Standard Forms of Expression

Minterms and Maxterms

## Standard forms of expressions

- We can write expressions in many ways, but some ways are more useful than others
- A sum of products (SOP) expression contains:
  - Only OR (sum) operations at the "outermost" level
  - Each term that is summed must be a product of literals

$$f(x,y,z) = y' + x'yz' + xz$$

- The advantage is that any sum of products expression can be implemented using a two-level circuit
  - literals and their complements at the "Oth" level
  - AND gates at the first level
  - a single OR gate at the second level
- This diagram uses some shorthands...
  - NOT gates are implicit
  - literals are reused
  - this is **not** okay in LogicWorks!



#### **Minterms**

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n variables has 2<sup>n</sup> minterms (since each variable can appear complemented or not)
- A three-variable function, such as f(x,y,z), has  $2^3 = 8$  minterms:

Each minterm is true for exactly one combination of inputs:

| Minterm | Is true when  | Shorthand |
|---------|---------------|-----------|
| x'y'z'  | x=0, y=0, z=0 | $m_o$     |
| x'y'z   | x=0, y=0, z=1 | $m_1$     |
| x'yz'   | x=0, y=1, z=0 | $m_2$     |
| x'yz    | x=0, y=1, z=1 | $m_3$     |
| xy'z'   | x=1, y=0, z=0 | $m_4$     |
| xy'z    | x=1, y=0, z=1 | $m_{5}$   |
| xyz'    | x=1, y=1, z=0 | $m_6$     |
| xyz     | x=1, y=1, z=1 | $m_7$     |

#### Sum of minterms form

- Every function can be written as a sum of minterms, which is a special kind of sum of products form
- The sum of minterms form for any function is unique
- If you have a truth table for a function, you can write a sum of minterms expression just by picking out the rows of the table where the function output is 1.

| X | У | Z | f(x,y,z) | f'(x,y,z) |
|---|---|---|----------|-----------|
| 0 | 0 | 0 | 1        | 0         |
| 0 | 0 | 1 | 1        | 0         |
| 0 | 1 | 0 | 1        | 0         |
| 0 | 1 | 1 | 1        | 0         |
| 1 | 0 | 0 | 0        | 1         |
| 1 | 0 | 1 | 0        | 1         |
| 1 | 1 | 0 | 1        | 0         |
| 1 | 1 | 1 | 0        | 1         |

$$f = x'y'z' + x'y'z + x'yz' + x'yz + xyz'$$

$$= m_0 + m_1 + m_2 + m_3 + m_6$$

$$= \sum m(0,1,2,3,6)$$

$$f' = xy'z' + xy'z + xyz$$

$$= m_4 + m_5 + m_7$$

$$= \sum m(4,5,7)$$

$$f' \text{ contains all the minterms not in } f$$

## The dual idea: products of sums

- Just to keep you on your toes...
- A product of sums (POS) expression contains:
  - Only AND (product) operations at the "outermost" level
  - Each term must be a sum of literals

$$f(x,y,z) = y'(x' + y + z')(x + z)$$

- Product of sums expressions can be implemented with two-level circuits
  - literals and their complements at the "Oth" level
  - OR gates at the first level
  - a single AND gate at the second level
- Compare this with sums of products



#### Maxterms

- A maxterm is a sum of literals, in which each input variable appears exactly once.
- A function with n variables has 2<sup>n</sup> maxterms
- The maxterms for a three-variable function f(x,y,z):

$$x' + y' + z'$$
  $x' + y' + z$   $x' + y + z'$   $x' + y + z$   
 $x + y' + z'$   $x + y' + z$   $x + y + z'$   $x + y + z$ 

Each maxterm is false for exactly one combination of inputs:

| Maxterm      | Is <b>false</b> when | Shorthand |
|--------------|----------------------|-----------|
| x + y + z    | x=0, y=0, z=0        | $M_O$     |
| x + y + z'   | x=0, y=0, z=1        | $M_1$     |
| x + y' + z   | x=0, y=1, z=0        | $M_2$     |
| x + y' + z'  | x=0, y=1, z=1        | $M_3$     |
| x' + y + z   | x=1, y=0, z=0        | $M_4$     |
| x' + y + z'  | x=1, y=0, z=1        | $M_{5}$   |
| x' + y' + z  | x=1, y=1, z=0        | $M_6$     |
| x' + y' + z' | x=1, y=1, z=1        | $M_7$     |

### Product of maxterms form

- Every function can be written as a unique product of maxterms
- If you have a truth table for a function, you can write a product of maxterms expression by picking out the rows of the table where the function output is 0. (Be careful if you're writing the actual literals!)

| X | У | Z | f(x,y,z) | f'(x,y,z) |
|---|---|---|----------|-----------|
| 0 | 0 | 0 | 1        | 0         |
| 0 | 0 | 1 | 1        | 0         |
| 0 | 1 | 0 | 1        | 0         |
| 0 | 1 | 1 | 1        | 0         |
| 1 | 0 | 0 | 0        | 1         |
| 1 | 0 | 1 | 0        | 1         |
| 1 | 1 | 0 | 1        | 0         |
| 1 | 1 | 1 | 0        | 1         |

$$f = (x' + y + z)(x' + y + z')(x' + y' + z')$$

$$= M_4 M_5 M_7$$

$$= \Pi M(4,5,7)$$

$$f' = (x + y + z)(x + y + z')(x + y' + z)$$

$$(x + y' + z')(x' + y' + z)$$

$$= M_0 M_1 M_2 M_3 M_6$$

$$= \Pi M(0,1,2,3,6)$$

$$f' = Contains all the maxtanes not in filled$$

f' contains all the maxterms not in f

## Minterms and maxterms are related

Any minterm  $m_i$  is the complement of the corresponding maxterm  $M_i$ 

| Minterm | Shorthand | Maxterm      | Shorthand |
|---------|-----------|--------------|-----------|
| x'y'z'  | $m_{0}$   | x + y + z    | $M_{O}$   |
| x'y'z   | $m_1$     | x + y + z'   | $M_1$     |
| x'yz'   | $m_2$     | x + y' + z   | $M_2$     |
| x'yz    | $m_3$     | x + y' + z'  | $M_3$     |
| xy'z'   | $m_4$     | x' + y + z   | $M_{4}$   |
| xy'z    | $m_{5}$   | x' + y + z'  | $M_5$     |
| ×yz'    | $m_{6}$   | x' + y' + z  | $M_6$     |
| xyz     | $m_7$     | x' + y' + z' | $M_7$     |

For example,  $m_4' = M_4$  because (xy'z')' = x' + y + z

## Converting between standard forms

We can convert a sum of minterms to a product of maxterms

```
From before f = \Sigma m(0,1,2,3,6)

and f' = \Sigma m(4,5,7)

= m_4 + m_5 + m_7

complementing (f')' = (m_4 + m_5 + m_7)'

so f = m_4' m_5' m_7' [DeMorgan's law]

= M_4 M_5 M_7 [By the previous page]

= \Pi M(4,5,7)
```

 In general, just replace the minterms with maxterms, using maxterm numbers that don't appear in the sum of minterms:

$$f = \Sigma m(0,1,2,3,6)$$
  
=  $\Pi M(4,5,7)$ 

 The same thing works for converting from a product of maxterms to a sum of minterms

## Summary so far

- So far:
  - A bunch of Boolean algebra trickery for simplifying expressions and circuits
  - The algebra guarantees us that the simplified circuit is equivalent to the original one
  - Introducing some standard forms and terminology
- Next:
  - An alternative simplification method
  - We'll start using all this stuff to build and analyze bigger, more useful, circuits

### Product of Sums

# iclicker.

- If f(x, y, z) = sum of minterms (0, 1, 4, 5), represent f as a product of maxterms
  - A: product of maxterms(2, 3)
  - B: product of maxterms(2, 3, 6, 7)
  - C: product of maxterms(0, 1, 4, 5)
  - D: product of maxterms(5, 6, 7)

### Product of Sums

# iclicker.

- If f(x, y, z) = sum of minterms (0, 1, 4, 5), represent f' as a product of maxterms
  - A: product of maxterms(2, 3)
  - B: product of maxterms(2, 3, 6, 7)
  - C: product of maxterms(0, 1, 4, 5)
  - D: product of maxterms(5, 6, 7)