
11.1

1111
DataData
StructuresStructures

Foundations of Computer Science © Cengage Learning

11.2

Define a data structure.
Define an array as a data structure and how it is used to store a list of data
items.
Distinguish between the name of an array and the names of the elements in an
array.
Describe operations defined for an array.
Define a record as a data structure and how it is used to store attributes
belonging to a single data element.
Distinguish between the name of a record and the names of its fields.
Define a linked list as a data structure and how it is implemented using
pointers.
Understand the mechanism through which the nodes in an array are
accessed.
Describe operations defined for a linked list.
Compare and contrast arrays, records, and linked lists.
Define the applications of arrays, records, and linked lists.

ObjectivesObjectives
After studying this chapter, the student should be able to:After studying this chapter, the student should be able to:

11.3

1111--1 ARRAYS1 ARRAYS

Imagine that we have 100 scores. We need to read them, Imagine that we have 100 scores. We need to read them,
process them and print them. We must also keep these process them and print them. We must also keep these
100 scores in memory for the duration of the program. 100 scores in memory for the duration of the program.
We can define a hundred variables, each with a different We can define a hundred variables, each with a different
name, as shown in Figure 11.1.name, as shown in Figure 11.1.

Figure 11.1 A hundred individual variables

11.4

But having 100 different names creates other problems. We
need 100 references to read them, 100 references to process
them and 100 references to write them. Figure 11.2 shows a
diagram that illustrates this problem.

Figure 11.2 Processing individual variables

11.5

An array is a sequenced collection of elements, normally of
the same data type, although some programming languages
accept arrays in which elements are of different types. We
can refer to the elements in the array as the first element, the
second element and so forth, until we get to the last element.

Figure 11.3 Arrays with indexes

11.6

We can use loops to read and write the elements in an array.
We can also use loops to process elements. Now it does not
matter if there are 100, 1000 or 10,000 elements to be
processed—loops make it easy to handle them all. We can
use an integer variable to control the loop and remain in the
loop as long as the value of this variable is less than the total
number of elements in the array (Figure 11.4).

We have used indexes that start from 1;
some modern languages such as C,
C++ and Java start indexes from 0.

i

11.7
Figure 11.4 Processing an array

11.8

Example 11.1
Compare the number of instructions needed to handle 100 Compare the number of instructions needed to handle 100
individual elements in Figure 11.2 and the array with 100 in individual elements in Figure 11.2 and the array with 100 in
Figure 11.4. Assume that processing each score needs only one Figure 11.4. Assume that processing each score needs only one
instruction.instruction.

SolutionSolution
❑❑ In the first case, we need 100 instructions to read, 100In the first case, we need 100 instructions to read, 100

instructions to write and 100 instructions to process. Theinstructions to write and 100 instructions to process. The
total is 300 instructions.total is 300 instructions.

❑❑ In the second case, we have three loops. In each loop we haveIn the second case, we have three loops. In each loop we have
two instructions, for a total of six instructions. However, two instructions, for a total of six instructions. However, wewe
also need three instructions for initializing the index and also need three instructions for initializing the index and threethree
instructions to check the value of the index. In total, we hinstructions to check the value of the index. In total, we haveave
twelve instructions.twelve instructions.

11.9

Example 11.2

The number of cycles (fetch, decode, and execute phases) the The number of cycles (fetch, decode, and execute phases) the
computer needs to perform is not reduced if we use an array. Thecomputer needs to perform is not reduced if we use an array. The
number of cycles is actually increased, because we have the extrnumber of cycles is actually increased, because we have the extra a
overhead of initializing, incrementing and testing the value of overhead of initializing, incrementing and testing the value of the the
index. But our concern is not the number of cycles: it is the index. But our concern is not the number of cycles: it is the
number of lines we need to write the program.number of lines we need to write the program.

11.10

Example 11.3

In computer science, one of the big issues is the reusability ofIn computer science, one of the big issues is the reusability of
programsprograms——for example, how much needs to be changed if the for example, how much needs to be changed if the
number of data items is changed. Assume we have written two number of data items is changed. Assume we have written two
programs to process the scores as shown in Figure 11.2 and programs to process the scores as shown in Figure 11.2 and
Figure 11.4. If the number of scores changes from 100 to 1000, Figure 11.4. If the number of scores changes from 100 to 1000,
how many changes do we need to make in each program? In the how many changes do we need to make in each program? In the
first program we need to add 3 first program we need to add 3 ×× 900 = 2700 instructions. In the 900 = 2700 instructions. In the
second program, we only need to change three conditions second program, we only need to change three conditions
(I > 100 to I > 1000). We can actually modify the diagram in (I > 100 to I > 1000). We can actually modify the diagram in
Figure 11.4 to reduce the number of changes to one.Figure 11.4 to reduce the number of changes to one.

11.11

Array name versus element name
In an array we have two types of identifiers: the name of the
array and the name of each individual element. The name of
the array is the name of the whole structure, while the name
of an element allows us to refer to that element. In the array
of Figure 11.3, the name of the array is scores and name of
each element is the name of the array followed by the index,
for example, scores[1], scores[2], and so on. In this chapter,
we mostly need the names of the elements, but in some
languages, such as C, we also need to use the name of the
array.

11.12

Multi-dimensional arrays
The arrays discussed so far are known as one-dimensional
arrays because the data is organized linearly in only one
direction. Many applications require that data be stored in
more than one dimension. Figure 11.5 shows a table, which
is commonly called a two-dimensional array.

Figure 11.5 A two-dimensional array

11.13

Memory layout
The indexes in a one-dimensional array directly define the
relative positions of the element in actual memory. Figure
11.6 shows a two-dimensional array and how it is stored in
memory using row-major or column-major storage. Row-
major storage is more common.

Figure 11.6 Memory layout of arrays

11.14

Example 11.4

We have stored the twoWe have stored the two--dimensional array students in memory. dimensional array students in memory.
The array is 100 The array is 100 ×× 4 (100 rows and 4 columns). Show the address 4 (100 rows and 4 columns). Show the address
of the element students[5][3] assuming that the element of the element students[5][3] assuming that the element
student[1][1] is stored in the memory location with address 1000student[1][1] is stored in the memory location with address 1000
and each element occupies only one memory location. The and each element occupies only one memory location. The
computer uses rowcomputer uses row--major storage.major storage.

SolutionSolution

We can use the following formula to find the location of an We can use the following formula to find the location of an
element, assuming each element occupies one memory location.element, assuming each element occupies one memory location.

If the first element occupies the location 1000, the target elemIf the first element occupies the location 1000, the target element ent
occupies the location 1018.occupies the location 1018.

11.15

Operations on array
Although we can apply conventional operations defined for
each element of an array (see Chapter 4), there are some
operations that we can define on an array as a data structure.
The common operations on arrays as structures are
searching, insertion, deletion, retrieval and traversal.

Although searching, retrieval and traversal of an array is an
easy job, insertion and deletion is time consuming. The
elements need to be shifted down before insertion and shifted
up after deletion.

11.16

Algorithm 11.1 gives an example of finding the average of
elements in array whose elements are reals.

11.17

Application
Thinking about the operations discussed in the previous
section gives a clue to the application of arrays. If we have a
list in which a lot of insertions and deletions are expected
after the original list has been created, we should not use an
array. An array is more suitable when the number of
deletions and insertions is small, but a lot of searching and
retrieval activities are expected.

An array is a suitable structure when a small number
of insertions and deletions are required, but a lot of

searching and retrieval is needed.

i

11.18

1111--2 RECORDS2 RECORDS

A record is a collection of related elements, possibly of A record is a collection of related elements, possibly of
different types, having a single name. Each element in a different types, having a single name. Each element in a
record is called a record is called a fieldfield. A field is the smallest element of . A field is the smallest element of
named data that has meaning. A field has a type and named data that has meaning. A field has a type and
exists in memory. Fields can be assigned values, which exists in memory. Fields can be assigned values, which
in turn can be accessed for selection or manipulation. A in turn can be accessed for selection or manipulation. A
field differs from a variable primarily in that it is part of field differs from a variable primarily in that it is part of
a record.a record.

11.19

Figure 11.7 contains two examples of records. The first
example, fraction, has two fields, both of which are integers.
The second example, student, has three fields made up of
three different types.

Figure 11.7 Records

11.20

Record name versus field name
Just like in an array, we have two types of identifier in a
record: the name of the record and the name of each
individual field inside the record. The name of the record is
the name of the whole structure, while the name of each field
allows us to refer to that field. For example, in the student
record of Figure 11.7, the name of the record is student, the
name of the fields are student.id, student.name and
student.grade. Most programming languages use a period
(.) to separate the name of the structure (record) from the
name of its components (fields). This is the convention we
use in this book.

11.21

Example 11.5

The following shows how the value of fields in Figure 11.7 are The following shows how the value of fields in Figure 11.7 are
stored.stored.

11.22

Comparison of records and arrays
We can conceptually compare an array with a record. This
helps us to understand when we should use an array and
when to use a record. An array defines a combination of
elements, while a record defines the identifiable parts of an
element. For example, an array can define a class of students
(40 students), but a record defines different attributes of a
student, such as id, name or grade.

11.23

Array of records
If we need to define a combination of elements and at the
same time some attributes of each element, we can use an
array of records. For example, in a class of 30 students, we
can have an array of 30 records, each record representing a
student.

Figure 11.8 Array of records

11.24

Example 11.6

The following shows how we access the fields of each record in The following shows how we access the fields of each record in
the students array to store values in them.the students array to store values in them.

11.25

Example 11.7
However, we normally use a loop to read data into an array of However, we normally use a loop to read data into an array of
records. Algorithm 11.2 shows part of the pseudocode for this records. Algorithm 11.2 shows part of the pseudocode for this
process.process.

11.26

Arrays versus arrays of records
Both an array and an array of records represent a list of
items. An array can be thought of as a special case of an
array of records in which each element is a record with only
a single field.

11.27

1111--3 LINKED LISTS3 LINKED LISTS

A linked list is a collection of data in which each A linked list is a collection of data in which each
element contains the location of the next elementelement contains the location of the next element——that that
is, each element contains two parts: is, each element contains two parts: datadata and and linklink. The . The
name of the list is the same as the name of this pointer name of the list is the same as the name of this pointer
variable. Figure 11.9 shows a linked list called variable. Figure 11.9 shows a linked list called scoresscores
that contains four elements. We define an empty linked that contains four elements. We define an empty linked
list to be only a null pointer: Figure 11.9 also shows an list to be only a null pointer: Figure 11.9 also shows an
example of an empty linked list.example of an empty linked list.

11.28
Figure 11.9 Linked lists

11.29

Before further discussion of linked lists, we need to explain
the notation we use in the figures. We show the connection
between two nodes using a line. One end of the line has an
arrowhead, the other end has a solid circle.

Figure 11.10 The concept of copying and storing pointers

11.30

Arrays versus linked lists
Both an array and a linked list are representations of a list of
items in memory. The only difference is the way in which
the items are linked together. Figure 11.11 compares the two
representations for a list of five integers.

Figure 11.11 Array versus linked list

11.31

Linked list names versus nodes names
As for arrays and records, we need to distinguish between
the name of the linked list and the names of the nodes, the
elements of a linked list. A linked list must have a name. The
name of a linked list is the name of the head pointer that
points to the first node of the list. Nodes, on the other hand,
do not have an explicit names in a linked list, just implicit
ones.

Figure 11.12 The name of a linked list versus the names of nodes

11.32

Operations on linked lists
The same operations we defined for an array can be applied
to a linked list.

Searching a linked list
Since nodes in a linked list have no names, we use two
pointers, pre (for previous) and cur (for current). At the
beginning of the search, the pre pointer is null and the cur
pointer points to the first node. The search algorithm moves
the two pointers together towards the end of the list. Figure
11.13 shows the movement of these two pointers through the
list in an extreme case scenario: when the target value is
larger than any value in the list.

11.33

Figure 11.13 Moving of pre and cur pointers in searching a linked list

11.34
Figure 11.14 Values of pre and cur pointers in different cases

11.35

11.36

Inserting a node

Before insertion into a linked list, we first apply the
searching algorithm. If the flag returned from the searching
algorithm is false, we will allow insertion, otherwise we
abort the insertion algorithm, because we do not allow data
with duplicate values. Four cases can arise:
❑ Inserting into an empty list.
❑ Insertion at the beginning of the list.
❑ Insertion at the end of the list.
❑ Insertion in the middle of the list.

11.37

Figure 11.15 Inserting a node at the beginning of a linked list

11.38

Figure 11.16 Inserting a node at the end of the linked list

11.39

Figure 11.17 Inserting a node in the middle of the linked list

11.40

11.41

Deleting a node
Before deleting a node in a linked list, we apply the search
algorithm. If the flag returned from the search algorithm is
true (the node is found), we can delete the node from the
linked list. However, deletion is simpler than insertion: we
have only two cases—deleting the first node and deleting
any other node. In other words, the deletion of the last and
the middle nodes can be done by the same process.

11.42

Figure 11.18 Deleting the first node of a linked list

11.43

Figure 11.19 Deleting a node at the middle or end of a linked list

11.44

11.45

Retrieving a node
Retrieving means randomly accessing a node for the purpose
of inspecting or copying the data contained in the node.
Before retrieving, the linked list needs to be searched. If the
data item is found, it is retrieved, otherwise the process is
aborted. Retrieving uses only the cur pointer, which points to
the node found by the search algorithm. Algorithm 11.6
shows the pseudocode for retrieving the data in a node. The
algorithm is much simpler than the insertion or deletion
algorithm.

11.46

11.47

Traversing a linked list
To traverse the list, we need a “walking” pointer, which is a
pointer that moves from node to node as each element is
processed. We start traversing by setting the walking pointer
to the first node in the list. Then, using a loop, we continue
until all of the data has been processed. Each iteration of the
loop processes the current node, then advances the walking
pointer to the next node. When the last node has been
processed, the walking pointer becomes null and the loop
terminates (Figure 11.20).

11.48

Figure 11.20 Traversing a linked list

11.49

11.50

Applications of linked lists
A linked list is a very efficient data structure for sorted list
that will go through many insertions and deletions. A linked
list is a dynamic data structure in which the list can start with
no nodes and then grow as new nodes are needed. A node
can be easily deleted without moving other nodes, as would
be the case with an array. For example, a linked list could be
used to hold the records of students in a school. Each quarter
or semester, new students enroll in the school and some
students leave or graduate.

A linked list is a suitable structure if a large number
of insertions and deletions are needed, but searching

a linked list is slower that searching an array.

i

