
Draft notes or 22C: 040

2

Simplification of Boolean functions

Using the theorems of Boolean Algebra, the algebraic

forms of functions can often be simplified, which leads to

simpler (and cheaper) implementations.

Example 1

F = A.B + A.B + B.C

= A. (B + B) + B.C How many gates do you save

= A.1 + B.C from this simplification?

= A + B.C

A A

B F

B F C

C

Draft notes or 22C: 040

3

Example 2

F = A.B.C + A.B.C + A.B.C + A.B.C

= A.B.C + A.B.C + A.B.C + A.B.C + A.B.C + A.B.C

= (A.B.C + A.B.C) + (A.B.C + A.B.C) + (A.B.C + A.B.C)

= (A + A). B.C + (B + B). C.A + (C + C). A.B

= B.C + C.A + A.B

Example 3 Show that A + A.B = A

A + AB

= A.1 + A.B

= A. (1 + B)

= A. 1

= A

Draft notes or 22C: 040

4

Simplification using Karnaugh Maps

A

B 0 1

1 0 1 K-map of 2-variable OR function

0 1 1

BC

A 00 01 11 10

0 1

1 1 1 1 K-map of majority function

Follow the class lectures to understand how to

simplify Boolean functions using K-maps. Several

examples will be worked out in the class.

Draft notes or 22C: 040

5

Other types of gates

A A

 A.B B A+B

B

NAND gate NOR gate

Be familiar with the truth tables of these gates.

A

B A + B = A.B + A.B

Exclusive OR (XOR) gate

Draft notes or 22C: 040

6

NAND and NOR are universal gates

Any function can be implemented using only NAND

or only NOR gates. How can we prove this?

(Proof for NAND gates) Any boolean function

can be implemented using AND, OR and NOT gates.

So if AND, OR and NOT gates can be implemented

using NAND gates only, then we prove our point.

1. Implement NOT using NAND

A A

Draft notes or 22C: 040

7

2. Implementation of AND using NAND

A A.B

B A

1. Implementation of OR using NAND

A A

 A.B = A+B

B

B

(Exercise) Prove that NOR is a universal gate.

Draft notes or 22C: 040

8

Example (to be worked out in class)

How to convert any circuit that uses AND, OR and NOT

gates to a version that uses NAND (or NOR gates only)?

Additional properties of XOR

XOR is also called modulo-2 addition. Why?

A B C F
0 0 0 0 A B = 1 only when there are an
0 0 1 1 odd number of 1’s in (A,B). The
0 1 0 1 same is true for A B C also.
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

 1 A = A Why?

 0 A = A

Draft notes or 22C: 040

9

Logic Design Exercise

Half Adder

A B S C

A Sum (S) 0 0 0 0

B Carry (C) 0 1 1 0

1 0 1 0

S = A B 1 1 0 1

C = A.B

A

S

B

C

Half
Adder

Draft notes or 22C: 040

10

Full Adder

 Sum (S) A B C S Cout

A 0 0 0 0 0

B 0 0 1 1 0

Cin Carry (Cout) 0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = A B Cin

Cout = A.B + B.Cin + A.Cin

How can you add two 32-bit numbers? It will be

discussed in the class.

Full
Adder

Draft notes or 22C: 040

11

Combinational vs. Sequential Circuits

Combinational circuits.

The output depends only on the current values of

the inputs and not on the past values. Examples are

adders, subtractors, and all the circuits that we have

studied so far

Sequential circuits.

The output depends not only on the current values

of the inputs, but also on their past values. These hold

the secret of how to memorize information. We will study

sequential circuits later.

Draft notes or 22C: 040

12

Decoders

A typical decoder has n inputs and 2n outputs.

Enable A B D3 D2 D1 D0

 D0 0 0 0 0 0 1

A D1 0 1 0 0 1 0

B D2 1 0 0 1 0 0

 D3 1 1 1 0 0 0

A 2-to-4 decoder and its truth table.

D3 = A.B Draw the circuit of this decoder.

D2 = A.B

D1 = A.B The decoder works per specs

D0 = A.B when (Enable = 1). When Enable = 0,

all the outputs are 0.

Exercise. Design a 3-to-8 decoder.

Draft notes or 22C: 040

13

Encoders

A typical encoder has 2n inputs and n outputs.

D0 D1 D2 D3 A B

D0 1 0 0 0 0 0

D1 A 0 1 0 0 0 1

D2 B 0 0 1 0 1 0

D3 0 0 0 1 1 1

A 4-to-2 encoder and its truth table.

A = D1 + D3

B = D2 + D3

Draft notes or 22C: 040

14

Multiplexor

It is a many-to-one switch, also called a selector.

A 0 F S = 0, F = A

B 1 S = 1, F = B

Control S Specifications of the mux

A 2-to-1 mux

F = S. A + S. B

Exercise. Design a 4-to-1 mux.

Draft notes or 22C: 040

15

Another design of a decoder

A

B F

C

D

S

Exercise 1. Design a 2-to-4 decoder using 1-to-2 decoders only.

Exercise 2. Design a 4-to-1 multiplexor using 2-1 multiplexors only.

To be discussed in the class.

D0 D1 D2 D3

2-to-4 decoder

Draft notes or 22C: 040

16

Demultiplexors

A demux is a one-to-many switch.

 0 X S = 0, X = A
A

 1 Y S = 1, Y = B

 S

A 1-to-2 demux, and its specification.

So, X = S. A, and Y = S. B

Exercise. Design a 1-4 demux.

We will discuss the design of a 1-bit ALU in class.

