CE R R

13
File
Structures

13.1

Objectives
After studying this chapter, the student should be able to:

O Define two categories of access methods: sequential access and random
access.

U Understand the structure of sequential files and how they are updated.

(W]

Understand the structure of indexed files and the relation between the index
and the data file.

Understand the idea behind hashed files and describe some hashing methods.
Describe address collisions and how they can be resolved.

Define directories and how they can be used to organize files.

o o O O

Distinguish between text and binary files.

13.2

13-1 ACCESS METHODS

When we design a file, the important issue is how we
will retrieve information (a specific record) from the file.
Sometimes we need to process records one after another,
whereas sometimes we need to access a specific record
quickly without retrieving the preceding records. The
access method determines how records can be retrieved:
sequentially or randomly.

13.3

Sequential access

If we need to access a file sequentially—that is, one record
after another, from beginning to end —we use a sequential
file structure.

Random access

If we need to access a specific record without having to
retrieve all records before it, we use a file structure that
allows random access. Two file structures allow this:
indexed files and hashed files. This taxonomy of file
structures is shown in Figure 13.1.

13.4

Files

Sequential Random
access access

U Sequential file U Indexed file
U Hashed file

Figure 13.1 A taxonomy of file structures

13.5

13-2 SEQUENTIAL FILES

A sequential file is one in which records can only be
accessed one after another from beginning to end.
Figure 13.2 shows the layout of a sequential file.
Records are stored one after another in auxiliary storage,
such as tape or disk, and there is an EOF (end-of-file)
marker after the last record. The operating system has
no information about the record addresses, it only
knows where the whole file is stored. The only thing
known to the operating system is that the records are
sequential.

13.6

o0 o0 TR o000 ee e A

Record Record Record Record EOF

13.7

Sequential file

Figure 13.2 A sequential file

Algorithm 13.1 shows how records in a sequential file
are processed.

Algorithm 13.1 Pseudocode for processing records in a sequential file

138 |

Algorithm: SequentialFileProcessing (file)

Purpose: Process all records in a sequential file

Pre: Given the beginning address of the file on the auxiliary storage
Post: None

Return: None

{
while (Mot EOF)
{
Read the next record from the auxiliary storage into memory
Process the record
}
}

Updating sequential files

Sequential files must be updated periodically to reflect
changes in information. The updating process is very
involved because all the records need to be checked and
updated (if necessary) sequentially.

Files involved in updating

There are four files associated with an update program: the
new master file, the old master file, the transaction file
and the error report file. All these files are sorted based on
key values. Figure 13.3 is a pictorial representation of a
sequential file update.

13.9

Transaction file Old master file
Transaction Old master
record [:l [[[[[[HII] [m D HH]IHIH m D record

Update Error i
program # reporl ﬁle

Mo I CCO O
record

Becomes
o e

New master file

Figure 13.3 Updating a sequential file

13.10

Processing file updates

To make the updating process efficient, all files are sorted on

the same key. This updating process is shown in Figure 13.4.

A add
D: delete
C: change

Transaction
file

10 (13 (14 (16 |17 |18 |20 |22 23 25 |31 |35

New master file

Figure 13.4 Updating process

13.11

To access a record in a file randomly, we need to know
the address of the record.

Record

Addresses e-ee-] L. 1

- - Address
Key mm— % = i

—- | ccord

Index

File
13.12 Figure 13.5 Mapping in an indexed file

Index Data file
Key |Addr Addr. Key Name Balance
045128 306 000 | 379452 | Mary Dodd 1432.45
070918 001 001 | 070918 | Sarah Trapp 100.22
121267 002 002 | 121267 | Bryan Devaux 11.45
252 305 3 321.00 [
166702 160252 305 i 003 | 166702 | Harry Eagle 14321.00
> 166702 003 e
007 | 378845 | John Carver 7234.01
LN N
LR N]
378845 | 007 305 | 160252 | Tuan Ngo 15121.10
319422, }000 306 | 045128 | Shouli Feldman | §7922.05
Accessing indexed file
166702 Harry Eagle 14321.00
Extracted record
Figure 13.6 Logical view of an indexed file
13.13

Inverted files

One of the advantages of indexed files is that we can have

more than one index, each with a different key. For

example, an employee file can be retrieved based on either
social security number or last name. This type of indexed file

is usually called an inverted file.

13.14

12-2 HASHED FILES

A hashed file uses a mathematical function to
accomplish this mapping. The user gives the key, the
function maps the key to the address and passes it to the
operating system, and the record is retrieved (Figure
13.7).

Record

Addresses ----e-eees =

Address : :
[]

Key mmmmpt A ddress = HashFunction (Key) &

- [ccord

k

Mapping

File
13.15 Figure 13.7 Mapping in a hashed file

Hashing methods

For key-address mapping, we can select one of several
hashing methods. We discuss a few of them here.

Direct hashing

In direct hashing, the key is the data file address without any
algorithmic manipulation. The file must therefore contain a
record for every possible key. Although situations suitable
for direct hashing are limited, it can be very powerful,
because it guarantees that there are no synonyms or
collisions (discussed later in this chapter), as with other
methods.

13.16

Addr.| Key Name Balance

001 | 001 |Mary Dodd 1432.45
002 | 002 |Sarah Trapp 100.22
003] 003 |Bryan Devaux 11.45
0s | 05 004 [004 |Harry Eagle 14321.00
Key »| Addr. +— Key i
Hash fisistios 025 025 [sohnCarver | 7234.01
0991 099 |Tuan Ngo 15121.10
100 100 | Shouli Feldman | 87922.05
Data file
[
Accessing direct-hashed file \

[025 JohnCarver 723401

Extracted record

Figure 13.8 Direct hashing

13.17

Modulo division hashing

Also known as division remainder hashing, the modulo
division method divides the key by the file size and uses the
remainder plus 1 for the address. This gives the simple
hashing algorithm that follows, where list_size is the number
of elements in the file. The reason for adding a 1 to the mod
operation result is that our list starts with 1 instead of 0.

address = key mod /ist_size + 1

13.18

Addr.| Key Name Balance
0011379452 | Mary Dodd 1432.45
002 [070918 | Sarah Trapp 100.22
003 [121267 | Bryan Devaux 11.45
‘ 004 166702 | Harry Eagle 14321.00
20 Add < Keymod 307+ 1 -2
Key : Address
Hash function 008 | 378845 | John Carver 723401
306 | 160252 | Tuan Ngo 15121.10
307 045128 | Shouli Feldman | 87922.05
Data File
|
Accessing modulo-division-hashed file \:

121267 Bryan Devaux 11.45

Extracted record

Figure 13.9 Modulo division

13.19

Digit extraction hashing

Using digit extraction hashing, selected digits are extracted
from the key and used as the address. For example, using our
six-digit employee number to hash to a three-digit address
(000-999), we could select the first, third and fourth
digits (from the left) and use them as the address. Using the
keys from Figure 13.9, we hash them to the following
addresses:

125870 - 158 122801 - 128 121267 - 112
Other hashing methods

Other popular methods exist, but we leave the exploration of
these as exercises.

13.20

10

Collision

Generally, the population of keys for a hashed list is greater
than the number of records in the data file.

For example, if we have a file of 50 students for a class in
which the students are identified by the last four digits of
their social security number, then there are 200 possible keys
for each element in the file (10,000/50). Because there are
many keys for each address in the file, there is a possibility
that more than one key will hash to the same address in the
file. We call the set of keys that hash to the same address in
our list synonyms. The collision concept is illustrated in
Figure 13.10.

13.21

123013
Key »214
Addr €= Keymod 307+1 L Colliston
151564 ' 4 (same address)
»214
. Adl:
Hash function

Figure 13.10 Collision

13.22

11

Collision resolution

With the exception of the direct method, none of the methods
we have discussed for hashing creates one-to-one mappings.
This means that when we hash a new key to an address, we
may create a collision. There are several methods for
handling collisions, each of them independent of the hashing
algorithm. That is, any hashing method can be used with any
collision resolution method. In this section, we discuss some

of these methods.

13.23

Open addressing resolution

13013
Key

Addr €= Keymod 307+ |
151564

—
Key

Hash function

123013

Duc Lee

110545

131564

Rich White

708.22

Figure 13.11 Open addressing resolution

13.24

12

Linked list resolution

123013
—

13.25

Addr 4= Keymod 307+1

110545

—dr> 214 = 214 1123013 | Duc Lee

Home

Hash function

151564 | Rach White

3 |

Overflow area

Figure 13.12 Linked list resolution

Bucket hashing resolution

123013
e —

Key

151564

Key

13.26

Addr «+— Keymod 307 + |

— 214
Addr.
Bucket
214
— 214

Addr,

Hash function

Bucket

215

123013 | Duc Lee

110545

151564 | Rich White

708.22

Figure 13.13 Bucket hashing resolution

13

Directories are provided by most operating systems for
organizing files. A directory performs the same

function as a folder in a filing cabinet. However, a
directory in most operating systems is represented as a
special type of file that holds information about other
files. A directory not only serves as a kind of index that
tells the operating system where files are located on an
auxiliary storage device, but can also contain other
information about the files it contains, such as who has
the access to each file, or the date when each file was
created, accessed or modified.

13.27

Directories in the UNIX operating system

In UNIX, the directory system is organized as shown in
Figure 13.14.

lLegend

[Directory l‘llt.] . root

Figure 13.14 An example of the directory system in UNIX

13.28

14

Special directories
There are four special types of directory that play an
important role in the directory structure in UNIX: the root
directory, home directories, working directories and
parent directories.

Paths and pathnames

The file’s path is specified by its absolute pathname, a list
of all directories separated by a slash character (/). UNIX
also provides a shorter pathname, known as a relative
pathname, which is the path relative to the working
directory.

Relative pathname: joan/file3

Absolute pathname: /usr/staff/joan/file3

13.29

13-6 TEXT VERSUS BINARY

Two terms used to categorize files: text files and binary
files. A file stored on a storage device is a sequence of bits
that can be interpreted by an application program as a text
file or a binary file, as shown in Figure 13.15.

Interpreted as a text file Interpreted as a binary file
01000001 01000010 A 01000001 01000010 A
Two bytes represent two characters Two bytes represent one number
(Aand B) (16706)

Figure 13.15 Text and binary interpretations of a file

13.30

15

Text files

A text file is a file of characters. It cannot contain integers,
floating-point numbers, or any other data structures in their
internal memory format. To store these data types, they must
be converted to their character equivalent formats. Some
files can only use character data types. Most notable are file
streams (input/output objects in some object-oriented
language like C++) for keyboards, monitors and printers.
This is why we need special functions to format data that is
input from or output to these devices.

13.31

Binary files

A binary file is a collection of data stored in the internal
format of the computer. In this definition, data can be an
integer (including other data types represented as unsigned
integers, such as image, audio, or video), a floating-point
number or any other structured data (except a file).

Unlike text files, binary files contain data that is meaningful
only if it is properly interpreted by a program. If the data is
textual, one byte is used to represent one character (in ASCII
encoding). But if the data is numeric, two or more bytes are
considered a data item.

13.32

16

