Standard Forms of Expression

Minterms and Maxterms

Standard forms of expressions

- We can write expressions in many ways, but some ways are more useful than others
- A sum of products (SOP) expression contains:
- Only OR (sum) operations at the "outermost" level
- Each term that is summed must be a product of literals

$$
f(x, y, z)=y^{\prime}+x^{\prime} y z^{\prime}+x z
$$

- The advantage is that any sum of products expression can be implemented using a two-level circuit
- literals and their complements at the "Oth" level
- AND gates at the first level
- a single OR gate at the second level
- This diagram uses some shorthands...
- NOT gates are implicit
- literals are reused
- this is not okay in LogicWorks!

Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n variables has 2^{n} minterms (since each variable can appear complemented or not)
- A three-variable function, such as $f(x, y, z)$, has $2^{3}=8$ minterms:

$$
\begin{array}{llll}
x^{\prime} y^{\prime} z^{\prime} & x^{\prime} y^{\prime} z & x^{\prime} y z^{\prime} & x^{\prime} y z \\
x y^{\prime} z^{\prime} & x y z & x y z & x y z
\end{array}
$$

- Each minterm is true for exactly one combination of inputs:

Minterm	Is true when...	Shorthand
$x^{\prime} y^{\prime} z^{\prime}$	$x=0, y=0, z=0$	m_{0}
$x^{\prime} y^{\prime} z$	$x=0, y=0, z=1$	m_{1}
$x^{\prime} y z^{\prime}$	$x=0, y=1, z=0$	m_{2}
$x^{\prime} y z$	$x=0, y=1, z=1$	m_{3}
$x y^{\prime} z^{\prime}$	$x=1, y=0, z=0$	m_{4}
$x y^{\prime} z$	$x=1, y=0, z=1$	m_{5}
$x y z^{\prime}$	$x=1, y=1, z=0$	m_{6}
$x y z$	$x=1, y=1, z=1$	m_{7}

Sum of minterms form

- Every function can be written as a sum of minterms, which is a special kind of sum of products form
- The sum of minterms form for any function is unique
- If you have a truth table for a function, you can write a sum of minterms expression just by picking out the rows of the table where the function output is 1 .

x	y	z	$f(x, y, z)$	$f^{\prime}(x, y, z)$
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

```
\(f=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x^{\prime} y z+x y z^{\prime}\)
    \(=m_{0}+m_{1}+m_{2}+m_{3}+m_{6}\)
    \(=\Sigma m(0,1,2,3,6)\)
\(f^{\prime}=x y^{\prime} z^{\prime}+x y^{\prime} z+x y z\)
    \(=m_{4}+m_{5}+m_{7}\)
    \(=\Sigma m(4,5,7)\)
\(f^{\prime}\) contains all the minterms not in \(f\)
```


The dual idea: products of sums

- Just to keep you on your toes...
- A product of sums (POS) expression contains:
- Only AND (product) operations at the "outermost" level
- Each term must be a sum of literals

$$
f(x, y, z)=y^{\prime}\left(x^{\prime}+y+z^{\prime}\right)(x+z)
$$

- Product of sums expressions can be implemented with two-level circuits
- literals and their complements at the "Oth" level
- OR gates at the first level
- a single AND gate at the second level
- Compare this with sums of products

Maxterms

- A maxterm is a sum of literals, in which each input variable appears exactly once.
- A function with n variables has 2^{n} maxterms
- The maxterms for a three-variable function $f(x, y, z)$:

$$
\begin{array}{llll}
x^{\prime}+y^{\prime}+z^{\prime} & x^{\prime}+y^{\prime}+z & x^{\prime}+y+z^{\prime} & x^{\prime}+y+z \\
x+y^{\prime}+z^{\prime} & x+y^{\prime}+z & x+y+z^{\prime} & x+y+z
\end{array}
$$

- Each maxterm is false for exactly one combination of inputs:

$$
\begin{array}{llc}
\text { Maxterm } & \text { Is false when... } & \text { Shorthand } \\
x+y+z & x=0, y=0, z=0 & M_{0} \\
x+y+z^{\prime} & x=0, y=0, z=1 & M_{1} \\
x+y^{\prime}+z & x=0, y=1, z=0 & M_{2} \\
x+y^{\prime}+z^{\prime} & x=0, y=1, z=1 & M_{3} \\
x^{\prime}+y+z & x=1, y=0, z=0 & M_{4} \\
x^{\prime}+y+z^{\prime} & x=1, y=0, z=1 & M_{5} \\
x^{\prime}+y^{\prime}+z & x=1, y=1, z=0 & M_{6} \\
x^{\prime}+y^{\prime}+z^{\prime} & x=1, y=1, z=1 & M_{7}
\end{array}
$$

Product of maxterms form

- Every function can be written as a unique product of maxterms
- If you have a truth table for a function, you can write a product of maxterms expression by picking out the rows of the table where the function output is 0 . (Be careful if you're writing the actual literals!)

x	y	z	$f(x, y, z)$	$f^{\prime}(x, y, z)$
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

$$
\begin{aligned}
& f=\left(x^{\prime}+y+z\right)\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z^{\prime}\right) \\
&= M_{4} M_{5} M_{7} \\
&= \Pi M(4,5,7) \\
& f^{\prime}=(x+y+z)\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z\right) \\
&\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right) \\
&= M_{0} M_{1} M_{2} M_{3} M_{6} \\
&= \Pi M(0,1,2,3,6) \\
& \\
& f^{\prime} \text { contains all the maxterms not in } f
\end{aligned}
$$

Minterms and maxterms are related

- Any minterm m_{i} is the complement of the corresponding maxterm M_{i}

Minterm	Shorthand	Maxterm	Shorthand
$x^{\prime} y^{\prime} z^{\prime}$	m_{0}	$x+y+z$	M_{0}
$x^{\prime} y^{\prime} z$	m_{1}	$x+y+z^{\prime}$	M_{1}
$x^{\prime} y z^{\prime}$	m_{2}	$x+y^{\prime}+z$	M_{2}
$x^{\prime} y z$	m_{3}	$x+y^{\prime}+z^{\prime}$	M_{3}
$x y^{\prime} z^{\prime}$	m_{4}	$x^{\prime}+y+z$	M_{4}
$x y^{\prime} z$	m_{5}	$x^{\prime}+y+z^{\prime}$	M_{5}
$x y z^{\prime}$	m_{6}	$x^{\prime}+y^{\prime}+z$	M_{6}
$x y z$	m_{7}	$x^{\prime}+y^{\prime}+z^{\prime}$	M_{7}

- For example, $m_{4}^{\prime}=M_{4}$ because $\left(x y^{\prime} z^{\prime}\right)^{\prime}=x^{\prime}+y+z$

Converting between standard forms

- We can convert a sum of minterms to a product of maxterms

fore $=\Sigma m(0,1,2,3,6)$			
and	f^{\prime}	$=\Sigma m(4,5,7)$	
		$=m_{4}+m_{5}+m_{7}$	
complementing		$)^{\prime}=\left(m_{4}+m_{5}+m_{7}\right)^{\prime}$	
so		$\begin{aligned} & =m_{4}^{\prime} m_{5}^{\prime} m_{7}^{\prime} \\ & =M_{4} M_{5} M_{7} \end{aligned}$	[DeMorgan's law] [By the previous page]
		$=\Pi M(4,5,7)$	

- In general, just replace the minterms with maxterms, using maxterm numbers that don't appear in the sum of minterms:

$$
\begin{aligned}
f & =\Sigma m(0,1,2,3,6) \\
& =\Pi M(4,5,7)
\end{aligned}
$$

- The same thing works for converting from a product of maxterms to a sum of minterms

Summary so far

- So far:
- A bunch of Boolean algebra trickery for simplifying expressions and circuits
- The algebra guarantees us that the simplified circuit is equivalent to the original one
- Introducing some standard forms and terminology
- Next:
- An alternative simplification method
- We'll start using all this stuff to build and analyze bigger, more useful, circuits

Product of Sums

inlicker.

- If $f(x, y, z)=$ sum of minterms $(0,1,4,5)$, represent f as a product of maxterms
- A: product of maxterms(2,3)
- B: product of maxterms $(2,3,6,7)$
- C: product of maxterms $(0,1,4,5)$
- D: product of maxterms $(5,6,7)$

Product of Sums

inclicker.

- If $f(x, y, z)=$ sum of minterms $(0,1,4,5)$, represent f^{\prime} as a product of maxterms
- A: product of maxterms(2,3)
- B: product of maxterms $(2,3,6,7)$
- C: product of maxterms $(0,1,4,5)$
- D: product of maxterms $(5,6,7)$

