Digital Design

Binary logic consists of binary variables and logical operations.

3 Basic Logical Operations

1. AND
2. OR
3. NOT (complement)
x AND $y=z$
$x \cdot y=z$
$x y=z$
that is, $z=1$ if and only if (iff) $x=1$ and $y=1$
x OR $y=z \quad x+y=z$
that is, $z=1$ if $x=1$ or if $y=1$ or if both $x=1$ and $y=1$
(i.e. $z=0$ iff $x=0$ and $y=0$)

NOT $x=z$
that is, z is what x is not
Truth Table:

		x AND y	x OR y		NOT x
\mathbf{x}	y	$\mathbf{x} \cdot \mathrm{y}$	$x+y$	\mathbf{x}	${ }^{\text {' }}$
0	0	0	0	0	1
0	1	0	1	1	0
1	0	0	1		
1	1	1	1		

Other Logical Operators:

Functions	Symbol	Name	Remarks
$\mathrm{F} 0=0$		null	
F1 $=\mathrm{xy}$	$x \cdot y$	and	
F2 $=x y$ '	x/y	inhibition	x but not y
F3 $=\mathrm{x}$		transfer	
F4 $=$ x'y	y / x	inhibition	y but not x
F5 $=\mathrm{y}$		transfer	
F6 = xy' +x ' y	$\mathrm{x} \oplus \mathrm{y}$	xor	x or y but not both
F7 $=\mathrm{x}+\mathrm{y}$	x+y	or	
F8 = (x+y)	$x \downarrow y$	nor	
F9 $=\mathrm{xy}+\mathrm{x}^{\prime} \mathrm{y}^{\prime}$	x © y	equivalence*	x equals y
F10 $=$ y ${ }^{\text {' }}$	y'	complement	
F11 $=\mathrm{x}+\mathrm{y}$,	$\mathrm{x} \subset \mathrm{y}$	implication	if y then x
F12 $=$ x	x'	complement	
F13 $=\mathrm{x}^{\prime}+\mathrm{y}$	$\mathrm{x} \supset \mathrm{y}$	implication	
F14 = (xy)'	$\mathrm{x} \uparrow \mathrm{y}$	nand	
F15 = 1		identity	

Axiomatic Definition of Boolean Algebra

1. Closure
a. Closure with respect to (wrt) OR (+)
b. Closure with respect to AND (•)
2. Identity
a. Identity element wrt to OR : 0
b. Identity element wrt to AND : 1
3. Commutative Property
a. Commutative Property wrt to OR : $x+y=y+x$
b. Commutative Property wrt to AND : $x \cdot y=y \cdot x$
4. Distributive Property
5. $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
6. $x+(y \cdot z)=(x+y)(x+z)$
7. Existence of Complement
8. $x+x^{\prime}=1$
9. $\mathrm{x} \cdot \mathrm{x}^{\prime}=0$

Precedence:

(1) Parentheses
(2) NOT
(3) AND
(4) OR

Other Properties:

1.

a. $\mathrm{x}+\mathrm{x}=\mathrm{x}$
b. $x \cdot x=x$
2.
a. $\mathrm{x}+1=1$
b. $\mathrm{x} \cdot 0=0$
3. Involution: $\left(x^{\prime}\right)^{\prime}=x$
4. Associative Property
a. $x+(y+z)=(x+y)+z$
b. $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
5. DeMorgan
a. $(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}$
b. $(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}$
6. Absorption
a. $x+x \cdot y=x$
b. $\quad x \cdot(x+y)=x$
c. $x \cdot y+x^{\prime} \cdot z+y \cdot z=x \cdot y+x^{\prime} \cdot z$
d. $(x+y)\left(x^{\prime}+z\right)(y+z)=(x+y)\left(x^{\prime}+z\right)$
7. Duality Principle
"Every algebraic expression deducible from the postulates of Boolean Algebra remains valid if the operations and identity elements are interchanged."

+ replaced by •
- replaced by +

0 replaced by 1
1 replaced by 0

examples:

1. $x y+x y^{\prime}=x\left(y+y^{\prime}\right)=x(1)=x$
2. $(x+y)\left(x+y{ }^{\prime}\right)=x x+x y^{\prime}+x y$
3. $x y z+x^{\prime} y+x y z \prime=x y+x \prime y=y$
4. $x+x^{\prime} y=x+x y+x^{\prime} y=x+y\left(x+x^{\prime}\right)=x+y$
5. $x z+x \prime y z=z(x+x \prime y)=z(x+y)=x z+y z$
6. $(x+y)^{\prime}\left(x^{\prime}+y^{\prime}\right)^{\prime}=\left(x^{\prime} y^{\prime}\right)(x y)=0$
7. $w y z^{\prime}+w y z+x y=y\left(w z^{\prime}+w z\right)+x y=y w+x y$

Simplify the following boolean expressions:

1. $x y+(x y)^{\prime} z$
2. $w x+x y^{\prime}+y z+x z^{\prime}$
3. $(x+y+w)\left(w+x^{\prime}+y\right)\left(y^{\prime}+z\right)(w+z)$
4. A student consults his adviser and finds that he may enroll in Electronics only if he satisfies the following conditions:
5. He has taken E\&M and a Physics major in good standing OR
6. He has taken E\&M and a Physics major and has deparmental approval OR
7. He has not taken E\&M and is a Physics major on probation OR
8. He is in good standing and has deparmental approval OR
9. He is a Physics major and does not have deparmental approval.

Solutions:

1. $x y+(x y)$ ' $z=x y+z$ (absorption) ans.
2. $w x+x y^{\prime}+y z+x z^{\prime}=w x+x y^{\prime}+y z+x z^{\prime}+x y$ (reverse absorption)

$$
=w x+y z+x z z^{\prime}+x
$$

$$
=x+y z \text { (absorption) ans. }
$$

3. $(x+y+w)\left(w+x^{\prime}+y\right)\left(y^{\prime}+z\right)(w+z)=(w+y)\left(y^{\prime}+z\right)(w+z)=(w+y)\left(y^{\prime}+z\right)$ ans.
4. let $w=$ student has taken $E \& M$
$\mathrm{x}=$ student is a Physics major
$\mathrm{y}=$ student is in good standing
$\mathrm{z}=$ student has deparmental approval
$\mathrm{F}=$ student is eligible to take the course

$$
\begin{aligned}
\mathrm{F} & =w x y+w x z+w^{\prime} x y^{\prime}+y z+x z^{\prime} \\
& =w x y+w^{\prime} x y^{\prime}+y z+x\left(w+z^{\prime}\right) \\
& =w x(y+1)+w^{\prime} x y^{\prime}+y z+x z^{\prime} \\
& =w x+w y^{\prime} y^{\prime}+y z+x z^{\prime} \\
& =x\left(w+w^{\prime} y^{\prime}\right)+y z+x z^{\prime} \\
& =x\left(w+y^{\prime}\right)+y z+x z^{\prime} \\
& =w x+x y^{\prime}+y z+x z^{\prime} \\
& =w x+x y^{\prime}+y z+(x z)+x z^{\prime} \quad \text { (rev. abs) } \\
& =w x+x y^{\prime}+y z+x \\
& =x+y z \text { (absorption) ans. }
\end{aligned}
$$

Boolean Function

F = binary variables with AND OR NOT ()
Implementation of Boolean functions with gates.
Canonical \& Standard Forms:
$\mathrm{x} \rightarrow \mathrm{x}$ or x,
two variables $\mathrm{x} \& \mathrm{y}$ combined with AND:

$$
\mathrm{x}, \mathrm{y} \rightarrow \mathrm{xy}, \mathrm{xy}{ }^{\prime}, \mathrm{x} ’ \mathrm{y}, \mathrm{x} \mathrm{x}^{\prime}: \text { minterms or standard product }
$$

n variables \rightarrow forms 2^{n} minterms
two variables $x \& y$ combined with OR:

$$
x, y \rightarrow x+y, x+y \prime, x \prime+y, x^{\prime}+y^{\prime}: \text { maxterms or standard sum }
$$

n variables \rightarrow forms 2^{n} maxterms
minterm: if 1 variable is unprimed, if 0 variable is primed (look at 1 's).
maxterm: if 1 variable is primed, if 1 variable is unprimed (look at 0 's).

	Minterms		Maxterms	
xyz	term	designation	term	designation
000	x'y'z'	m_{0}	$x+y+z$	M_{0}
001	x'y'z	m_{1}	$x+y+z '$	M_{1}
010	x'yz'	m_{2}	$x+y^{\prime}+\mathrm{z}$	M_{2}
011	x'yz	m_{3}	$x+y^{\prime}+z^{\prime}$	M_{3}
100	xy'z'	m_{4}	$\mathrm{x}^{\prime}+\mathrm{y}+\mathrm{z}$	M_{4}
101	xy'z	m_{5}	$\mathrm{x}^{\prime}+\mathrm{y}+\mathrm{z}^{\prime}$	M_{5}
110	xyz'	m_{6}	$\mathrm{x}^{\prime}+\mathrm{y}^{\prime}+\mathrm{z}$	M_{6}
111	xyz	m_{7}	$x^{\prime}+y^{\prime}+z^{\prime}$	M_{7}

Example application of minterms \& maxterms:

x	y	f 1	f 2
0	0	0	1
0	1	0	0
1	0	0	0
1	1	1	1

$$
\begin{aligned}
& \mathrm{f} 1=\mathrm{xy}=\mathrm{m}_{3} \text { (looking at } 1 \text { 's } \mathrm{s} \quad \text { OR } \\
& \mathrm{f} 1=(\mathrm{x}+\mathrm{y})\left(\mathrm{x}^{\prime}+\mathrm{y}\right)\left(\mathrm{x}+\mathrm{y}^{\prime}\right)=\mathrm{M}_{0} \mathrm{M}_{1} \mathrm{M}_{2} \text { (looking at } 0 \text { 's) } \\
& \left.\mathrm{f} 2=\mathrm{x}^{\prime} \mathrm{y}^{\prime}+\mathrm{xy}=\mathrm{m}_{0}+\mathrm{m}_{3} \text { (looking at } \mathrm{l}^{\prime} \mathrm{s}\right) \quad \text { OR } \\
& \left.\mathrm{f} 2=\left(\mathrm{x}^{\prime}+\mathrm{y}\right)\left(\mathrm{x}+\mathrm{y}^{\prime}\right)=\mathrm{M}_{1} \mathrm{M}_{2} \text { (looking at } 0 \text { 's }\right)
\end{aligned}
$$

