Foundations of Computer Science

Second Edition
BEHROUZ FOROUZAN
FIROUZ MOSHARRAF

Chapter 2 Number Systems

Outlines

- Introduction
- Positional Number Systems
 - Base 10, 2, 8, 16.
- Nonpositional Number Systems
 - Roman Numerals

Objectives

After studying this chapter, the student should understand:

- The concept of number systems.
- Non-positional and positional number systems.
- Decimal, Binary, Hexadecimal and Octal system.
- Convert a number among binary, octal, hexadecimal, and decimal systems.
- Find the number of digits needed in each system to represent a particular value.

1-1 Introduction

The Definition of Number System

- A number can be represented using distinct symbols and differently in different systems.
- For example,
 - The two numbers (2A)₁₆ and (52)₈ both refer to the same quantity, (42)₁₀, but their representations are different
- Two groups
 - positional and non-positional systems

1-2 Position Number Systems

Overview

 In a positional number system, a number represented as:

$$\pm (S_{k-1} ... S_2 S_1 S_0. S_{-1} S_{-2} ... S_{-l})_b$$

has the value of:

$$n = \pm S_{k-1} \times b^{k-1} + \dots + S_1 \times b^1 + S_0 \times b^0 + S_{-1} \times b^{-1} + S_{-2} \times b^{-2} + \dots + S_{-l} \times b^{-l}$$

in which S is the set of symbols, b is the base (or radix).

The Base includes Base10(Decimal), Base2(Binary), Base 16(Hexadecimal), or Base8(octal) •

The decimal system (base 10)

- The word decimal is derived from the Latin root decem (ten).
 - base b = 10, and
 - ten symbols: $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- The symbols in this system are often referred to as decimal digits or just digits.
 - Integer examples
 - Real examples

Base 10 – Integers (1)

Figure 2.1 Place values for an integer in the decimal system

Base 10 – Integers (2)

Example 2.1 shows the place values for the integer
 +224 in the decimal system

$$10^{2}$$
 10^{1} 10^{0} Place values
2 2 4 Number
 $N = + 2 \times 10^{2} + 2 \times 10^{1} + 4 \times 10^{0}$ Values

 Example 2.2 shows the place values for the decimal number -7508

1000 100 10 1 Place values
7 5 0 8 Number
$$V = -(7 \times 1000 + 5 \times 100 + 0 \times 10 + 8 \times 1)$$
 Values

Base 10 – Reals

A real – a number with a fractional part

Integral part

Fractional part

$$R = \pm S_{k-1} \times 10^{k-1} + \dots + S_1 \times 10^1 + S_0 \times 10^0 + S_{-1} \times 10^{-1} + \dots + S_{-l} \times 10^{-l}$$

 Example 2.3 shows the place values for the real number +24.13.

$$10^{1}$$
 10^{0} 10^{-1} 10^{-2} Place values 2 4 • 1 3 Number $R = +$ 2×10 + 4×1 + 1×0.1 + 3×0.01 Values

The binary system (base 2)

- The word binary is derived from the Latin root bini (or two by two).
 - base b = 2, and
 - two symbols, $S = \{0, 1\}$
- The symbols in this system are often referred to as binary digits or bits (binary digit).
 - Integer examples
 - Real examples

Base 2 – Integers (1)

We can represent an Integer as:

 $N = \pm S_{k-1} \times 2^{k-1} + S_{k-2} \times 2^{k-2} + ... + S_2 \times 2^2 + S_1 \times 2^1 + S_0 \times 2^0$

Figure 2.2 Place values for an integer in the binary system

Base 2 – Integers (2)

Example 2.4 shows that the number (11001)₂ in binary is the same as 25 in decimal. The subscript 2 shows that the base is 2.

$$2^4$$
 2^3 2^2 2^1 2^0 Place values 1 1 0 0 1 Number $N = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ Decimal

The equivalent decimal number is N = 16 + 8 + 0 + 0 + 1 = 25.

Base 2 – Reals (1)

Integral part Fractional part
$$R = \pm \qquad S_{k-1} \times 2^{k-1} + \ldots + S_1 \times 2^1 + S_0 \times 2^0 + \qquad S_{-1} \times 2^{-1} + \ldots + S_{-l} \times 2^{-l}$$

Example 2.5 shows that the number (101.11)₂ in binary is equal to the number 5.75 in decimal.

$$2^{2}$$
 2^{1} 2^{0} 2^{-1} 2^{-2} Place values
1 0 1 • 1 1 Number
R = 1×2^{2} + 0×2^{1} + 1×2^{0} + 1×2^{-1} + 1×2^{-2} Values

The equivalent decimal number is R = 4+0+1+0.5+0.25 = 5.75.

The hexadecimal system (base 16)

- The word hexadecimal is derived from the Greek root hex (six) and the Latin root decem (ten).
 - base b = 16, and
 - sixteen symbols,S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
- Symbol A, B, C, D, E, F are equivalent to 10, 11, 12, 13, 14, and 15 respectively.
- The symbols in this system are often referred to as hexadecimal digits.

Base 16 – Integers (1)

We can represent an Integer as:

$$N = \pm S_{k-1} \times 16^{k-1} + S_{k-2} \times 16^{k-2} + \dots + S_2 \times 16^2 + S_1 \times 16^1 + S_0 \times 16^0$$

Figure 2.3 Place values for an integer in the hexadecimal system

Base 16 – Integers (2)

Example 2.6 shows that the number (2AE)₁₆
 in hexadecimal

$$16^2$$
 16^1 16^0 Place values
2 A E Number
N = 2×16^2 + 10×16^1 + 14×16^0 Values

The equivalent decimal number is N = 512 + 160 + 14 = 686.

The octal system (base 8)

- The word octal is derived from the Latin root octo (eight).
 - base b = 8, and
 - Eight symbols, $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$
- Place values for an integer in the octal system

Base 8 – Integers (1)

We can represent an Integer as:

$$N = \pm S_{k-1} \times 8^{k-1} + S_{k-2} \times 8^{k-2} + \dots + S_2 \times 8^2 + S_1 \times 8^1 + S_0 \times 8^0$$

$$8^{k-1} \qquad 8^{k-2} \qquad \cdots \qquad 8^2 \qquad 8^1 \qquad 8^0 \quad \text{Place values}$$

$$\pm S_{k-1} \qquad S_{k-2} \qquad \cdots \qquad S_2 \qquad S_1 \qquad S_0 \qquad \text{Number}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$N = \pm S_{k-1} \times 8^{k-1} + S_{k-2} \times 8^{k-2} + \cdots + S_2 \times 8^2 + S_1 \times 8^1 + S_0 \times 8^0 \quad \text{Values}$$

Figure 2.4 Place values for an integer in the octal system

Base 8 – Integers (2)

Example 2.7 shows that the number (1256)₈
 in octal is the same as 686 in decimal.

$$8^{3}$$
 8^{2} 8^{1} 8^{0} Place values

1 2 5 6 Number

N = 1×8^{3} + 2×8^{2} + 5×8^{1} + 6×8^{0} Values

The decimal number is N = 512 + 128 + 40 + 6 = 686.

Summary of the Base 10/2/8/16 positional systems (1)

Table 2.1 Summary of the four positional number systems

System	Base	Symbols	Examples
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	2345.56
Binary	2	0, 1	(1001.11) ₂
Octal	8	0, 1, 2, 3, 4, 5, 6, 7	(156.23) ₈
Hexadecimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	(A2C.A1) ₁₆

Summary (2)

The number 0 to 15 is represented in different systems

 Table 2.2
 Comparison of numbers in the four systems

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion

- The decimal system is more familiar than the other systems
- To convert a number in one system to the equivalent number in another system
 - Any base Decimal
 - Binary Hexadecimal
 - Binary Octal
 - Octal Hexadecimal

Any base to decimal conversion (1)

Converting other bases to decimal (Fig. 2.5)

Any base to decimal conversion (2)

• Example 2.8 shows how to convert the binary number $(110.11)_2$ to decimal: $(110.11)_2$ = 6.75.

Binary 1 1 0 • 1 1 1 Place values 2^2 2^1 2^0 2^{-1} 2^{-2} Partial results 4 + 2 + 0 + 0.5 + 0.25

Decimal: 6.75

Any base to decimal conversion (3)

 Example 2.9 shows how to convert the hexadecimal number (1A.23)₁₆ to decimal.

Hexadecimal	1		А	•	2		3
Place values	16 ¹		16 ⁰		16^{-1}		16^{-2}
Partial result	16	+	10	+	0.125	+	0.012

Decimal: 26.137

The result in the decimal notation is not exact, because $3 \times 16^{-2} = 0.01171875$. We have rounded this value to three digits (0.012).

Any base to decimal conversion (4)

Example 2.10 shows how to convert (23.17)₈ to decimal.

Octal
 2
 3
 •
 1
 7

 Place values

$$8^1$$
 8^0
 8^{-1}
 8^{-2}

 Partial result
 16
 +
 3
 +
 0.125
 +
 0.109

Decimal: 19.234

This means that $(23.17)8 \approx 19.234$ in decimal. Again, we have rounded up $7 \times 8^{-2} = 0.109375$.

Decimal to any base conversion

- Two procedures for converting a decimal number to its equivalent in any base.
 - Converting the integral part
 - Converting the fractional part

Converting the integral part (1)

Converting the integral part (2)

 The Figure shows the destination is made with each repetition. (process manually)

Q: Quotients

R: Remainders

S: Source

D: Destination

D_i: Destination digit

Figure 2.7

Converting the integral part (3)

 Example 2.11 shows how to convert 35 in decimal to binary. The result is 35 = (100011)₂.

 Example 2.12 shows how to convert 126 in decimal to octal. The result is 126 = (176)₈.

Converting the integral part (4)

 Example 2.13 shows how to convert 126 in decimal to hexadecimal. The result is 126 = (7E)₁₆

Converting the fractional part (1)

Given: Start source and base UML's State Create an empty destination diagram Source: fraction part of decimal number Multiply source by Destination: fraction part of converted number base to get a result Condition: Fraction part is zero or destination digits are enough Insert integral part of result at right of destination Fraction part of result becomes new source [Condition is true] Return: destination

Converting the fractional part (2)

 The Figure shows the destination is made with each repetition. (process manually)

I: Integral part

F: Fractional part

S: Source

D: Destination

D_i: Destination digit

Note:

The fraction may never become zero.

Stop when enough digits have been created.

Figure 2.9

Converting the fractional part of a number in decimal to other bases

Converting the fractional part (3)

 Example 2.14 converts the decimal number 0.625 to binary.

Since the number $0.625 = (0.101)_2$ has no integral part, the example shows how the fractional part is calculated.

Converting the fractional part (4)

• Example 2.15 shows how to convert 0.634 to octal using a maximum of four digits. The result is $0.634 = (0.5044)_8$.

 Example 2.16 shows how to convert 178.6 in decimal to hexadecimal using only one digit to the right of the decimal point. The result is 178.6 = (B2.9)₁₆

Decimal
$$0 \leftarrow 11 \leftarrow 178 \qquad 0.6 \rightarrow 0.6$$
Hexadecimal $B \sim 2 \cdot 9$

Converting the fractional part (5)

 An alternative method for converting a small decimal integer (< 256) to binary is to break the number as the sum of numbers that are equivalent to the binary place values shown:

Place values	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Decimal equivalent	128	64	32	16	8	4	2	1

For Example:

Decimal 165 =	128	+	0	+	32	+	0	+	0	+	4	+	0	+	1
Binary	1		0		1		0		0		1		0		1

Converting the fractional part (6)

- A method can be used to convert a decimal fraction to binary when the denominator is a power of two:
- Convert 27/64 to binary: The answer is (0.011011)₂

Place values	2^{-1}	2 ⁻²	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}
Decimal equivalent	1/2	1/4	1/8	1/16	1/32	1/64	1/128

Decimal =
$$27/64$$
 16/64 + 8/64 + 2/64 + 1/64
1/4 + 1/8 + 1/32 + 1/64

Decimal 27/64 =	0	+	1/4	+	1/8	+	0	+	1/32	+	1/64
Binary	0		1		1		0		1		1

Binary-hexadecimal conversion (1)

 A relationship between the two bases: four bits in binary is one digit in hexadecimal

Figure 2.10

Binary to hexadecimal and hexadecimal to binary conversion

Binary-hexadecimal conversion (2)

 Example 2.19 shows the hexadecimal equivalent of the binary number (110011100010)₂.

100 1110 0010

- First, arranging the binary number in 4-bit patterns
- Using the equivalent of each pattern shown in Table
 2.2 on page 25
- Then, changing the number to hexadecimal: (4E2)16.

Binary-hexadecimal conversion (3)

- Example 2.20: What is the binary equivalent of (24C)16?
- Each hexadecimal digit is converted to 4-bit patterns. The result is (001001001100)₂.

 $2 \to 0010, 4 \to 0100, \text{ and } C \to 1100$

Binary-octal conversion (1)

 A relationship between the two bases: three bits in binary is one octal digit

B_i: Binary digit (bit) O_i: Octal digit

Figure 2.10 Binary to octal and octal to binary conversion

Binary-octal conversion (2)

- Example 2.21 shows the octal equivalent of the binary number (101110010)₂.
 - Each group of three bits is translated into one octal digit (Table 2.2). The result is (562)8.

101 110 010

- Example 2.22: What is the binary equivalent of for (24)₈?
 - Write each octal digit as its equivalent bit pattern to get. The result is (010100)₂.

 $2 \rightarrow 010$ and $4 \rightarrow 100$

Octal-hexadecimal conversion (1)

 Using the binary system as the intermediate system.

Figure 2.12

Octal to hexadecimal and hexadecimal to octal conversion

Octal-hexadecimal conversion (2)

- Example 2.23 to find the minimum number of binary digits required to store decimal integers with a maximum of six digits.
 - k = 6, b1 = 10, and b2 = 2. Then

$$x = \lceil k \times (\log b_1 / \log b_2) \rceil = \lceil 6 \times (1 / 0.30103) \rceil = 20.$$

- The largest six-digit decimal number is 999,999.
- The largest 20-bit binary number is 1,048,575.
- The largest 19-bit number is 524287, which is smaller than 999,999.
- We definitely need twenty bits.

1-3 Nonpositional Number Systems

Overview (1)

- Non-positional number systems are not used in computers.
- A non-positional number system still uses a limited number of symbols in which each symbol has a value.
- We give a short review for comparison with positional number systems.

Overview (2)

A number is represented as:

$$S_{k-1} \dots S_2 S_1 S_0 \cdot S_{-1} S_{-2} \dots S_{-l}$$

and has the value of:

$$n = \pm$$

$$S_{k-1} + \dots + S_1 + S_0$$

Fractional part

$$S_{k-1} + \dots + S_1 + S_0 + S_{-1} + S_{-2} + \dots + S_{-l}$$

Some exceptions to the addition rule, as shown in Example 2.24 (Roman Numerals).

Roman numerals

- Roman numerals is a non-positional number system
 - The set of symbols, $S = \{I, V, X, L, C, D, M\}$.
 - Table 2.3 shows the values of each symbol

Table 2.3 Values of symbols in the Roman number system

Symbol	1	V	Χ	L	С	D	М
Value	1	5	10	50	100	500	1000

 To find the value of a number, we need to add the value of symbols subject to specific rules (See Page 34).

Roman numerals and their values

III	\rightarrow	1 + 1 + 1	=	3
IV	\rightarrow	5 – 1	=	4
VIII	\rightarrow	5 + 1 + 1 + 1	=	8
XVIII	\rightarrow	10 + 5 + 1 + 1 + 1	=	18
XIX	\rightarrow	10 + (10 -1)	=	19
LXXII	\rightarrow	50 + 10 + 10 + 1 + 1	=	72
CI	\rightarrow	100 + 1	=	101
MMVII	\rightarrow	1000 + 1000 + 5 + 1 + 1	=	2007
MDC	\rightarrow	1000 + 500 + 100	=	1600