Foundations of Computer Science

Second Edition
BEHROUZ FOROUZAN
FIROUZ MOSHARRAF

Chapter 1 Introduction

Outlines

- Turing Model
- von Neumann Model
- Computer Components
- History
- Social and Ethical Issues
- Computer Science as a Discipline

Objectives

After studying this chapter, the student should be able to:

- Define the Turing model of a computer.
- Define the von Neumann model of a computer.
- Describe the three components of a computer: hardware, data, and software.
- List topics related to computer hardware.
- List topics related to data.
- List topics related to software.
- Discuss some social and ethical issues related to the use of computers.
- Give a short history of computers.

1-1 Turing Model

Data Processors

 A computer acts as a black box that accepts input data, processes the data, and creates output data.

Figure 1.1 A single purpose computing machine

Programmable Data Processors(1)

- The idea of a universal computational device was first described by Alan Turing in 1937.
- He proposed that all computation could be performed by a special kind of a machine, now called a Turing machine.

Programmable Data Processors(2)

 The Turing model is a better model for a generalpurpose computer. This model adds an extra element to the specific computing machine: the program. A program is a set of instructions that tells the computer what to do with data.

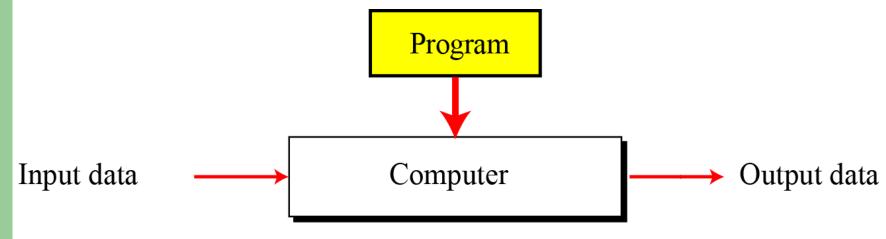


Figure 1.2 A computer based on the Turing model

An Example

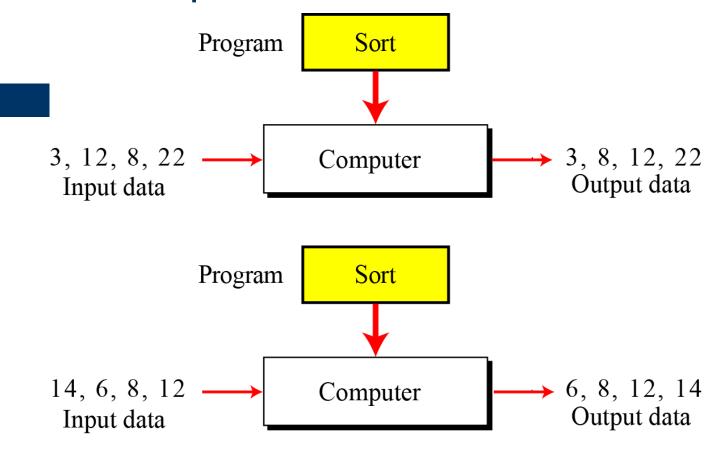


Figure 1.3 The same program, different data

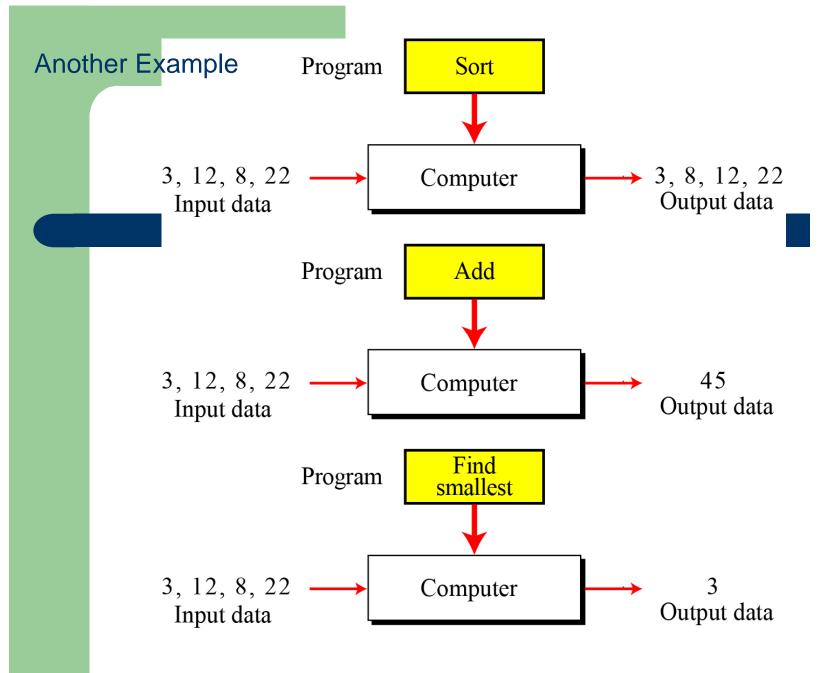


Figure 1.4 The same data, different programs

The Universal Turing Machine

- A Universal Turing Machine, a machine that can do any computation if the appropriate program is provided, was the first description of a modern computer.
- It can be proved that a very powerful computer and a universal Turing machine can compute the same thing.
- We need only provide the data and the program the description of how to do the computation—to either machine.
- In fact, a Universal Turing Machine is capable of computing anything that is computable.

1-2 von Neumann Model

Overview

- Computers built on the Turing universal machine store data in their memory.
- Around 1944–1945, John von Neumann proposed that, since program and data are logically the same, programs should also be stored in the memory of a computer.

von Neumann Model

- Every computer today is based on the von Neumann Model.
- It is based on 3 ideas:
 - 1. Four subsystems
 - 2. Stored Program Concept
 - 3. Sequential Execution of Instructions

Four Subsystems

- Memory the storage area of programs and data.
- ALU arithmetic/logic operations take place
- Control Unit control Memory, ALU, and I/O
- I/O accept input data/send output data

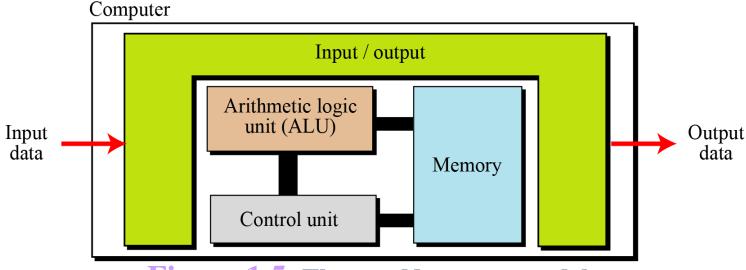
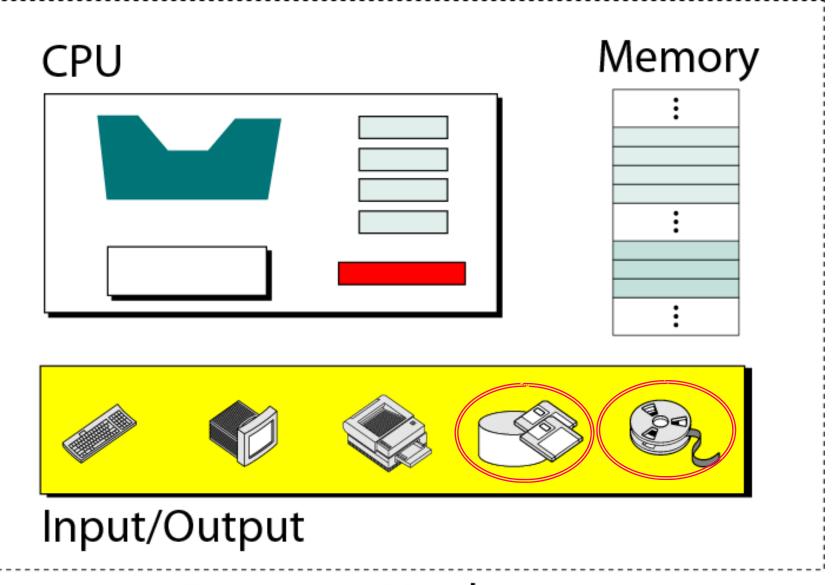


Figure 1.5 The von Neumann model

Stored Program Concept

- The von Neumann model states that the program must be <u>stored in memory</u>.
- The memory of modern computers hosts both
 - a program
 - its corresponding data


Sequential Execution of Instructions

- A program is made of <u>a finite number of instructions</u>.
- The control unit
 - fetches one instruction from memory
 - interpret it
 - execute it
- The instructions are executed one after another.

1-3 Computer Components

Overview

- A computer is made up of three components: computer hardware, data, and computer software.
- Computer hardware today has four components under the von Neumann model

Computer Hardware

Storing Data

- Store data in the form of an <u>electrical signal</u>, specifically its <u>presence</u> or <u>absence</u>.
- This implies that a computer can store data in <u>one of</u> two states.
- Binary number system

Data Organization

- Although data should be stored <u>only in one form</u> (a <u>binary pattern</u>) inside a computer, data outside a computer can take <u>many forms</u>.
- Data come in different forms:
 - Numbers
 - Text
 - Images
 - Audio
 - Video

Requirements of von Neumann model

- 1. The programs must be stored in memory. (Fig. 1.6) ——
- 2. The programs must be a sequence of instructions. (Fig. 1.7)
- 1. Input first data item into memory.
- 2. Input second data item into memory.
- 3. Add the two together and store the result in memory.
- 4. Output the result.

Program

Data

Memory

Program

Algorithms

- A programmer should
 - first solve the problem in <u>a step-by-step manner</u> and then
 - try to find the <u>appropriate sequence of</u> <u>instructions</u> that solves the problem.
- The step-by-step solution is called an algorithm.

Operating Systems

 An <u>operating system</u> originally worked as a <u>manager</u> to <u>facilitate access of the computer components</u> for a program.

1-4 History 25

Before 1950

- Mechanical machines (before 1930)
- Early electronic computers (1930-1950)
- ENIAC (Electronic Numerical Integrator and Calculator)
 first general-purpose, totally electronic computer
 - University of Pennsylvania, 1946

1950

• The preceding computers used memory <u>only</u> <u>for storing data</u>.

EDVAC
 the first computer based on von Neumann's idea,
 University of Pennsylvania,1950

Computer generations (1950-present)

- First generation (1950-1959)
 vacuum tubes
- Second generation (1959-1965) transistors,
 High-level languages(FORTRAN, COBOL)
- Third generation (1965-1975)
 IC(Integrated Circuit),
 Minicomputer, software industry was born
- Fourth generation (1975-1985)
 VLSI,
 microcomputer
- Fifth generation (1985-)
 laptop and palmtop computer

Microcomputer

- Microcomputers are designed to be used by <u>individuals</u>, whether in the form of PCs, workstations or notebook computers.
- A microcomputer contains
 - a CPU on a microchip (the microprocessor),
 - a memory system (typically ROM and RAM),
 - a bus system and
 - I/O ports,
- typically housed in a motherboard.

1-5 Social and Ethical Issues

Social issues

Dependency

 Some people think that computers have created a kind of dependency, which makes people's lives more difficult.

Social Justice

 Using computers at home is a luxury benefit that not all people can afford.

Digital Divide

 The concept divides society into two groups: those who are electronically connected to the rest of society and those who are not.

Ethical issues

Privacy

 Much needs to be done to make this type of communication private.

Copyright

 The Internet has created opportunities to share ideas, but has also brought with it a further ethical issue: electronic copyright.

Computer Crime

 Computers and information technology have created new types of crime.

1-6 Computer Science as a Discipline

Computer Science as a Discipline

- We can divide computer science into two broad categories: systems areas and applications areas.
- This book is a breadth-first approach to all these areas.