Foundations of Computer Science

Second Edition
BEHROUZ FOROUZAN

FIROUZ MOSHARRAF

Chapter 3
Data Storage

Outlines

o]
e Data Types

e Storing numbers
e Storing text

e Storing audio

e Storing images
e Storing video

CSIM@PU

Objectives

o]
After studying this chapter, the student should

understand

Five different data types used in a computer.

How different data is stored inside a computer.
How integers are stored in a computer.

How reals are stored in a computer.

How text Is stored in a computer.

How audio Is stored in a computer.

How images are stored in a computer.

How video Is stored in a computer. CcsiM@pPu

3.1 Data Types

Introduction

o]
« Different types of data (Fig. 3.1)

‘ Data I

‘Numbers I‘ Text I Audio I‘ Images I‘ Video I

The computer industry uses the term “multimedia” to

define information that contains numbers,
text, images, audio and video.

CSIM@PU

Data inside the computer

e All data types are transformed into a uniform
representation when they are stored in a
computer and transformed back to their
original form when retrieved. This universal
representation is called a bit pattern.

10001010111 111

A number

A character
typed on
keyboard

Part of
an 1mage

Part of
a song

Part of
a film

65

C(ﬁ))

A 4

Program

|

Math routine

X

01000001

Memory

Program

|

Text editor

[~

A 4

01000001

Memory

Program

|

Image recorder

v

01000001

Memory

Program

|

Music recorder

A 4

01000001

Memory

Program

|

Video recorder

v

01000001

Memory

Storage of different data types

Data compression &
Error detection and correction

e Data compression

- To occupy less memory space, data is normally
compressed before being stored in the computer.

— Detalls in Chapter 15.

e Error detection and correction

— Another issue related to data is the detection and

correction of errors during transmission or
storage.

— Briefly in Appendix H.

3.2 Storing Numbers

Overview
« /"7

e A number is changed to the binary system
before being stored in the computer memory,
as described in Chapter 2.

e Problems:
- How to store the sign of the number.
- How to show the decimal point.

CSIM@PU

Storing Integers
-

e Integers (without a fractional part), for examples:
134 and —125 are integers, but 134.23 and —0.235 are not

e An integer can be thought of as a number in which the
position of the decimal point is fixed

e Fixed-point representation is used to store an integer
(Fig. 3.4). The decimal point is assumed but not stored

oj1rjryoy1rjyryprypo0ofojof1jo0oj1011|j1]10 @

Memory location T

Decimal point

An integer is normally stored in memory using (assumed position)

fixed-point representation.

Unsigned representation (1)
-

e An unsigned integer iIs an integer that can
never be negative. Its range is between O
and positive Infinity.

e An input device stores an unsigned integer
using the following steps:

- The integer is changed to binary.

— If the number of bits is less than n, 0s are added
to the left.

Unsigned representation (2)
-

e Example 3.1 Store 7 Iin an 8-bit memory
location using unsigned representation.

~ First change the integer to binary, (111),.
- Add five Os to make a total of eight bits, (00000111)..

Change 7 to binary e 1T 1 1

Add five bits at the left —- 0 0 0 0 0 1T 1 1

The integer is stored in the memory location,
but the subscript is not stored in the computer

Unsigned representation (3)
c—

e Example 3.2 store 258 in a 16-bit memory location.
- First change the integer to binary (100000010),.

- Add seven 0s to make a total of sixteen bits,
(0000000100000010),.

Change 258 to binary — 1700 00O0O0T1O0

Add seven bitsattheleft — 0 0 0 0 0 0 0 1 0 0 0O OO O 1O

e Example 3.3

- What is returned when retrieving the bit string 00101011
stored in memory as an unsigned integer?

- The binary integer is converted to the unsigned integer 43.

Unsigned representation (4)

e Figure 3.5 stores an integer that is larger
than 24— 1 =15 in a memory location that
can only hold four bits. (Overflow)

Representable integer ’ Overflow

A
>

T T T T T | T T T T T
0 1 2 3 4 - 15 16 17 18 19 20 ...

1111 0000

1000 0111

Sign-and-magnitu
representation (1)

de

e The range for unsigned integers (O to 2" — 1)

IS divided into two equ

al sub-ranges.

- The first half represents positive integers,
- the second half, negative integers.

0000 0001 0010 0011 0100 0101 0110 O111

1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7

0 -1 -2 3 4 -5 -6 -7

The leftmost bit defines the sign. If it is 0, the integer
IS positive. If it is 1, the integer Is negative.

Sign-and-magnitude
representation (2)
-

e Example 3.4 stores +28 in an 8-bit memory
location

e Solution
- Changing the integer to 7-bit binary
— The leftmost bitis setto O
— The 8-bit number is stored.
Change 28 to 7-bit binary o o 1 1 1 0 O

Add the sign and store no o 1 1 1 0 O

Sign-and-magnitude
representation (3)
c—

e Example 3.5 stores -28 in an 8-bit memory
location
e Solution
- Changing the integer to 7-bit binary.
— The leftmost bit is set to 1.
— The 8-bit number is stored.

Change 28 to 7-bit binary o 0 1 1 1 0 O

Add the sign and store O o 1 1 1 0 O

Sign-and-magnitude
representation (4)
c—

e Example 3.6 retrieves the integer that is stored as
01001101 in sign-and-magnitude representation.
— Since the leftmost bit is 0, the sign is positive.
-~ The rest of the bits (1001101) are changed to decimal (77).
— After adding the sign, the integer is +77.

e Example 3.7 retrieves the integer that is stored as
10100001 in sign-and-magnitude representation.
— Since the leftmost bit is 1, the sign is negative.
- The rest of the bits (0100001) are changed to decimal (33).
— After adding the sign, the integer is —33.

Sign-and-magnitude
representation (5)
- Negative overflow Presentable Presentable Positive overflow -

(negative) (nonnegative)
. . . | . . .

< + + } } } 1 4 ' 4 $ t
s *11 LX) *7 see *3 72 71 j:O 1 2 3 s 7 see 11 s

a. Linear characteristic of an integer in sign-and-magnitude format

A 4

1111 0000 1111 0000
0001

b. Negative overflow c¢. Positive overflow

e Positive and negative overflow when storing an integer
using a 4-bit memory location.

Two’s complement representation (1)
c- |

e Almost all computers use 2's complement
representation to store a signed integer in an n-
bit memory location.

- The avalilable range for an unsigned integer of (0 to 2n
— 1) is divided into two equal sub-ranges.

- The first sub-range for nonnegative integers,
- The second half for negative integers.

Two’s complement representation (2)
c- |

e The bit patterns are assigned to negative and
nonnegative integers as shown in the Figure.

0000 0001 0010 0O11 0100 Ol101 O110 O111}1000 1001 1010 1011 1100 1101 1110 1111

L _|

e

v v

1000 1001 1010 1011 1100 1101 1110 1111|0000 00Ol 0010 OOI1 0100 0101 0110 OI1I11

-8 -7 -6 -5 4 3 2 -l 0 | 2 3 4 5 6 7

The leftmost bit defines the sign of the integer. If it is O, the
Integer is positive. If it is 1, the integer Is negative.

One’s Complementing (1)
-

e Taking the one’s complement of an integer.

e The operation can be applied to any integer,
positive or negative.

e This operation simply reverses (flips) each
bit. A O-bit is changed to a 1-bit, a 1-bit is
changed to a O-bit.

One’s Complementing (2)
-

e Example 3.8 shows the one’s complement of the
iInteger 00110110.

Original pattern o o 1 1 0 1 1

After applying one’s complement operation 1 1.0 0 1 0 O

e Example 3.9 shows that we get the original integer if
we apply the one’s complement operations twice.

Original pattern o o 1t 1 0 1 1 O

One’s complementing once

One’s complementing twice o o 1t 1 0 1 1 O

Two’s Complementing (1)

e Taking the two’s complement of an integer Iin
binary.

e Two steps
— First, copying bits from the right until a 1

— Then, flipping the rest of the bits.
e Example 3.10 shows the two’s complement of
the integer 00110100.

Original integer 0O O

Two’s complementing once

Two’s Complementing (2)
-

e Example 3.11: we get the original integer If
applying the 2’'s complement operation twice.

Original integer o 0o 1 1 0 1 0 O

Two's complementing once 1 0 O
Vol
Two's complementing twice 1 0 O

An alternative way to take the 2's complement of an integer
Is to first take the 1's complement and then add 1 to the result.

Two’'s Complementing (3)

e Example 3.12 stores the integer 28 in an 8-bit
memory location using 2's complement
representation.

Change 28 to 8-bit binary O 0o 0o 1 1 1 O

e Example 3.13 stores —28 in an 8-bit memory
location using 2’s complement representation.

Change 28 to 8-bit binary o 0 0o 1 1 1 O
A T T T

Apply two’s complement operation

e Example 3.14 retrieves the integer that Is stored as
00001101 in memory In two’s complement format.

Leftmost bit is 0. The sign is positive O 0o 0o 01 1 0 1
Integer changed to decimal 13
Sign is added (optional) +13

e Example 3.15 retrieves the integer stored as
11100110 in memory using two’s complement format.

Leftmost bit is 1. The sign is negative 1 11 0 0 1 1 O

Apply two’s complement operation

Integer changed to decimal 26

Sign is added -26

Two’s Complementing (4)

Negative overflow Presentable Presentable Positive overflow
< (negative) (nonnegative)

. 711 ...78 as e 73 72 71 0 1 2 3 LN 7 LN] 11 LN]

1111 0000 I11T 0000

0001

1000 0111 1000 0111

Negative overtlow Positive overflow

There is only one zero in two’s complement notation.

Comparison

Table 3.1 Summary of integer representations

Contents of memory Unsigned |Sign-and-magnitude |Two’s complement
0000 0 0 +0
0001 1 1 +1
0010 2 2 +2
0011 3 3 +3
0100 4 4 +4
0101 5 5 +5
0110 6 6 +6
0111 7 7 +7
1000 8 -0 -8
1001 9 -1 -7
1010 10 -2 -6
1011 11 -3 -5
1100 12 -4 -4
1101 13 -5 -3
1110 14 -6 -2
1111 15 -7 -1

Storing Reals (1)
c- |

e Arealis a number with an integral part and a
fractional part.

e Although a fixed-point representation can be used to
represent a real number, the result may not be
accurate or it may not have the required precision.
The next two examples explain why.

e Real numbers with very large integral parts or very
small fractional parts should not be stored in fixed-
point representation.

Storing Reals (2)
c- |

e Example 3.16 tries to represent a decimal number
such as 1.00234 to a total of sixteen digits.
- Two digits at the right of the decimal point
- Fourteen digits at the left of the decimal point
- The system stores the number as 1.00; The precision of a real
number in this system is lost
e Example 3.17 tries to represent a decimal number
such as 236154302345.00 to a total of sixteen digits.
— Six digits to the right of the decimal point
— Ten digits for the left of the decimal point,

- The system stores the number as 6154302345.00; The
accuracy of a real number in this system is lost

Floating-point representation (1)
S

e The solution for maintaining accuracy or
precision is to use floating-point representation.

e Three parts: a sign, a shifter and a fixed-point
number. (Figure 3.9)

‘ Sign I ‘ Shafter I ‘ Fixed-point number I

Floating-point pepresentation

Floating-point representation (2)
S

e Example 3.18 shows the decimal number In
floating-point representation.

7,452,000,000,000,000,000,000.00

e The three parts are

- The sign (+), the shifter (21), and the fixed-point
part (7.425).

- Note that the shifter is the exponent.

Actual number — 4+ /7,425,000,000,000,000,000,000.00

Scientific notation — + 7.425 x 1021

Floating-point representation (3)
S

e Example 3.19 shows the number in floating-
point representation.

—0.0000000000000232

e The three parts are

- The sign (-), the shifter (-14), and the fixed-point
part (2.32)

Actual number — _ 0.0000000000000232

Scientific notation — - 232x 1074

Floating-point representation (4)
.

e Examples (3.20 and 3.21) show the numbers in
floating-point representation.
— Keeping only one digit to the left of the decimal point.

Eg. 3.20: (101001000000000000000000000000000.00),
Actual number — + (101001000000000000000000000000000.00),

Scientific notation — + 1.01001 x 232

Eg.3.21: —(0.00000000000000000000000101),
Actual number — - (0.00000000000000000000000101),

Scientific notation — — 1.01 x 2724

Normalization (1)
-

e Both the scientific method (for the decimal
system) and the floating-point method (for
the binary system) use only one non-zero
digit on the left of the decimal point.

e In the decimal system this digit can be 1 to 9,
while in the binary system it can only be 1.

Decimal

Binary

—

—

+

+

A OOXXXXXXXXX

1.yyyyyyyyyyyyyy

Note: dis 1to 9 and each xis0to 9

Note: each yis 0 or 1

Normalization (2)

+ 26 x 1.0001110101
+ 6 0001110101
! ! !

Sign Exponent Mantissa

e Note that the point and the bit 1 to the left of the
fixed-point section are not stored—they are implicit.

e The mantissais a fractional part that, together with
the sign, is treated like an integer stored in sign-and-

magnitude representation.

Excess System (1)
c—

e EXxponent

- To show how many bits the decimal point should be moved to the
left or right.

- Being a signed number (ff1*'|Excess system)
e EXcess System

- Positive and negative integers are stored as unsigned integers.

- A positive integer (called a bias) is added to each number to shift
them uniformly to the non-negative side.

e The value of this bias is 2™1 — 1, where m is the size of the
memory location to store the exponent.

Excess System (2)

e Example 3.22 shows sixteen integers with 4-bit

allocation.
— By adding seven units to each integer, uniformly
translating all integers to the right.
-~ The new system is referred to as Excess-7, or biased
representation with biasing value of 7.

Four-bit system with positive and negative integers

. r +r r + ¢+ + + 1+ 1 1 1
4 -3 2 -1 01 2 3 4 5 6 7 8

] |
7 6 -5 -
Add 7 units

Execess-7 system

. .1 1 1 1 1 - { 1 1 1 1 | | >
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y

8 bit ones' complement

Binary
value
00000000
00000001

01111101
01111110
01111111
10000000
10000001
10000010

11111110

11111111

Ones’
complement
interpretation

0
1

125

126

127
—127
—126
—-125

Unsigned
interpretation

0
1

125
126
127
128
129
130

254
255

8 bit two's complement

00000000
00000001
01111110
01111111
10000000
10000001
10000010
11111110
11111111

Two's
complement
interpretation

0
1

126

127
-128
—127
-126

Unsigned
interpretation

0
1

126
127
128
129
130

254
255

o bit signed magnitude

Binary
value

00000000
00000001

01111111
10000000

1111111

Binary
value

00000000
00000001

01111111
10000000

11111111

signed
magnitude
interpretation

0
1

127
-0

127

8 bit excess-127

Excess- 127

Unsigned
interpretation

0
1

127
128

255

Unsigned

interpretation interpretation

127
-126

+1

+128

0
1

127
128

255

|IEEE Standard

Excess 127

Excess 1023

1 8 23
S || Exponent Mantissa
Sign
a. Single precision (32 bits)
1 11 52
S Exponent Mantissa
Sign

b. Double precision (64 bits)

IEEE standards for floating-point representation

IEEE Specifications
-

Table 3.2 Specifications of the two IEEE floating-point standards

Parameter Single Precision Double Precision
Memory location size (number of bits) 32 64

Sign size (number of bits) 1 1
Exponent size (number of bits) 8 11
Mantissa size (number of bits) 23 52

Bias (integer) 127 1023

Excess System Example (1)
.

e Example 3.23 show the Excess 127 (single precision)

representation of the decimal number 5.75.
Solution

e The sign is positive, so S = 0.

* Decimal to binary transformation: 5.75 = (101.11),.

« Normalization: (101.11), =(1.1011), x 22.

« E=2+127=129=(10000001),, M =1011.

We need to add nineteen zeros at the right of M to make it 23 bits.

0 10000001 10110000000000000000000
S E M

The number is stored in the computer as
01000000110110000000000000000000

Excess System Example (2)
.

e Example 3.24 shows the Excess 127
representation of —-161.875.

Solution:

e The sign 1s negative, so S = 1.

Decimal to binary: 161.875=(10100001.111),.
Normalization: (10100001.111), =(1.0100001111), x 27.
E=7+127=134=(10000110), and M = (0100001111),.

1 10000110 01000011110000000000000
S E M

The number 1s stored in the computer as
11000011010000111100000000000000

Excess System Example (3)
c—

e Example 3.25 shows the Excess 127
representation of —0.0234375.

Solution

S =1 (the number 1s negative).

* Decimal to binary: 0.0234375 = (0.0000011),.

e Normalization: (0.0000011), = (1.1), x 27°.

« E=-6+127=121=(01111001), and M = (1),.

1 01111001 10000000000000000000000

S E M

The number 1s stored 1n the computer as
10111100110000000000000000000000

Excess System Example (4)
S

e Example 3.26 show the value in decimal, when
The bit pattern Is stored in Excess 127 format:

(11001010000000000111000100001111),

S E M
1 10010100 00000000111000100001111
Solution

The first bit is S, the next eight bits, E and the remaining 23 bits, M.
The shifter=E — 127 = 148 — 127 = 21.

This gives us (1.00000000111000100001111), x 22!,

The binary number is (1000000001110001000011.11),.

The absolute value 1s 2,104,378.75.

The number is —2,104,378.75.

oo o e

Overflow and Underflow
« " /——////7

e Overflow and underflow in floating-point
representation of reals (Figure 3.12)

— Largest: — (1 — 2_24) x o128 + Largest: + (1 — 2_24) x o 7128
— Smallest: — (1 — 2_1) x 127 + Smallest: + (1 — 2_1) x o127
Presentable Presentable
Overflow (f;;gtive)e Underflow {gi)esliltié\lfe)e | Overflow
<]] | >

—Largest —Smallest 0 +Smallest +Largest

Storing Zero

e A real number with an integral part and the
fractional part set to zero, that is, 0.0, cannot
be stored using the steps discussed above.
To handle this special case, it is agreed that
In this case the sign, exponent and the
mantissa are set to 0s.

3.3 Storing Text

Overview (1)
-

e A section of text in any language is a sequence of
symbols used to represent an idea in that language.

e For example, the English language uses
- 26 symbols (A, B, C,..., Z) to represent uppercase letters,
- 26 symbols (a, b, c, ..., z) to represent lowercase letters,
— nine symbols (0, 1, 2, ..., 9) to represent numeric characters
- symbols (., ?, :,;, ...,) to represent punctuation.

e Other symbols such as blank, newline, and tab are
used for text alignment and readabillity.

Overview (2)
c- |
e Representing each symbol with a bit pattern.

e Text such as “CATS”, which is made up from four
symbols, can be represented as four n-bit
patterns, each pattern defining a single symbol

1000011 Jj1000001 1010100 1010011

Representing symbols using bit patterns

Overview (3)

Table 3.3 Number of symbols and bit pattern length

Number of symbols | Bit pattern length | Number of symbols | Bit pattern length
2 1 128]
4 2 256 8
8 3 65,5306 16
16 4 4,294,967,296 32

Overview (4)

S
e Codes (See Appendix A)
- ASCI|
— Unicode
— Other Codes

3.4 Storing Audio

Overview (1)
-

e Audio
- A representation of sound or music.

— Different to the numbers or text.

e Text is composed of countable entities
(characters); Text is an example of digital data.

- Being not countable.

- An example of analog data.

e Even if we can measure all its values in a period of time, we
cannot store these in the computer’'s memory, as we would
need an infinite number of memory locations.

e How to store audio data
- Sampling = Quantization - Encoding

Overview (2)
-

e Figure 3.15 shows the nature of an analog
signal, such as audio, that varies with time.

A Value

Maximum

0

/\ N [\ [Second > 1me
Minimum / \/ \./ U

Infinite number of values 1n one second

Sampling

e Sampling means that we select only a finite
number of points on the analog signal,
measure their values, and record them.

A Value

Maximum

0

/(\ oo -
/ W \j/(\./l Second
Minimum

Ten sample values in one second

Sampling an audio signal

Quantization
S

The value measured for each sample is a real
number.

However, it is simpler to use an unsigned integer (a
bit pattern) for each sample.

Quantization refers to a process that rounds the
value of a sample to the closest integer value.
For example,

— Ifthe real value is 17.2, it can be rounded down to 17: if the
value is 17.7, it can be rounded up to 18.

Encoding
-

e Quantized sample values are encoded as bit patterns.
- Some systems assign positive and negative values to samples,

- Some shift the curve to the positive part and assign only positive
values.

e Number of bits per sample B (bit depth), and the number
of samples per second, S:
- To store S x B bits for each second of audio

e This product is sometimes referred to as bit rate, R. For
example: 40,000 samples per second and 16 bits per
each sample, the bit rate is

R =40,000 x 16 = 640,000 bits per second

Standards for sound encoding
-

e MP3 (short for MPEG Layer 3).

- Today the dominant standard for storing audio.

- A modification of the MPEG (Motion Picture Experts
Group) compression method used for video.

- Using 44100 samples per second and 16 bits per sample.

e Lossy compression (Chapter 15)

- The result is a signal with a bit rate of 705,600 bits per
second, which is compressed using a compression method
that discards information that cannot be detected by the
human ear.

— As opposed to lossless compression

3.5 Storing Images

Overview (1)
-

e Images are stored in computers using two different
techniques:
- Raster graphics and Vector graphics.

e Raster graphics (or bitmap graphics)
- Be used when storing an analog image such as a photograph

— A photograph consists of analog data, similar to audio
Information. The difference is that the intensity of data varies i
space instead of in time.

— Data must be sampled. However, sampling in this case is
called scanning. The samples are called pixels (picture
elements).

Overview (2)
-

When Image scanning, decide how many pixels we
should record for each square or linear inch.

The scanning rate is called Resolution.

The number of bits used to represent a pixel, its Color
Depth, depends on how the pixel’s color is handled by
different encoding techniques.

The perception of color is
e How our eyes respond to a beam of light.

e Our eyes have different types of photoreceptor cells:
some respond to the three primary colors (RGB), while
others merely respond to the intensity of light.

True-Color
o]

e One of the encoding techniques

e Using 24 bits to encode a pixel.

Table 3.4 Some colors defined in True-Color

Color Red |Green| Blue |Color Red |Green| Blue
Black 0 0 0 |Yellow 255 | 255 0

Red 255 0 0 [Cyan 0 255 255
Green 0 255 0 |Magenta 255 0 255
Blue 0 0 255 |White 255 255 255

Indexed Color (Palette color) (1)
-

e Using only a portion of these colors.

— I
°
0 |—— °
@
1
°
@
255 |—— °
Index —> 16,777,216

True-Color

Relationship of the indexed color to the True-Color

Indexed Color (Palette color) (2)
-

e For example, a high-quality digital camera
uses almost three million pixels fora 3 x 5
iInch photo.

e The following shows the number of bits that
need to be stored using each scheme:

True-Color:; 3,000,000 X 24 = 72,000,000
Indexed-Color: 3,000,000 X 8 - 24,000,000

Standards for image encoding
-

e Several de facto standards for image encoding
are in use.

e JPEG (Joint Photographic Experts Group)
uses the True-Color scheme, but compresses
the image to reduce the number of bits
(Chapter 15).

e GIF (Graphic Interchange Format), on the
other hand, uses the indexed color scheme.

Vector graphics
-

e Raster graphics has two disadvantages:
— the file size is big and rescaling is troublesome.

-~ To enlarge a raster graphics image means enlarging the pixels, so
the image looks ragged when it is enlarged.

e The Image encoding method, however, does
not store the bit patterns for each pixel. An image is
decomposed into a combination of geometrical shapes such as
lines, squares or circles.

e For example, consider a circle of radius r. The main pieces of
Information a program needs to draw this circle are:
- Theradius r and equation of a circle.
- The location of the center point of the circle.
-~ The stroke line style and color.
— The fill style and color.

3.5 Storing Video

Overview
« /"7

e Video is a representation of images (called frames)
over time.

e A movie consists of a series of frames shown one
after another.

- Video is the representation of information that changes in
space and in time.

- So, if we know how to store an image inside a computer, we
also know how to store video:

— each image or frame is transformed into a set of bit patterns
and stored.

- The combination of the images then represents the video.
e See Chapter 15 for video compression.

ke
«

e I's and (r-1)'s complement
e I[EEE 754

I's Complement

c....
o £ — T HEHVETIN(N # 0) - EL“FE (base) flr
4 ?Sﬁm Ayt grtin > FJ4fYrs complement
Mo N) =N = O o NurifErso -
%Iﬂ SPHYIS

(1{012398)1p8710"s complement = 10°— 012398 = 987602
(2)(1101100),H72"s complement = 2"~ 1101100 = 0010100

e.g 6-digit Hex. number N= ABD4F5, What is the 16’s complement of N?

(r—1)'s Complement

S
o ¥ — X %FEI"JEI@I:J’N(N # 0) > FUK (base) flr
! %ZEW[M AU RPRIrEn > Bl P (- 1)*‘?5% i'f(r”
—1)—N = &N OE?j NFY(r—=1) ¥R £50
FEGIF :

(11(012398)10879°s complement = (10°— 1)— 012398 = 987601
EE'I(llDllﬂD);EI’GI"S complement = 2'—1-1101100= 0010011

IEEE 754
<

Excess 127
single precision s A N
BEEEN 1 ‘ 8 ‘ 23 ‘
1 5% =1 8 Ay B # B
CERER 1 11 52

i3 8% =1 081 s) =L VE)

IEEE 754

S
o [W[l ek ply e 350k [liexpfillof v = G 77
Qﬁ“&b < exponent < 2e — 1 V[t » ﬂﬂﬁgrj@@ﬁ[ﬁ
73 3 By G R 1 B g (B B B -
%ng AR > T SR IRROR]
o J[IflexpklO > f/fﬁﬁﬁﬁj{ E Ji’;ﬁr’j }[ﬁ” T?{EL‘O > T
- ““:l'lEfEI\?}[?]’FHﬁEi B BTN o

j—
—_—

o | HHFFHFAFIL

IEEE 754

.
o YN exp RLO ™ ' o LA RLO, s GO (FIRH"
Qal-))
° ﬂﬁ'g'r‘ exp = 2¢— 1 5 o7 10, s Rl 128
X (FBRA TP A1)
o YN exp=2¢—1 5 LA 2RO, gl B

Bl (PR
il [FEE(NaN). B | fEm eSS

== 0 0
FFIERRIET, 0 FE0
IEFRFET, 13| 26 -2 (ER=
HES 2% — 1 0

MNaM 2€ -1 =

IEEE 754

.
Oy RE LR
00000000000000000000000000000000

10000000000000000000000000000000
20 (f{z=-0)

FeErEt 43 H-127 (00000000) FO+128
11111111 MEREFRAR

B/ NN IEER
00000000100000000000000000000000

HEER+27120 ;

AR IEER
o11111 110111111111 1111111111111 1

HEUER (2-272°) x2127

