
1

13.1

1313
File File
StructuresStructures

Source: Foundations of Computer Science © Cengage Learning

13.2

Define two categories of access methods: sequential access and random
access.

Understand the structure of sequential files and how they are updated.

Understand the structure of indexed files and the relation between the index
and the data file.

Understand the idea behind hashed files and describe some hashing methods.

Describe address collisions and how they can be resolved.

Define directories and how they can be used to organize files.

Distinguish between text and binary files.

ObjectivesObjectives
After studying this chapter, the student should be able to:After studying this chapter, the student should be able to:

2

13.3

1313--1 ACCESS METHODS1 ACCESS METHODS

When we design a file, the important issue is how we When we design a file, the important issue is how we
will retrieve information (a specific record) from the file. will retrieve information (a specific record) from the file.
Sometimes we need to process records one after another, Sometimes we need to process records one after another,
whereas sometimes we need to access a specific record whereas sometimes we need to access a specific record
quickly without retrieving the preceding records. quickly without retrieving the preceding records. The The
access method determines how records can be retrieved: access method determines how records can be retrieved:
sequentiallysequentially or or randomlyrandomly..

13.4

Sequential access
If we need to access a file sequentially—that is, one record
after another, from beginning to end —we use a sequential
file structure.

Random access
If we need to access a specific record without having to
retrieve all records before it, we use a file structure that
allows random access. Two file structures allow this:
indexed files and hashed files. This taxonomy of file
structures is shown in Figure 13.1.

3

13.5

Figure 13.1 A taxonomy of file structures

13.6

1313--2 SEQUENTIAL FILES2 SEQUENTIAL FILES

A sequential file is one in which records can only be A sequential file is one in which records can only be
accessed one after another from beginning to endaccessed one after another from beginning to end..
Figure 13.2 shows the layout of a sequential file. Figure 13.2 shows the layout of a sequential file.
Records are stored one after another in auxiliary storage, Records are stored one after another in auxiliary storage,
such as tape or disk, and there is an such as tape or disk, and there is an EOF (endEOF (end--ofof--file)file)
marker after the last record. marker after the last record. The operating system has The operating system has
no information about the record addresses, it only no information about the record addresses, it only
knows where the whole file is storedknows where the whole file is stored. The only thing . The only thing
known to the operating system is that the records are known to the operating system is that the records are
sequential.sequential.

4

13.7

Figure 13.2 A sequential file

13.8

Algorithm 13.1 shows how records in a sequential file Algorithm 13.1 shows how records in a sequential file
are processed. are processed.

5

13.9

Updating sequential files
Sequential files must be updated periodically to reflect
changes in information. The updating process is very
involved because all the records need to be checked and
updated (if necessary) sequentially.

Files involved in updating

There are four files associated with an update program: the
new master file, the old master file, the transaction file
and the error report file. All these files are sorted based on
key values. Figure 13.3 is a pictorial representation of a
sequential file update.

13.10

Figure 13.3 Updating a sequential file

6

13.11

Processing file updates
To make the updating process efficient, all files are sorted on
the same key. This updating process is shown in Figure 13.4.

Figure 13.4 Updating process

13.12

1313--2 INDEXED FILES2 INDEXED FILES

To access a record in a file randomly, we need to know To access a record in a file randomly, we need to know
the address of the record.the address of the record.

Figure 13.5 Mapping in an indexed file

7

13.13

Figure 13.6 Logical view of an indexed file

13.14

Inverted files
One of the advantages of indexed files is that we can have
more than one index, each with a different key. For
example, an employee file can be retrieved based on either
social security number or last name. This type of indexed file
is usually called an inverted file.

8

13.15

1212--2 HASHED FILES2 HASHED FILES

A A hashed filehashed file uses a mathematical function to uses a mathematical function to
accomplish this mappingaccomplish this mapping. The user gives the key, the . The user gives the key, the
function maps the key to the address and passes it to the function maps the key to the address and passes it to the
operating system, and the record is retrieved (Figure operating system, and the record is retrieved (Figure
13.7).13.7).

Figure 13.7 Mapping in a hashed file

13.16

Hashing methods
For key-address mapping, we can select one of several
hashing methods. We discuss a few of them here.

Direct hashing

In direct hashing, the key is the data file address without any
algorithmic manipulation. The file must therefore contain a
record for every possible key. Although situations suitable
for direct hashing are limited, it can be very powerful,
because it guarantees that there are no synonyms or
collisions (discussed later in this chapter), as with other
methods.

9

13.17

Figure 13.8 Direct hashing

13.18

Modulo division hashing

Also known as division remainder hashing, the modulo
division method divides the key by the file size and uses the
remainder plus 1 for the address. This gives the simple
hashing algorithm that follows, where list_size is the number
of elements in the file. The reason for adding a 1 to the mod
operation result is that our list starts with 1 instead of 0.

10

13.19
Figure 13.9 Modulo division

13.20

Digit extraction hashing

Using digit extraction hashing, selected digits are extracted
from the key and used as the address. For example, using our
six-digit employee number to hash to a three-digit address
(000–999), we could select the first, third and fourth
digits (from the left) and use them as the address. Using the
keys from Figure 13.9, we hash them to the following
addresses:

Other hashing methods
Other popular methods exist, but we leave the exploration of
these as exercises.

11

13.21

Collision
Generally, the population of keys for a hashed list is greater
than the number of records in the data file.
For example, if we have a file of 50 students for a class in
which the students are identified by the last four digits of
their social security number, then there are 200 possible keys
for each element in the file (10,000/50). Because there are
many keys for each address in the file, there is a possibility
that more than one key will hash to the same address in the
file. We call the set of keys that hash to the same address in
our list synonyms. The collision concept is illustrated in
Figure 13.10.

13.22
Figure 13.10 Collision

12

13.23

Collision resolution

With the exception of the direct method, none of the methods
we have discussed for hashing creates one-to-one mappings.
This means that when we hash a new key to an address, we
may create a collision. There are several methods for
handling collisions, each of them independent of the hashing
algorithm. That is, any hashing method can be used with any
collision resolution method. In this section, we discuss some
of these methods.

13.24
Figure 13.11 Open addressing resolution

Open addressing resolution

13

13.25
Figure 13.12 Linked list resolution

Linked list resolution

13.26
Figure 13.13 Bucket hashing resolution

Bucket hashing resolution

14

13.27

1313--5 DIRECTORIES5 DIRECTORIES

Directories are provided by most operating systems for Directories are provided by most operating systems for
organizing files. organizing files. A A directorydirectory performs the same performs the same
function as a folder in a filing cabinetfunction as a folder in a filing cabinet. However, a . However, a
directory in most operating systems is represented as a directory in most operating systems is represented as a
special type of file that holds information about other special type of file that holds information about other
files. files. A directory not only serves as a kind of index that A directory not only serves as a kind of index that
tells the operating system where files are located on an tells the operating system where files are located on an
auxiliary storage device, but can also contain other auxiliary storage device, but can also contain other
information about the files it contains, such as who has information about the files it contains, such as who has
the access to each file, or the date when each file was the access to each file, or the date when each file was
created, accessed or modifiedcreated, accessed or modified..

13.28

Directories in the UNIX operating system
In UNIX, the directory system is organized as shown in
Figure 13.14.

Figure 13.14 An example of the directory system in UNIX

15

13.29

Special directories
There are four special types of directory that play an
important role in the directory structure in UNIX: the root
directory, home directories, working directories and
parent directories.

Paths and pathnames

The file’s path is specified by its absolute pathname, a list
of all directories separated by a slash character (/). UNIX
also provides a shorter pathname, known as a relative
pathname, which is the path relative to the working
directory.

13.30

1313--6 TEXT VERSUS BINARY6 TEXT VERSUS BINARY

Two terms used to categorize files: Two terms used to categorize files: text files text files and and binary binary
filesfiles. . A file stored on a storage device is a sequence of bits A file stored on a storage device is a sequence of bits
that can be interpreted by an application program as a text that can be interpreted by an application program as a text
file or a binary filefile or a binary file, as shown in Figure 13.15., as shown in Figure 13.15.

Figure 13.15 Text and binary interpretations of a file

16

13.31

Text files
A text file is a file of characters. It cannot contain integers,
floating-point numbers, or any other data structures in their
internal memory format. To store these data types, they must
be converted to their character equivalent formats. Some
files can only use character data types. Most notable are file
streams (input/output objects in some object-oriented
language like C++) for keyboards, monitors and printers.
This is why we need special functions to format data that is
input from or output to these devices.

13.32

Binary files
A binary file is a collection of data stored in the internal
format of the computer. In this definition, data can be an
integer (including other data types represented as unsigned
integers, such as image, audio, or video), a floating-point
number or any other structured data (except a file).

Unlike text files, binary files contain data that is meaningful
only if it is properly interpreted by a program. If the data is
textual, one byte is used to represent one character (in ASCII
encoding). But if the data is numeric, two or more bytes are
considered a data item.

