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Objectives

After studying this chapter, the student should
understand

Five different data types used in a computer.
How different data is stored inside a computer.
How integers are stored in a computer.
How reals are stored in a computer.
How text is stored in a computer. 
How audio is stored in a computer. 
How images are stored in a computer. 
How video is stored in a computer.
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3.1 Data Types
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Introduction

• Different types of data (Fig. 3.1)

The computer industry uses the term “multimedia” to 
define information that contains numbers, 

text, images, audio and video.
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Data inside the computer

All data types are transformed into a uniform 
representation when they are stored in a 
computer and transformed back to their 
original form when retrieved. This universal 
representation is called a bit pattern.



7 Figure 3.3  Storage of different data types
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Data compression & 
Error detection and correction

Data compression
– To occupy less memory space, data is normally 

compressed before being stored in the computer.
– Details in Chapter 15.

Error detection and correction
– Another issue related to data is the detection and 

correction of errors during transmission or 
storage. 

– Briefly in Appendix H.
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3.2 Storing Numbers



10 CSIM@PU10

Overview

A number is changed to the binary system 
before being stored in the computer memory, 
as described in Chapter 2.
Problems:

– How to store the sign of the number.
– How to show the decimal point.
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Storing Integers

Integers (without a fractional part), for examples:
134 and −125 are integers, but 134.23 and −0.235 are not

An integer can be thought of as a number in which the 
position of the decimal point is fixed 
Fixed-point representation is used to store an integer 
(Fig. 3.4). The decimal point is assumed but not stored

An integer is normally stored in memory using 
fixed-point representation.
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Unsigned representation (1)

An unsigned integer is an integer that can 
never be negative. Its range is between 0 
and positive infinity. 
An input device stores an unsigned integer 
using the following steps:

– The integer is changed to binary.
– If the number of bits is less than n, 0s are added 

to the left.
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Unsigned representation (2)

Example 3.1 Store 7 in an 8-bit memory 
location using unsigned representation.
– First change the integer to binary, (111)2. 
– Add five 0s to make a total of eight bits, (00000111)2.

The integer is stored in the memory location, 
but the subscript is not stored in the computer



14

Unsigned representation (3)

Example 3.2 store 258 in a 16store 258 in a 16--bit memory location.bit memory location.
–– First change the integer to binary (100000010)First change the integer to binary (100000010)22. . 
–– Add seven 0s to make a total of sixteen bits, Add seven 0s to make a total of sixteen bits, 

(0000000100000010)(0000000100000010)22. . 

Example 3.3 Example 3.3 
–– What is returned when retrieving the bit string 00101011 What is returned when retrieving the bit string 00101011 

stored in memory as an unsigned integer?stored in memory as an unsigned integer?
–– The binary integer is converted to the unsigned integer 43.The binary integer is converted to the unsigned integer 43.
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Unsigned representation (4)

Figure 3.5 stores an integer that is larger 
than 24 − 1 = 15 in a memory location that 
can only hold four bits. (Overflow)
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Sign-and-magnitude 
representation (1)

The range for unsigned integers (0 to 2n − 1) 
is divided into two equal sub-ranges. 
– The first half represents positive integers, 
– the second half, negative integers.

The leftmost bit defines the sign. If it is 0, the integer 
is positive. If it is 1, the integer is negative.
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Sign-and-magnitude 
representation (2)

Example 3.4 stores +28 in an 8-bit memory 
location 
Solution
– Changing the integer to 7-bit binary
– The leftmost bit is set to 0
– The 8-bit number is stored.
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Sign-and-magnitude 
representation (3)

Example 3.5 stores -28 in an 8-bit memory 
location
Solution
– Changing the integer to 7-bit binary. 
– The leftmost bit is set to 1. 
– The 8-bit number is stored.
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Sign-and-magnitude 
representation (4)

Example 3.6 retrieves the integer that is stored as 
01001101 in sign-and-magnitude representation.

– Since the leftmost bit is 0, the sign is positive. 
– The rest of the bits (1001101) are changed to decimal (77).
– After adding the sign, the integer is +77.

Example 3.7 retrieves the integer that is stored as 
10100001 in sign-and-magnitude representation.

– Since the leftmost bit is 1, the sign is negative. 
– The rest of the bits (0100001) are changed to decimal (33). 
– After adding the sign, the integer is −33.
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Sign-and-magnitude 
representation (5)

Positive and negative overflow when storing an integer 
using a 4-bit memory location. 
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Two’s complement representation (1)

Almost all computers use 2’s complement 
representation to store a signed integer in an n-
bit memory location.
– The available range for an unsigned integer of (0 to 2n 
− 1) is divided into two equal sub-ranges. 

– The first sub-range for nonnegative integers, 
– The second half for negative integers. 
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Two’s complement representation (2)

The bit patterns are assigned to negative and 
nonnegative integers as shown in the Figure.

The leftmost bit defines the sign of the integer. If it is 0, the 
integer is positive. If it is 1, the integer is negative.
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One’s Complementing (1)

Taking the one’s complement of an integer.
The operation can be applied to any integer, 
positive or negative. 
This operation simply reverses (flips) each 
bit. A 0-bit is changed to a 1-bit, a 1-bit is 
changed to a 0-bit.
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One’s Complementing (2)

Example 3.8 shows the one’s complement of the 
integer 00110110.

Example 3.9 shows that we get the original integer if 
we apply the one’s complement operations twice.
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Two’s Complementing (1)

Taking the two’s complement of an integer in 
binary. 
Two steps 
– First, copying bits from the right until a 1
– Then, flipping the rest of the bits.

Example 3.10 shows the two’s complement of 
the integer 00110100.



26

Two’s Complementing (2)

Example 3.11: we get the original integer if 
applying the 2’s complement operation twice.

An alternative way to take the 2’s complement of an integer 
is to first take the 1’s complement and then add 1 to the result.
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Two’s Complementing (3)

Example 3.12 stores the integer 28 in an 8stores the integer 28 in an 8--bit bit 
memory location using 2memory location using 2’’s complement s complement 
representation.representation.

Example 3.13 stores Example 3.13 stores −−28 in an 828 in an 8--bit memory bit memory 
location using 2location using 2’’s complement representation.s complement representation.
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Example 3.14 retrieves the integer that is stored as 
00001101 in memory in two’s complement format.

Example 3.15 retrieves the integer stored as 
11100110 in memory using two’s complement format.
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Two’s Complementing (4)
Overflow

There is only one zero in two’s complement notation.
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Comparison
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Storing Reals (1)

A real is a number with an integral part and a 
fractional part. 

Although a fixed-point representation can be used to 
represent a real number, the result may not be 
accurate or it may not have the required precision. 
The next two examples explain why.

Real numbers with very large integral parts or very 
small fractional parts should not be stored in fixed-
point representation.
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Storing Reals (2)

Example 3.16 tries to represent a decimal number 
such as 1.00234 to a total of sixteen digits.

– Two digits at the right of the decimal point 
– Fourteen digits at the left of the decimal point
– The system stores the number as 1.00; The precision of a real 

number in this system is lost 

Example 3.17 tries to represent a decimal number 
such as 236154302345.00 to a total of sixteen digits.

– Six digits to the right of the decimal point 
– Ten digits for the left of the decimal point, 
– The system stores the number as 6154302345.00; The 

accuracy of a real number in this system is lost 
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Floating-point representation (1)

The solution for maintaining accuracy or 
precision is to use floating-point representation.
Three parts: a sign, a shifter and a fixed-point 
number. (Figure 3.9)
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Floating-point representation (2)

Example 3.18 shows the decimal number in 
floating-point representation.

The three parts are 
– The sign (+), the shifter (21), and the fixed-point 

part (7.425). 
– Note that the shifter is the exponent.

7,452,000,000,000,000,000,000.007,452,000,000,000,000,000,000.00
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Floating-point representation (3)

Example 3.19 shows the number in floating-
point representation.

The three parts are 
– The sign (-), the shifter (-14), and the fixed-point 

part (2.32)

−−0.00000000000002320.0000000000000232
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Floating-point representation (4)

Examples (3.20 and 3.21) show the numbers in 
floating-point representation.
– Keeping only one digit to the left of the decimal point.

(101001000000000000000000000000000.00)(101001000000000000000000000000000.00)22Eg. 3.20:

−−(0.00000000000000000000000101)(0.00000000000000000000000101)22Eg. 3.21:
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Normalization (1)

Both the scientific method (for the decimal 
system) and the floating-point method (for 
the binary system) use only one non-zero 
digit on the left of the decimal point. 

In the decimal system this digit can be 1 to 9, 
while in the binary system it can only be 1.
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Normalization (2)

Note that the point and the bit 1 to the left of the 
fixed-point section are not stored—they are implicit. 
The mantissa is a fractional part that, together with 
the sign, is treated like an integer stored in sign-and-
magnitude representation.
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Excess System (1)

Exponent
– To show how many bits the decimal point should be moved to the 

left or right. 
– Being a signed number (使用Excess system)

Excess System
– Positive and negative integers are stored as unsigned integers. 
– A positive integer (called a bias) is added to each number to shift 

them uniformly to the non-negative side. 

The value of this bias is 2m-1 − 1, where m is the size of the 
memory location to store the exponent.
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Excess System (2)

Example 3.22 shows sixteen integers with 4-bit 
allocation. 
– By adding seven units to each integer, uniformly 

translating all integers to the right.
– The new system is referred to as Excess-7, or biased 

representation with biasing value of 7.
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IEEE Standard

Figure 3.12  IEEE standards for floating-point representation
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IEEE Specifications



44

Excess System Example (1)

Example 3.23 show the Excess_127 (single precision) 
representation of the decimal number 5.75.

The number is stored in the computer as
01000000110110000000000000000000

Solution
• The sign is positive, so S = 0.
• Decimal to binary transformation: 5.75 = (101.11)2.
• Normalization: (101.11)2 = (1.1011)2 × 22.
• E = 2 + 127 = 129 = (10000001)2, M = 1011. 
• We need to add nineteen zeros at the right of M to make it 23 bits. 



45

Excess System Example (2)

Example 3.24 shows the Excess_127 
representation of –161.875.

Solution:
• The sign is negative, so S = 1.
• Decimal to binary: 161.875= (10100001.111)2.
• Normalization: (10100001.111)2 = (1.0100001111)2 × 27.
• E = 7 + 127 = 134 = (10000110)2 and M = (0100001111)2.

The number is stored in the computer as
11000011010000111100000000000000
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Excess System Example (3)

Example 3.25 shows the Excess_127 
representation of –0.0234375.
Solution
• S = 1 (the number is negative).
• Decimal to binary: 0.0234375 = (0.0000011)2.
• Normalization: (0.0000011)2 = (1.1)2 × 2−6.
• E = –6 + 127 = 121 = (01111001)2 and M = (1)2.

The number is stored in the computer as
10111100110000000000000000000000
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Excess System Example (4)

Example 3.26 show the value in decimal, when 
The bit pattern is stored in Excess_127 format:

Solution
• The first bit is S, the next eight bits, E and the remaining 23 bits, M.
b. The shifter = E − 127 = 148 − 127 = 21.
c. This gives us (1.00000000111000100001111)2 × 221.
d. The binary number is (1000000001110001000011.11)2.
e. The absolute value is 2,104,378.75.
f. The number is −2,104,378.75.

(11001010000000000111000100001111)2
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Overflow and Underflow

Overflow and underflow in floating-point 
representation of reals (Figure 3.12)
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Storing Zero

A real number with an integral part and the A real number with an integral part and the 
fractional part set to zero, that is, 0.0, cannot fractional part set to zero, that is, 0.0, cannot 
be stored using the steps discussed above. be stored using the steps discussed above. 
To handle this special case, it is agreed that To handle this special case, it is agreed that 
in this case the sign, exponent and the in this case the sign, exponent and the 
mantissa are set to 0smantissa are set to 0s..
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3.3 Storing Text
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A section of text in any language is a sequence of 
symbols used to represent an idea in that language. 
For example, the English language uses

– 26 symbols (A, B, C,…, Z) to represent uppercase letters, 
– 26 symbols (a, b, c, …, z) to represent lowercase letters, 
– nine symbols (0, 1, 2, …, 9) to represent numeric characters
– symbols (., ?, :, ; , …, !) to represent punctuation. 

Other symbols such as blank, newline, and tab are 
used for text alignment and readability.

Overview (1)
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Overview (2)

Representing each symbol with a bit pattern. 
Text such as “CATS”, which is made up from four 
symbols, can be represented as four n-bit 
patterns, each pattern defining a single symbol

Figure 3.13  Representing symbols using bit patterns
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Overview (3)
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Overview (4)

Codes (See Appendix A)
– ASCII
– Unicode
– Other Codes
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3.4 Storing Audio
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Overview (1)

Audio 
– A representation of sound or music. 
– Different to the numbers or text. 

Text is composed of countable entities 
(characters); Text is an example of digital data.

– Being not countable. 
– An example of analog data.

Even if we can measure all its values in a period of time, we 
cannot store these in the computer’s memory, as we would 
need an infinite number of memory locations. 

How to store audio data
– Sampling Quantization Encoding
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Overview (2)

Figure 3.15 shows the nature of an analog 
signal, such as audio, that varies with time.
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Sampling

Sampling means that we select only a finite 
number of points on the analog signal, 
measure their values, and record them. 

Figure 3.16  Sampling an audio signal



59

Quantization

The value measured for each sample is a real 
number. 
However, it is simpler to use an unsigned integer (a 
bit pattern) for each sample. 
Quantization refers to a process that rounds the 
value of a sample to the closest integer value. 
For example, 

– if the real value is 17.2, it can be rounded down to 17: if the 
value is 17.7, it can be rounded up to 18.
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Encoding

Quantized sample values are encoded as bit patterns. 
– Some systems assign positive and negative values to samples, 
– Some shift the curve to the positive part and assign only positive 

values. 

Number of bits per sample B (bit depth), and the number 
of samples per second, S: 

– To store S × B bits for each second of audio
This product is sometimes referred to as bit rate, R. For 
example: 40,000 samples per second and 16 bits per 
each sample, the bit rate is 
R = 40,000 × 16 = 640,000 bits per second



61

Standards for sound encoding

MP3 (short for MPEG Layer 3).
– Today the dominant standard for storing audio. 
– A modification of the MPEG (Motion Picture Experts 

Group) compression method used for video. 
– Using 44100 samples per second and 16 bits per sample. 

Lossy compression (Chapter 15)
– The result is a signal with a bit rate of 705,600 bits per 

second, which is compressed using a compression method 
that discards information that cannot be detected by the 
human ear. 

– As opposed to lossless compression
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3.5 Storing Images



63

Overview (1)

Images are stored in computers using two different 
techniques: 
– Raster graphics and Vector graphics.

Raster graphics (or bitmap graphics) 
– Be used when storing an analog image such as a photograph
– A photograph consists of analog data, similar to audio 

information. The difference is that the intensity of data varies in
space instead of in time. 

– Data must be sampled. However, sampling in this case is 
called scanning. The samples are called pixels (picture 
elements). 
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Overview (2)

– When Image scanning, decide how many pixels we 
should record for each square or linear inch. 

– The scanning rate is called Resolution. 
– The number of bits used to represent a pixel, its Color 

Depth, depends on how the pixel’s color is handled by 
different encoding techniques. 

– The perception of color is 
How our eyes respond to a beam of light. 
Our eyes have different types of photoreceptor cells: 
some respond to the three primary colors (RGB), while 
others merely respond to the intensity of light.
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True-Color

One of the encoding techniques
Using 24 bits to encode a pixel.
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Indexed Color (Palette color) (1)

Using only a portion of these colors.

Figure 3.17  Relationship of the indexed color to the True-Color
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Indexed Color (Palette color) (2)

For example, a high-quality digital camera 
uses almost three million pixels for a 3 × 5 
inch photo. 
The following shows the number of bits that 
need to be stored using each scheme:
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Standards for image encoding

Several de facto standards for image encoding 
are in use. 
JPEG (Joint Photographic Experts Group) 
uses the True-Color scheme, but compresses 
the image to reduce the number of bits 
(Chapter 15). 
GIF (Graphic Interchange Format), on the 
other hand, uses the indexed color scheme.
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Vector graphics

Raster graphics has two disadvantages: 
– the file size is big and rescaling is troublesome. 
– To enlarge a raster graphics image means enlarging the pixels, so 

the image looks ragged when it is enlarged. 
The vector graphic image encoding method, however, does 
not store the bit patterns for each pixel. An image is 
decomposed into a combination of geometrical shapes such as 
lines, squares or circles. 
For example, consider a circle of radius r. The main pieces of 
information a program needs to draw this circle are:

– The radius r and equation of a circle.
– The location of the center point of the circle.
– The stroke line style and color.
– The fill style and color.
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3.5 Storing Video
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Overview

Video is a representation of images (called frames) 
over time. 
A movie consists of a series of frames shown one 
after another. 

– Video is the representation of information that changes in 
space and in time. 

– So, if we know how to store an image inside a computer, we 
also know how to store video: 

– each image or frame is transformed into a set of bit patterns 
and stored. 

– The combination of the images then represents the video. 
See Chapter 15 for video compression. 



72

補充

r’s and (r-1)’s complement 
IEEE 754
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r’s Complement

若一無號的數字N(N ≠ 0)，基底（base）是r，
整數部分的位數為n，則它的r’s complement 
定義為(rn − N)，且令N = 0時，N的r補數為0。
舉例說明如下：

e.g 6-digit Hex. number  N= ABD4F5, What is the 16’s complement of N?
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(r – 1)’s Complement

若一無號的數字N(N ≠ 0)，基底（base）是r
，整數部分的位數為n，則它的(r−1)補數為(rn

− 1) − N，且令N = 0時，N的(r−1)補數為0。
舉例說明如下：
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IEEE 754

Excess 127
single precision
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IEEE 754

小數部分最高有效位由exp部分決定。如果指
數在0 < exponent < 2e − 1之間，那麼小數部
分最高有效位將是1，而且這個數將被稱為正
規形式。

如果exp是0，有效數最高有效位將會是0，並
且這個數將被稱為非正規形式。

有三個特殊值需要指出：
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IEEE 754

如果 exp 是0 並且 小數部分 是0, 這個數±0 (和符號位
相關) 
如果 exp = 2e − 1 並且 小數部分 是0, 這個數是 ±無窮
大 (同樣和符號位相關) 
如果 exp = 2e − 1 並且 小數部分 非0, 這個數表示為
不是一個數(NaN). 
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IEEE 754


