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Outlines

Introduction
Positional Number Systems
– Base 10, 2, 8, 16.

Nonpositional Number Systems
– Roman Numerals
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Objectives

After studying this chapter, the student should
understand:

The concept of number systems.
Non-positional and positional number systems.
Decimal, Binary, Hexadecimal and Octal system.  
Convert a number among binary, octal, hexadecimal, 
and decimal systems.
Find the number of digits needed in each system to 
represent a particular value.
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1-1 Introduction
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The Definition of Number System

• A number can be represented using distinct 
symbols and differently in different systems.

• For example, 
• The two numbers (2A)16 and (52)8 both refer to 

the same quantity, (42)10, but their 
representations are different

• Two groups
• positional and non-positional systems
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1-2 Position Number Systems
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Overview

In a positional number system, a number 
represented as:

has the value of:

in which S is the set of symbols, b is the base (or radix).

The Base includes Base10(Decimal), Base2(Binary), Base 
16(Hexadecimal), or Base8(octal)。
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The decimal system (base 10)

The word decimal is derived from the Latin 
root decem (ten). 
– base b = 10, and 
– ten symbols: S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

The symbols in this system are often referred 
to as decimal digits or just digits.
– Integer examples
– Real examples
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Base 10 – Integers (1)

Figure 2.1  Place values for an integer in the decimal system
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Base 10 – Integers (2)

Example 2.1 shows the place values for the integer 
+224 in the decimal system

Example 2.2 shows the place values for the decimal 
number −7508

( ) Values
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Base 10 – Reals

A real – a number with a fractional part

Example 2.3 shows the place values for the 
real number +24.13.
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The binary system (base 2)

The word binary is derived from the Latin 
root bini (or two by two). 
– base b = 2, and 
– two symbols, S = {0, 1}

The symbols in this system are often referred 
to as binary digits or bits (binary digit).
– Integer examples
– Real examples
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Base 2 – Integers (1)

We can represent an Integer as:

Figure 2.2  Place values for an integer in the binary system
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Base 2 – Integers (2)

Example 2.4 shows that the number (11001)2
in binary is the same as 25 in decimal. The 
subscript 2 shows that the base is 2.

The equivalent decimal number is N = 16 + 8 + 0 + 0 + 1 = 25.The equivalent decimal number is N = 16 + 8 + 0 + 0 + 1 = 25.



15

Base 2 – Reals (1)

Example 2.5 shows that the number (101.11)2
in binary is equal to the number 5.75 in 
decimal.

The equivalent decimal number is R = 4+0+1+0.5+0.25 = 5.75.The equivalent decimal number is R = 4+0+1+0.5+0.25 = 5.75.
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The hexadecimal system (base 16)

The word hexadecimal is derived from the Greek 
root hex (six) and the Latin root decem (ten). 

– base b = 16, and 
– sixteen symbols,

Symbol A, B, C, D, E, F are equivalent to 10, 11, 12, 
13, 14, and 15 respectively. 
The symbols in this system are often referred to as 
hexadecimal digits.

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
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Base 16 – Integers (1)

We can represent an Integer as:

Figure 2.3  Place values for an integer in the hexadecimal system
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Base 16 – Integers (2)

Example 2.6 shows that the number (2AE)16 
in hexadecimal

The equivalent decimal number is N = 512 + 160 + 14 = 686.The equivalent decimal number is N = 512 + 160 + 14 = 686.
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The octal system (base 8)

The word octal is derived from the Latin root 
octo (eight). 
– base b = 8, and 
– Eight symbols, S = {0, 1, 2, 3, 4, 5, 6, 7}

Place values for an integer in the octal system
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Base 8 – Integers (1)

We can represent an Integer as:

Figure 2.4  Place values for an integer in the octal system
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Base 8 – Integers (2)

Example 2.7 shows that the number (1256)8
in octal is the same as 686 in decimal.

The decimal number is N = 512 + 128 + 40 + 6 = 686.
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Summary of the Base 10/2/8/16 
positional systems (1)
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Summary (2)

The number 0 to 
15 is represented 
in different 
systems
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Conversion

The decimal system is more familiar than the 
other systems
To convert a number in one system to the 
equivalent number in another system
– Any base – Decimal
– Binary – Hexadecimal
– Binary – Octal
– Octal – Hexadecimal
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Any base to decimal conversion (1)

Converting other bases to decimal (Fig. 2.5)
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Any base to decimal conversion (2)

Example 2.8 shows how to convert the binary 
number (110.11)2 to decimal: (110.11)2 = 
6.75.
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Any base to decimal conversion (3)

Example 2.9 shows how to convert the 
hexadecimal number (1A.23)16 to decimal.

The result in the decimal notation is not exact, because 
3 × 16−2 = 0.01171875. We have rounded this value to three 
digits (0.012). 
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Any base to decimal conversion (4)

Example 2.10 shows how to convert (23.17)8
to decimal.

This means that (23.17)8 ≈ 19.234 in decimal. Again, we have 
rounded up 7 × 8−2 = 0.109375.
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Decimal to any base conversion 

Two procedures for converting a decimal 
number to its equivalent in any base.
– Converting the integral part 
– Converting the fractional part
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Converting the integral part (1)

UML’s state diagram
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Converting the integral part (2)

The Figure shows the destination is made 
with each repetition. (process manually)

Figure 2.7  
Converting the integral part of a number in decimal to other bases
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Converting the integral part (3)

Example 2.11 shows how to convert 35 in decimal to 
binary. The result is 35 = (100011)2.

Example 2.12 shows how to convert 126 in decimal 
to octal. The result is 126 = (176)8.
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Converting the integral part (4)

Example 2.13 shows how to convert 126 in 
decimal to hexadecimal. The result is 126 = 
(7E)16
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Converting the fractional part (1)

UML’s
State
diagram
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Converting the fractional part (2)

The Figure shows the destination is made with each 
repetition. (process manually)

Figure 2.9  
Converting the fractional part of a number in decimal to other bases
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Converting the fractional part (3)

Example 2.14 converts the decimal number 
0.625 to binary.

Since the number 0.625 = (0.101)2 has no integral part, the 
example shows how the fractional part is calculated.
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Converting the fractional part (4)

Example 2.15 shows how to convert 0.634 to octal using 
a maximum of four digits. The result is 0.634 = (0.5044)8. 

Example 2.16 shows how to convert 178.6 in decimal to 
hexadecimal using only one digit to the right of the 
decimal point. The result is 178.6 = (B2.9)16
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Converting the fractional part (5)

An alternative method for converting a small An alternative method for converting a small 
decimal integer (< 256) to binary is to break decimal integer (< 256) to binary is to break 
the number as the sum of numbers that are the number as the sum of numbers that are 
equivalent to the binary place values shown:equivalent to the binary place values shown:

For Example:
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Converting the fractional part (6)

A method can be used to convert a decimal fraction A method can be used to convert a decimal fraction 
to binary when the denominator is a power of two:to binary when the denominator is a power of two:
Convert 27/64 to binary: The answer is (0.011011)Convert 27/64 to binary: The answer is (0.011011)22
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Binary-hexadecimal conversion (1)

A relationship between the two bases: four 
bits in binary is one digit in hexadecimal 

Figure 2.10  
Binary to hexadecimal and hexadecimal to binary conversion
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Binary-hexadecimal conversion (2)

Example 2.19 shows the hexadecimal equivalent of 
the binary number (110011100010)2.

– First,  arranging the binary number in 4-bit patterns
– Using the equivalent of each pattern shown in Table 

2.2 on page 25
– Then, changing the number to hexadecimal: 

(4E2)16.

100    1110     0010100    1110     0010
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Binary-hexadecimal conversion (3)

Example 2.20: What is the binary equivalent What is the binary equivalent 
of (24C)16?of (24C)16?
Each hexadecimal digit is converted to 4Each hexadecimal digit is converted to 4--bit bit 
patterns. The result is (001001001100)patterns. The result is (001001001100)22..

2 2 →→ 0010, 4 0010, 4 →→ 0100, and C 0100, and C →→ 11001100
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Binary-octal conversion (1)

A relationship between the two bases: three 
bits in binary is one octal digit

Figure 2.10  Binary to octal and octal to binary conversion
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Binary-octal conversion (2)

Example 2.21 shows the octal equivalent of the 
binary number (101110010)2. 

– Each group of three bits is translated into one octal digit 
(Table 2.2). The result is (562)8.

Example 2.22: What is the binary equivalent of for 
(24)8?

– Write each octal digit as its equivalent bit pattern to get. The
result is (010100)2.

101     110     010

2 → 010  and  4 → 100
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Octal-hexadecimal conversion (1)

Using the binary system as the intermediate 
system.

Figure 2.12  
Octal to hexadecimal and hexadecimal to octal conversion
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Octal-hexadecimal conversion (2)

Example 2.23 – to find the minimum number of 
binary digits required to store decimal integers with a 
maximum of six digits.

–– kk = 6, b1 = 10, and b2 = 2. Then= 6, b1 = 10, and b2 = 2. Then

–– The largest sixThe largest six--digit decimal number is 999,999. digit decimal number is 999,999. 
–– The largest 20The largest 20--bit binary number is 1,048,575.bit binary number is 1,048,575.
–– The largest 19The largest 19--bit number is 524287, which is smaller than bit number is 524287, which is smaller than 

999,999. 999,999. 
–– We definitely need twenty bits.We definitely need twenty bits.

xx = = ⎡⎡kk ×× (logb(logb11 / logb/ logb22))⎤⎤ = = ⎡⎡6 6 ×× (1 / 0.30103)(1 / 0.30103)⎤⎤ = 20. = 20. 
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1-3 Nonpositional Number 
Systems
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Overview (1)

• Non-positional number systems are not 
used in computers. 

• A non-positional number system still uses a 
limited number of symbols in which each 
symbol has a value.

• We give a short review for comparison with 
positional number systems.
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Overview (2)

A number is represented as:A number is represented as:

and has the value of:and has the value of:

Some exceptions to the addition rule, as shown in Some exceptions to the addition rule, as shown in 
Example 2.24 (Roman Numerals).Example 2.24 (Roman Numerals).
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Roman numerals

Roman numerals is a non-positional number system 
– The set of symbols, S = {I, V, X, L, C, D, M}. 
– Table 2.3 shows the values of each symbol

To find the value of a number, we need to add the value 
of symbols subject to specific rules (See Page 34).
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Roman numerals and their values


