supset y$	implication	
F14 = (xy)	x↑y	nand	
F15 = 1	•	identity	

Axiomatic Definition of Boolean Algebra

- 1. Closure
 - a. Closure with respect to (wrt) OR (+)
 - b. Closure with respect to AND (•)
- 2. Identity
 - a. Identity element wrt to OR : 0
 - b. Identity element wrt to AND : 1
- 3. Commutative Property
 - a. Commutative Property wrt to OR : x + y = y + xb. Commutative Property wrt to AND : $x \cdot y = y \cdot x$
- 4. Distributive Property
 - 5. $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) + (\mathbf{x} \cdot \mathbf{z})$
 - 6. $x + (y \cdot z) = (x + y)(x + z)$
- 5. Existence of Complement
 - 6. x + x' = 1
 - 7. $x \cdot x' = 0$

Precedence:

- (1) Parentheses
- (2) NOT (3) AND
- (4) OR

Other Properties:

- 1. a. x + x = x b. $x \cdot x = x$
- 2. a. x + 1 = 1 b. $x \cdot 0 = 0$
- 3. Involution: (x')' = x
- 4. **Associative Property**
 - a. x + (y + z) = (x + y) + z
 - b. $\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$
- 5. DeMorgan
 - a. $(x + y)' = x' \cdot y'$
 - b. $(x \cdot y)' = x' + y'$

6. Absorption

a.
$$x + x \cdot y = x$$

b. $x \cdot (x + y) = x$

c.
$$\mathbf{x} \cdot \mathbf{y} + \mathbf{x}' \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{y} + \mathbf{x}' \cdot \mathbf{z}$$

d.
$$(x + y)(x' + z)(y + z) = (x + y)(x' + z)$$

7. Duality Principle

"Every algebraic expression deducible from the postulates of Boolean Algebra remains valid if the operations and identity elements are interchanged."

- + replaced by •
- replaced by +
- 0 replaced by 1
- 1 replaced by 0

examples:

1.
$$xy + xy' = x(y + y') = x(1) = x$$

2.
$$(x+y)(x+y') = xx + xy' + xy$$

3.
$$xyz + x'y + xyz' = xy + x'y = y$$

4.
$$x + x'y = x + xy + x'y = x + y(x + x') = x + y$$

5.
$$xz + x'yz = z(x + x'y) = z(x + y) = xz + yz$$

6.
$$(x + y)'(x' + y')' = (x'y')(xy) = 0$$

7.
$$wyz' + wyz + xy = y(wz' + wz) + xy = yw + xy$$

Simplify the following boolean expressions:

- 1. $xy + (xy)^2z$
- $2. \quad wx + xy' + yz + xz'$

3.
$$(x + y + w)(w + x' + y)(y' + z)(w + z)$$

- 4. A student consults his adviser and finds that he may enroll in Electronics only if he satisfies the following conditions:
 - 5. He has taken E&M and a Physics major in good standing OR
 - 6. He has taken E&M and a Physics major and has departmental approval OR
 - 7. He has not taken E&M and is a Physics major on probation OR
 - 8. He is in good standing and has departmental approval OR
 - 9. He is a Physics major and does not have departmental approval.

Solutions:

y = student is in good standing z =student has departmental approval

F = student is eligible to take the course

$$F = wxy + wxz + w'xy' + yz + xz'$$

$$= wxy + w'xy' + yz + x(w + z')$$

$$= wx(y + 1) + w'xy' + yz + xz'$$

$$= wx + w'xy' + yz + xz'$$

$$= x(w + w'y') + yz + xz'$$

$$= x(w + y') + yz + xz'$$

$$= wx + xy' + yz + xz'$$

$$= wx + xy' + yz + (xz) + xz' \text{ (rev. abs)}$$

$$= wx + xy' + yz + x$$

$$= x + yz \text{ (absorption) ans.}$$

Boolean Function

F = binary variables with AND OR NOT ()

Implementation of Boolean functions with gates.

Canonical & Standard Forms:

maxterm: if 1 variable is primed, if 1 variable is unprimed (look at 0's).

	Minterms		Maxterms	
xyz	term	designation	term	designation
000	x'y'z'	m_0	x + y + z	\mathbf{M}_0
001	x'y'z	m_1	x + y + z	\mathbf{M}_1
010	x'yz'	m_2	x + y' + z	M_2
011	x'yz	m_3	x + y' + z'	M_3
100	xy'z'	m_4	x' + y + z	M_4
101	xy'z	m ₅	x' + y + z'	M_5
110	xyz'	m_6	x' + y' + z	M_6
111	xyz	m_7	x' + y' + z'	M_7

Example application of minterms & maxterms:

X	y	f1	f2
0	0	0	1
0	1	0	0
1	0	0	0
1	1	1	1

$$f1 = xy = m_3$$
 (looking at 1's) OR
 $f1 = (x + y)(x' + y)(x + y') = M_0 M_1 M_2$ (looking at 0's)

$$f2 = x'y' + xy = m_0 + m_3$$
 (looking at 1's) OR
 $f2 = (x' + y)(x + y') = M_1 M_2$ (looking at 0's)